Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Rh(III)-Catalyzed chemo-, regio- and stereoselective carboamination

of sulfonyl allenes with N-phenoxy amides or N-enoxy imides

Min Wu,[§] Haiman Zhang,[§] Ting Wang, Shuang Lin, Ziyang Guo, Hui Gao, Zhi Zhou* and Wei Yi*

Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.

§These authors contributed equally to this work.

*E-mail: zhouzhi@gzhmu.edu.cn and yiwei@gzhmu.edu.cn

Contents

I.	General	.S2
II.	Experimental Information and Characterization Data	.S2
III.	Synthetic Applications	528
IV.	X-Ray Characteristic Data	535
V.	References	S36
VI.	Copies of ¹ H, ¹³ C and ¹⁹ F NMR Spectra	S37

I. General

NMR spectra were recorded on JEOL 400 NMR (1H 400 MHz; 13C 100 MHz) in either CDCl3 or DMSO-d6. Abbreviations for data quoted are s, singlet; brs, broad singlet; d, doublet; t, triplet; dd, doublet of doublets; m, multiplet. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: $\delta_{\rm H}$ = 7.26 ppm, $\delta_{\rm C}$ = 77.16 ppm; d_6 -DMSO: $\delta_{\rm H}$ = 2.50 ppm, $\delta_{\rm C}$ = 39.52 ppm). Mass spectra and high-resolution mass spectra were measured on an agilent TOF-G6230B mass spectrometer and Thermo-DFS mass spectrometer. Thin-layer chromatographies were done on pre-coated silica gel 60 F254 plates (Merck). Silica gel 60H (200-300 mesh) and preparative TLC (200x200 mm, 0.2-0.25 mm in thickness) manufactured by Qingdao Haiyang Chemical Group Co. (China) were used for general chromatography. [Cp*IrCl₂]₂, [Cp*RhCl₂]₂, [Ru(p-cymene)Cl₂]₂ and CsOAc were purchased from Aldrich and used without further purification. Nphenoxy amides,^{S1} N-enoxy imides^{S2} and the allene substrates^{S3} were synthesized according to published procedures. Other chemicals were purchased from commercial suppliers and were dried and purified when necessary. No attempts were made to optimize yields for substrate synthesis.

II. Experimental Information and Characterization Data

Optimization studies:

The mixture of *N*-phenoxy amide **1a** (0.1 mmol, 1.0 equiv), sulfonyl allene **2a** (0.1 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (2.5 mol %) and base (1 equiv) in the solvent was stirred in an oil bath without exclusion of air or moisture. Afterwards, it was diluted with EtOAc and filtered through a short silica gel column to remove the metal residues. Then, the reaction mixture was concentrated and purified by preparative TLC (eluent: PE/EA = 3/1) to afford the corresponding product **3aa**.

	ONHAc +		Ts [Cp*RhCl	2] ₂ , base ives emp, time	IAc		-
	°⊓ 1a	2a		3aa ^{Ts}		3aa'	s
	1 /	Temp	1	11%	Time	Yield	(%) ^b
#	solvent	(°C)	base	additive	(h)	3aa	3aa'
solver	nt screening						
1	MeCN	40	NaOAc	/	12	24	trace
2	DCE	40	NaOAc	/	12	27	trace
3	Dioxane	40	NaOAc	/	12	74	nd
4	DMF	40	NaOAc	/	12	trace	nd
5	Toluene	40	NaOAc	/	12	53	trace
6	Acetone	40	NaOAc	/	12	39	trace
7	HFIP	40	NaOAc	/	12	trace	nd
8	DMSO	40	NaOAc	/	12	nd	nd
9	THF	40	NaOAc	/	12	74	nd
reacti	on temperature sc	reening					
10	THF	rt	NaOAc	/	12	57	nd
11	THF	60	NaOAc	/	12	66	nd
12	THF	80	NaOAc	/	12	63	nd
additi	ive screening						
13	THF	rt	NaOAc	HOAc	12	36	11
14	THF	rt	NaOAc	PivOH	12	28	trace
15	THF	rt	NaOAc	4ÅMS	12	53	trace
16	THF	rt	NaOAc	Amberlite IRA-400	12	50	nd
17	THF	rt	NaOAc	Amberlite IR-120	12	38	nd
base s	screening						
18	THF	rt	KOAc	/	12	37	nd
19	THF	rt	CsOAc	/	12	22	nd
20	THF	rt	Zn(OAc) ₂	/	12	<10	nd
21	THF	rt	Mn(OAc) ₂	/	12	30	nd
22	THF	rt	K ₂ CO ₃	/		28	nd
23	THF	rt	KOPiv	/	12	25	nd
24	THF	rt	K ₃ PO ₄	/	12	nd	nd
Reaction time screening							
25	THF	rt	NaOAc	/	8	50	nd
26	THF	rt	NaOAc	/	12	53	nd
27	THF	rt	NaOAc	/	16	52	nd
28	THF	rt	NaOAc	/	24	53	nd

Table S1. Conditions Screening for the Synthesis of 3aa.^a

^{*a*}Reaction Conditions: **1a** (0.1 mmol), **2a** (0.1 mmol), [Cp*RhCl₂]₂ (2.5 mol %), base (1.0 equiv), solvent (0.5 mL), temperature, time, under air. ^{*b*} Isolated yields. nd: not detected.

The mixture of *N*-enoxy imide **4a** (0.1 mmol, 1.0 equiv), sulfonyl allene **2a** (0.1 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (2.5 mol %) and base (1 equiv) in the solvent was stirred in an oil bath without exclusion of air or moisture. Afterwards, it was diluted with EtOAc and filtered through a short silica gel column to remove the metal residues. Then, the reaction mixture was concentrated and purified by preparative TLC (eluent: PE/EA = 2/1) to afford the corresponding product **5a**.

		+	Ts [Cp*RhCl ₂] ₂ , base additives MeOH, temp, time	Ph O	N N N N N N N N N N N N N N N N N N N	CO ₂ Me	
	4a	2a		-	`Ts 5a	\checkmark	
#	base	Temp/°C	additive	4a:2a	Time/h	yield(%) ^b	
bas	e screening						
1	KOAc	40	/	1:1	12	18	
2	CsOAc	40	/	1:1	12	22	
3	$Zn(OAc)_2$	40	/	1:1	12	trace	
4	K ₂ CO ₃	40	/	1:1	12	trace	
5	KOPiv	40	/	1:1	12	25	
6	Cs_2CO_3	40	/	1:1	12	12	
7	NaOAc	40	/	1:1	12	12	
additive screening							
8	KOPiv	40	HOAc	1:1	12	<10	
9	KOPiv	40	PivOH	1:1	12	12	
10	KOPiv	40	4ÅMS	1:1	12	22	
11	KOPiv	40	Amberlite IRA-400	1:1	12	15	
12	KOPiv	40	Amberlite IR-120	1:1	12	trace	
13	KOPiv	40	$AgSbF_6$	1:1	12	ND	
other parameters screening							
14	KOPiv	40	/	1.5:1	12	31	
15	KOPiv	40	/	2:1	12	51	
16	KOPiv	40	/	2:1	6	33	
17	KOPiv	40	/	2:1	8	36	
18	KOPiv	40	/	2:1	24	21	
19	KOPiv	rt	/	2:1	12	46	
20	KOPiv	60	/	2:1	12	15	
21	KOPiv	80	/	2:1	12	<10	

Table S2. Conditions Screening for the Synthesis of 5a.^a

^{*a*}Reaction Conditions: **1a**, **2a** (0.1 mmol), [Cp*RhCl₂]₂ (2.5 mol %), base (1.0 equiv), solvent (0.5 mL), temperature, time, under air. ^{*b*}Isolated yields. ND: not detected.

General procedure for the carboamination of *N*-phenoxy amides with sulfonyl allenes:

The mixture of *N*-phenoxy amide **1** (0.2 mmol, 1.0 equiv), sulfonyl allene **2** (0.2 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (2.5 mol %) and NaOAc (0.2 mmol, 1.0 equiv) in THF (2.0 mL) was stirred at 40 °C for 12 h without exclusion of air or moisture. Afterwards, the solvent was removed under reduced pressure, and the resulted mixture was purified by preparative TLC to afford the corresponding allylamine derivatives **3**.

Characterization of products:

(Z)-N-(3-(2-hydroxyphenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3aa)

This compound was obtained in 74% yield (55.2 mg) as light yellow solid, m.p.: 186-187 °C. Eluent: PE/EA = 2/1, $R_f = 0.7$.

¹**H NMR (400 MHz, CDCl₃):** δ 9.84 (s, 1H), 7.78 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.18 (t, *J* = 7.6 Hz, 1H), 7.02 (brs, 1H), 6.91 (d, *J* = 8.2 Hz, 1H), 6.78-6.71 (m, 2H), 6.09 (s, 1H), 2.41 (s, 3H), 2.14 (s, 3H), 1.82 (s, 3H), 1.35 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.6, 157.4, 154.3, 144.7, 138.8, 130.2, 130.1, 130.0, 127.8, 127.3, 126.1, 118.7, 117.2, 55.3, 28.0, 26.2, 24.2, 21.7.

HRMS (ESI) calculated for C₂₀H₂₄NO₄S ([M+H]⁺): 374.1421; found: 374.1417.

Scale-up synthesis of 3aa: The mixture of *N*-phenoxyacetamide 1a (2.0 mmol, 1.0 equiv), sulfonyl allene 2a (2.0 mmol, 1.0 equiv), [Cp*RhCl₂]₂ (2.5 mol %) and NaOAc (2.0 mmol, 1.0 equiv) in THF (10.0 mL) was stirred at 40 °C for 12 h without exclusion of air or moisture. Afterwards, the resulted mixture was purified by silica

gel column chromatography to afford the corresponding allylamine derivatives **3aa** in 73% (0.544 g) isolated yield.

(*Z*)-*N*-(3-(2-hydroxy-5-methylphenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3ba)

This compound was obtained in 75% yield (58.0 mg) as light yellow solid, m.p.: 185-187 °C. Eluent: PE/EA = 2/1, $R_f = 0.8$.

¹**H NMR (400 MHz, CDCl₃):** δ 9.56 (s, 1H), 7.78 (d, *J* = 8.1 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 6.98 (d, *J* = 8.3 Hz, 1H), 6.87-6.78 (m, 2H), 6.55 (s, 1H), 6.08 (s, 1H), 2.42 (s, 3H), 2.19 (s, 3H), 2.13 (s, 3H), 1.81 (s, 4H), 1.36 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.6, 157.6, 152.0, 144.7, 138.9, 130.7, 130.2, 130.0, 128.0, 127.9, 127.4, 125.8, 117.1, 55.3, 28.1, 26.3, 24.3, 21.7, 20.4.

HRMS (ESI) calculated for C₂₁H₂₆NO₄S ([M+H]⁺): 388.1577; found: 388.1571.

(Z)-N-(3-(5-(tert-butyl)-2-hydroxyphenyl)-2-methyl-4-tosylbut-3-en-2-

yl)acetamide (3ca)

This compound was obtained in 65% yield (57.0 mg) as light yellow oil. Eluent: PE/EA = 2/1, R_f = 0.8.

¹**H NMR (400 MHz, CDCl₃):** δ 9.50 (s, 1H), 7.80 (d, *J* = 7.9 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 8.6 Hz, 1H), 6.86-6.83 (m, 2H), 6.72 (s, 1H), 6.14 (s, 1H), 2.42 (s, 3H), 2.12 (s, 3H), 1.82 (s, 3H), 1.32 (s, 3H), 1.24 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 171.6, 157.9, 151.8, 144.7, 141.6, 138.9, 130.1, 130.0, 127.4, 127.0, 125.4, 124.1, 116.8, 55.4, 34.0, 31.6, 28.3, 26.5, 24.3, 21.7.

HRMS (ESI) calculated for C₂₄H₃₂NO₄S ([M+H]⁺): 392.1327; found: 392.1321.

(*Z*)-*N*-(3-(5-fluoro-2-hydroxyphenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3da)

This compound was obtained in 81% yield (63.3 mg) as light yellow solid, m.p.: 136-138 °C. Eluent: PE/EA = 2/1, $R_f = 0.8$.

¹**H NMR (400 MHz, CDCl₃):** δ 9.72 (s, 1H), 7.78 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 6.92-6.81 (m, 3H), 6.51 (dd, *J* = 8.3, 2.8 Hz, 1H), 6.09 (s, 1H), 2.43 (s, 3H), 2.14 (s, 3H), 1.81 (s, 3H), 1.36 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.7, 156.0, 155.5 (d, J = 238.1 Hz), 150.5, 145.0, 138.6, 130.9, 130.1, 126.2 (d, J = 7.3 Hz), 118.3 (d, J = 8.0 Hz), 116.6 (d, J = 22.5 Hz), 114.1 (d, J = 23.6 Hz), 55.1, 28.1, 26.3, 24.2, 21.7.

¹⁹F NMR (**376** MHz, CDCl₃): δ -126.13.

HRMS (ESI) calculated for C₂₀H₂₃FNO₄S ([M+H]⁺): 392.1327; found: 392.1322.

(*Z*)-*N*-(3-(5-chloro-2-hydroxyphenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3ea)

This compound was obtained in 78% yield (65.1 mg) as light yellow solid, m.p.: 187-188 °C. Eluent: PE/EA = 2/1, $R_f = 0.8$.

¹**H NMR (400 MHz, CDCl₃):** δ 10.02 (s, 1H), 7.78 (d, *J* = 8.1 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.13 (dd, *J* = 8.7, 2.3 Hz, 1H), 6.91 (brs, 1H), 6.84 (d, *J* = 8.8 Hz, 1H), 6.74 (d, *J* = 2.3 Hz, 1H), 6.08 (s, 1H), 2.43 (s, 3H), 2.15 (s, 3H), 1.81 (s, 3H), 1.36 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.8, 155.8, 153.3, 145.0, 138.5, 131.0, 130.2, 130.0, 127.4, 127.3, 127.2, 123.3, 118.8, 55.2, 28.0, 26.2, 24.2, 21.7.

HRMS (ESI) calculated for C₂₀H₂₃ClNO₄S ([M+H]⁺): 408.1031; found: 408.1026.

(*Z*)-*N*-(3-(5-bromo-2-hydroxyphenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3fa)

This compound was obtained in 80% yield (71.6 mg) as light yellow solid, m.p.: 168-170 °C. Eluent: PE/EA = 2/1, $R_f = 0.8$.

¹**H NMR (400 MHz, CDCl₃):** δ 10.07 (s, 1H), 7.78 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 8.1 Hz, 2H), 7.27 (dd, *J* = 8.6, 2.4 Hz, 1H), 6.93 (brs, 1H), 6.88 (d, *J* = 2.3 Hz, 1H), 6.80 (d, *J* = 8.7 Hz, 1H), 6.08 (s, 1H), 2.43 (s, 3H), 2.15 (s, 3H), 1.81 (s, 3H), 1.36 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.8, 155.7, 153.8, 145.0, 138.5, 132.9, 131.0, 130.2, 130.0, 127.8, 127.4, 119.3, 110.4, 55.2, 28.0, 26.2, 24.2, 21.7.

HRMS (ESI) calculated for C₂₀H₂₃BrNO₄S ([M+H]⁺): 452.0526; found: 452.0522.

(Z)-N-(3-(2-hydroxy-5-iodophenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3ga)

This compound was obtained in 72% yield (72.0 mg) as light yellow solid, m.p.: 182-183 °C. Eluent: PE/EA = 2/1, $R_f = 0.7$.

¹**H NMR (400 MHz, CDCl₃):** δ 10.10 (s, 1H), 7.78 (d, *J* = 8.0 Hz, 2H), 7.44 (d, *J* = 8.6 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.04 (s, 1H), 6.90 (brs, 1H), 6.69 (d, *J* = 8.6 Hz, 1H), 6.07 (s, 1H), 2.43 (s, 3H), 2.14 (s, 3H), 1.80 (s, 3H), 1.36 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.8, 155.6, 154.6, 145.0, 138.9, 138.5, 135.7, 131.0, 130.2, 128.6, 127.4, 119.8, 79.9, 55.2, 28.0, 26.2, 24.2, 21.7.

HRMS (ESI) calculated for C₂₀H₂₃INO₄S ([M+H]⁺): 500.0387; found: 500.0383.

(Z)-N-(3-(2-hydroxy-5-(trifluoromethyl)phenyl)-2-methyl-4-tosylbut-3-en-2-

yl)acetamide (3ha)

This compound was obtained in 86% yield (75.6 mg) as light yellow solid, m.p.: 179-181 °C. Eluent: PE/EA = 2/1, $R_f = 0.8$.

¹**H NMR (400 MHz, CDCl₃):** δ 10.55 (s, 1H), 7.80 (d, *J* = 8.2 Hz, 2H), 7.44 (d, *J* = 8.6 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 2H), 7.01 (s, 1H), 6.98 (d, *J* = 8.6 Hz, 1H), 6.92 (s, 1H), 6.10 (s, 1H), 2.43 (s, 3H), 2.17 (s, 3H), 1.84 (s, 3H), 1.35 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 172.0, 157.6, 155.7, 145.1, 138.4, 131.4, 130.2, 127.5, 126.1, 125.1 (q, J = 3.6 Hz), 124.4 (q, J = 270.9 Hz), 121.1 (q, J = 32.9 Hz), 117.8, 55.2, 28.1, 26.3, 24.3, 21.7.

¹⁹F NMR (**376** MHz, CDCl₃): δ -61.02.

HRMS (ESI) calculated for C₂₁H₂₃F₃NO₄S ([M+H]⁺): 442.1295; found: 442.1288.

(Z)-N-(3-(2-hydroxy-5-nitrophenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3ia)

This compound was obtained in 90% yield (75.2 mg) as light yellow oil. Eluent: PE/EA = 2/1, R_f = 0.7.

¹**H NMR (400 MHz, CDCl₃):** δ 11.37 (s, 1H), 8.10 (d, *J* = 9.1 Hz, 1H), 7.80 (d, *J* = 8.1 Hz, 2H), 7.74 (s, 1H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.12 (s, 1H), 6.97 (d, *J* = 9.1 Hz, 1H), 6.12 (s, 1H), 2.44 (s, 3H), 2.20 (s, 3H), 1.87 (s, 3H), 1.37 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 172.2, 161.0, 154.4, 145.3, 139.7, 138.1, 132.0, 130.3, 127.5, 126.5, 126.1, 124.4, 117.9, 55.1, 27.9, 26.1, 24.1, 21.7.

HRMS (ESI) calculated for C₂₀H₂₃N₂O₆S ([M+H]⁺): 419.1272; found: 419.1267.

(Z)-N-(3-(5-cyano-2-hydroxyphenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide

(3ja)

This compound was obtained in 57% yield (45.3 mg) as light yellow solid, m.p.: 192-193 °C. Eluent: PE/EA = 2/1, $R_f = 0.7$.

¹H NMR (400 MHz, CDCl₃): δ 10.97 (s, 1H), 7.79 (d, J = 8.1 Hz, 2H), 7.48 (d, J = 8.5 Hz, 1H), 7.37 (d, J = 8.0 Hz, 2H), 7.08 (s, 1H), 6.96 (d, J = 8.6 Hz, 1H), 6.91 (brs, 1H), 6.06 (s, 1H), 2.44 (s, 3H), 2.17 (s, 3H), 1.82 (s, 3H), 1.35 (s, 3H).
¹³C NMR (100 MHz, CDCl₃): δ 172.1, 158.9, 154.7, 145.3, 138.3, 134.3, 132.3, 131.8, 130.3, 127.5, 127.1, 119.1, 118.6, 102.1, 55.2, 28.0, 26.2, 24.2, 21.8.
HRMS (ESI) calculated for C₂₁H₂₃N₂O₄S ([M+H]⁺): 399.1373; found: 399.1369.

methyl (*Z*)-3-(3-acetamido-3-methyl-1-tosylbut-1-en-2-yl)-4-hydroxybenzoate (3ka)

This compound was obtained in 58% yield (50.0 mg) as light yellow solid, m.p.: 191-192 °C. Eluent: PE/EA = 3/1, $R_f = 0.4$.

¹**H NMR (400 MHz, CDCl₃):** δ 10.65 (s, 1H), 7.87 (d, *J* = 8.6 Hz, 1H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.49 (s, 1H), 7.34 (d, *J* = 8.1 Hz, 2H), 6.94-6.91 (m, 2H), 6.08 (s, 1H), 3.85 (s, 3H), 2.43 (s, 3H), 2.17 (s, 3H), 1.84 (s, 3H), 1.35 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.9, 166.7, 159.1, 156.0, 145.0, 138.5, 132.1, 131.2, 130.2, 130.0, 127.5, 126.0, 120.8, 117.3, 55.3, 52.0, 28.0, 26.2, 24.2, 21.7.

HRMS (ESI) calculated for C₂₂H₂₆NO₆S ([M+H]⁺): 432.1476; found: 432.1475.

(Z)-N-(3-(4-hydroxy-[1,1'-biphenyl]-3-yl)-2-methyl-4-tosylbut-3-en-2yl)acetamide (3la)

This compound was obtained in 72% yield (64.9 mg) as light yellow solid, m.p.: 175-177 °C. Eluent: PE/EA = 2/1, $R_f = 0.8$.

¹**H NMR (400 MHz, CDCl₃):** δ 9.96 (s, 1H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.50-7.41 (m, 3H), 7.38 (t, *J* = 7.6 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 7.33-7.25 (m, 1H), 7.01-6.96 (m, 2H), 6.93 (s, 1H), 6.17 (s, 1H), 2.41 (s, 3H), 2.16 (s, 3H), 1.86 (s, 3H), 1.41 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.8, 157.2, 154.1, 144.8, 140.4, 138.7, 132.0, 130.6, 130.1, 128.9, 127.4, 126.9, 126.7, 126.4, 126.3, 117.8, 55.4, 28.2, 26.4, 24.3, 21.7.

HRMS (ESI) calculated for C₂₆H₂₈NO₄S ([M+H]⁺): 450.1734; found: 450.1729.

(Z)-N-(3-(2-hydroxy-3-methylphenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3ma)

This compound was obtained in 64% yield (49.8 mg) as light yellow solid, m.p.: 205-207 °C. Eluent: PE/EA = 2/1, $R_f = 0.8$.

¹**H NMR (400 MHz, CDCl₃):** δ 9.81 (s, 1H), 7.77 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.04 (d, *J* = 6.6 Hz, 1H), 6.93 (brs, 1H), 6.66-6.57 (m, 2H), 6.09 (s, 1H), 2.41 (s, 3H), 2.23 (s, 3H), 2.14 (s, 3H), 1.82 (s, 3H), 1.34 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.7, 157.7, 152.3, 144.7, 138.9, 131.0, 130.2, 130.0, 127.3, 126.4, 125.6, 125.3, 118.3, 55.3, 28.1, 26.3, 24.2, 21.7, 16.4.

HRMS (ESI) calculated for C₂₁H₂₆NO₄S ([M+H]⁺): 388.1577; found: 388.1572.

(*Z*)-*N*-(3-(2-hydroxy-4-methoxyphenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3na) & (*Z*)-*N*-(3-(2-hydroxy-6-methoxyphenyl)-2-methyl-4-tosylbut-3-en-2-yl)

acetamide (3na')

This compound was obtained in 54% yield (43.4 mg) as light yellow oil. Eluent: PE/EA = 2/1, $R_f = 0.7$. An inseparable mixture of two regio isomers was obtained, and the ratio was determined to be **3na/3na'** = 5/1 by ¹H-NMR analysis.

¹**H NMR (400 MHz, CDCl₃):** δ 9.89 (s, 0.83H), 9.84 (s, 0.17H), 7.77 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 7.8 Hz, 2H), 7.09 (t, *J* = 8.2 Hz, 0.17H), 7.02 (brs, 0.83H), 6.93 (brs, 0.17H), 6.65 (d, *J* = 8.4 Hz, 0.83H), 6.59-6.53 (m, 0.17H), 6.47 (s, 0.83H), 6.33-6.29 (m, 1H), 6.08 (s, 6H), 3.74 (s, 2.49H), 3.71 (s, 0.51H), 2.41 (s, 3H), 2.13 (s, 2.49H), 2.12 (s, 0.51H), 1.91 (s, 0.51H), 1.79 (s, 2.49H), 1.35 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.7, 171.5, 161.3, 157.5, 156.6, 155.7, 155.6, 153.4, 144.7, 144.5, 138.9, 138.8, 131.0, 130.5, 130.0, 129.9, 129.8, 128.5, 127.3, 127.2, 118.9, 115.9, 110.5, 105.5, 101.9, 101.3, 55.5, 55.3, 28.3, 28.0, 26.7, 26.2, 24.20, 24.15, 21.6.

HRMS (ESI) calculated for $C_{21}H_{26}NO_5S$ ([M+H]⁺): 404.1526; found: 404.1521.

(*Z*)-*N*-(3-(2-hydroxy-4-methylphenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (30a)

This compound was obtained in 62% yield (47.3 mg) as light yellow oil. Eluent: PE/EA = 2/1, R_f = 0.8.

¹H NMR (400 MHz, CDCl₃): δ 9.68 (s, 1H), 7.77 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 6.88 (brs, 1H), 6.74 (s, 1H), 6.65 (d, J = 7.6 Hz, 1H), 6.55 (d, J = 7.6 Hz, 1H), 6.07 (s, 1H), 2.41 (s, 3H), 2.25 (s, 3H), 2.13 (s, 3H), 1.80 (s, 3H), 1.36 (s, 3H).
¹³C NMR (100 MHz, CDCl₃): δ 171.6, 157.6, 154.2, 144.7, 140.4, 138.9, 130.3, 130.0, 127.6, 127.3, 123.4, 119.6, 117.8, 55.4, 28.1, 26.3, 24.2, 21.7, 21.3.

HRMS (ESI) calculated for C₂₁H₂₆NO₄S ([M+H]⁺): 388.1577; found: 388.1573.

(*Z*)-*N*-(3-(4-chloro-2-hydroxyphenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3pa)

This compound was obtained in 82% yield (66.8 mg) as light yellow solid, m.p.: 174-176 °C. Eluent: PE/EA = 2/1, $R_f = 0.8$.

¹**H NMR (400 MHz, CDCl₃):** δ 10.17 (s, 1H), 7.77 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 6.93-6.91 (m, 2H), 6.73-6.66 (m, 2H), 6.07 (s, 1H), 2.42 (s, 3H), 2.14 (s, 3H), 1.80 (s, 3H), 1.34 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.8, 156.3, 155.4, 144.9, 138.6, 135.4, 130.9, 130.1, 128.7, 127.4, 124.7, 119.0, 117.6, 55.2, 28.1, 26.3, 24.2, 21.7.

HRMS (ESI) calculated for C₂₀H₂₃ClNO₄S ([M+H]⁺): 408.1031; found: 408.1027.

(*Z*)-*N*-(3-(2-fluoro-6-hydroxyphenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3qa)

This compound was obtained in 66% yield (51.6 mg) as light yellow solid, m.p.: 130-132 °C. Eluent: PE/EA = 2/1, $R_f = 0.8$.

¹**H NMR (400 MHz, CDCl₃):** δ 10.12 (s, 1H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.11 (dd, *J* = 15.2, 8.1 Hz, 1H), 6.94 (brs, 1H), 6.71 (d, *J* = 8.3 Hz, 1H), 6.49 (t, *J* = 8.7 Hz, 1H), 6.13 (s, 1H), 2.42 (s, 3H), 2.16 (s, 3H), 1.88 (s, 3H), 1.39 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.7, 158.9 (d, *J* = 242.8 Hz), 156.3 (d, *J* = 4.7 Hz), 150.5, 144.9, 138.6, 132.3, 130.2, 130.1, 127.4, 114.8 (d, *J* = 19.7 Hz), 113.1 (d, *J* = 1.9 Hz), 105.6 (d, *J* = 22.3 Hz), 55.3, 27.7, 26.7, 24.3, 21.7.

¹⁹F NMR (376 MHz, CDCl₃): δ -113.82.

HRMS (ESI) calculated for C₂₀H₂₃FNO₄S ([M+H]⁺): 392.1327; found: 392.1321.

(*Z*)-*N*-(3-(3-hydroxynaphthalen-2-yl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3ra)

This compound was obtained in 47% yield (39.7 mg) as light yellow oil. Eluent: PE/EA = 2/1, R_f = 0.7.

¹**H NMR (400 MHz, CDCl₃):** δ 9.98 (s, 1H), 7.80 (d, *J* = 8.2 Hz, 2H), 7.64 (t, *J* = 7.3 Hz, 2H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 8.1 Hz, 2H), 7.29-7.22 (m, 3H), 6.89 (brs, 1H), 6.18 (s, 1H), 2.41 (s, 3H), 2.17 (s, 3H), 1.88 (s, 3H), 1.38 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.9, 157.0, 152.3, 144.9, 138.7, 135.2, 130.8, 130.1, 129.1, 127.4, 127.3, 127.1, 126.8, 126.5, 123.6, 111.5, 55.5, 28.2, 26.2, 24.3, 21.7.

HRMS (ESI) calculated for C₂₄H₂₆NO₄S ([M+H]⁺): 424.1577; found: 424.1571.

(Z)-N-(3-(2-hydroxyphenyl)-2-methyl-4-tosylbut-3-en-2-yl)propionamide (3sa)

This compound was obtained in 78% yield (60.4 mg) as light yellow oil. Eluent: PE/EA = 3/1, R_f = 0.7.

¹**H NMR (400 MHz, CDCl₃):** δ 9.96 (s, 1H), 7.77 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.18 (t, *J* = 7.5 Hz, 1H), 6.91 (d, *J* = 8.2 Hz, 1H), 6.81 (brs, 1H), 6.78-6.70 (m, 2H), 6.08 (s, 1H), 2.50-2.31 (m, 5H), 1.82 (s, 3H), 1.35 (s, 3H), 1.22 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 174.8, 157.5, 154.4, 144.7, 138.8, 130.3, 130.1, 130.0, 127.8, 127.3, 126.2, 118.7, 117.3, 55.1, 30.1, 28.2, 26.3, 21.7, 9.0.

HRMS (ESI) calculated for C₂₁H₂₆NO₄S ([M+H]⁺): 388.1577; found: 388.1572.

(*Z*)-*N*-(3-(2-hydroxyphenyl)-2-methyl-4-tosylbut-3-en-2-yl)-2-phenylacetamide (3ta)

This compound was obtained in 65% yield (54.7 mg) as white soild. Eluent: PE/EA = 3/1. $R_f = 0.7$.

¹**H NMR (400 MHz, CDCl₃):** δ 9.82 (s, 1H), 7.79 (d, *J* = 7.9 Hz, 2H), 7.42-7.28 (m, 7H), 7.19-7.16 (m, 1H), 6.91 (d, *J* = 8.1 Hz, 1H), 6.75-6.70 (m, 2H), 6.65 (s, 1H), 6.10 (s, 1H), 3.85-3.71 (m, 2H), 2.42 (s, 3H), 1.70 (s, 3H), 1.30 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 172.3, 156.8, 154.3, 144.8, 138.8, 134.5, 130.5, 130.1, 130.0, 129.0, 127.8, 127.5, 127.4, 126.0, 118.7, 117.3, 55.4, 44.2, 27.7, 26.3, 21.7.

HRMS (ESI) calculated for $C_{26}H_{28}NO_4S$ ([M+H]⁺):450.1734; found:450.1727.

(Z)-N-(3-(2-hydroxyphenyl)-2-methyl-4-(phenylsulfonyl)but-3-en-2-yl)acetamide (3ab)

This compound was obtained in 65% yield (46.8 mg) as light yellow oil. Eluent: PE/EA = 3/1, R_f = 0.4.

¹**H NMR (400 MHz, CDCl₃):** δ 9.79 (s, 1H), 7.91 (d, *J* = 7.4 Hz, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.54 (t, *J* = 7.5 Hz, 2H), 7.19 (t, *J* = 7.6 Hz, 1H), 6.91 (d, *J* = 8.4 Hz, 2H), 6.79-6.71 (m, 2H), 6.11 (s, 1H), 2.14 (s, 3H), 1.82 (s, 3H), 1.36 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.7, 157.9, 154.3, 141.7, 133.8, 130.2, 130.0, 129.5, 127.8, 127.3, 126.0, 118.8, 117.4, 55.4, 28.0, 26.3, 24.3.

HRMS (ESI) calculated for C19H22NO4S ([M+H]⁺): 360.1264; found: 360.1260.

(Z)-N-(3-(2-hydroxyphenyl)-4-((4-methoxyphenyl)sulfonyl)-2-methylbut-3-en-2yl)acetamide (3ac)

This compound was obtained in 70% yield (55.5 mg) as light yellow solid, m.p.: 120-122 °C. Eluent: PE/EA = 3/1, $R_f = 0.4$.

¹**H NMR (400 MHz, CDCl₃):** δ 9.81 (s, 1H), 7.82 (d, *J* = 8.9 Hz, 2H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.01-6.96 (m, 3H), 6.91 (d, *J* = 8.2 Hz, 1H), 6.78-6.69 (m, 2H), 6.09 (s, 1H), 3.85 (s, 3H), 2.15 (s, 3H), 1.81 (s, 3H), 1.35 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.7, 163.7, 156.9, 154.3, 133.3, 130.6, 130.1, 129.5, 127.8, 126.1, 118.6, 117.3, 114.6, 55.8, 55.3, 28.0, 26.3, 24.2.

HRMS (ESI) calculated for C₂₀H₂₄NO₅S ([M+H]⁺): 390.1370; found: 390.1361.

(Z)-N-(4-((4-fluorophenyl)sulfonyl)-3-(2-hydroxyphenyl)-2-methylbut-3-en-2yl)acetamide (3ad)

This compound was obtained in 54% yield (40.7 mg) as light yellow oil. Eluent: PE/EA = 3/1, R_f = 0.5.

¹**H NMR (400 MHz, CDCl₃):** δ 9.75 (s, 1H), 7.97-7.88 (m, 2H), 7.25-7.17 (m, 3H), 6.92 (d, *J* = 8.3 Hz, 1H), 6.80 (brs, 1H), 6.78-6.74 (m, 2H), 6.09 (s, 1H), 2.15 (s, 3H), 1.81 (s, 3H), 1.36 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.7, 165.8 (d, *J* = 256.4 Hz), 158.2, 154.3, 137.8 (d, *J* = 3.0 Hz), 130.33, 130.31, 130.24, 129.9, 127.7, 125.9, 118.9, 117.5, 116.8 (d, *J*

= 22.5 Hz), 55.4, 28.0, 26.3, 24.3.

¹⁹F NMR (**376** MHz, CDCl₃): δ -103.31.

HRMS (ESI) calculated for C19H21FNO4S ([M+H]⁺): 378.1170; found: 378.1167.

(*Z*)-*N*-(4-((4-chlorophenyl)sulfonyl)-3-(2-hydroxyphenyl)-2-methylbut-3-en-2-yl) acetamide (3ae)

This compound was obtained in 77% yield (60.8 mg) as light yellow oil. Eluent: PE/EA = 3/1, R_f = 0.6.

¹**H NMR (400 MHz, CDCl₃):** δ 9.76 (s, 1H), 7.84 (d, *J* = 8.6 Hz, 2H), 7.51 (d, *J* = 8.6 Hz, 2H), 7.22-7.17 (m, 1H), 6.92 (d, *J* = 8.3 Hz, 1H), 6.83 (s, 1H), 6.78-6.71 (m, 2H), 6.08 (s, 1H), 2.14 (s, 3H), 1.81 (s, 3H), 1.36 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.7, 158.5, 154.3, 140.5, 140.2, 130.3, 129.8, 129.6, 128.9, 127.7, 125.9, 118.9, 117.4, 55.4, 28.0, 26.3, 24.3.

HRMS (ESI) calculated for C19H21ClNO₄S ([M+H]⁺): 394.0875; found: 394.0873.

(*Z*)-*N*-(3-(2-hydroxyphenyl)-2-methyl-4-((4-(trifluoromethyl)phenyl)sulfonyl)but-3-en-2-yl)acetamide (3af)

This compound was obtained in 49% yield (41.8 mg) as light yellow oil. Eluent: PE/EA = 3/1, R_f = 0.6.

¹**H NMR (400 MHz, CDCl₃):** δ 9.74 (s, 1H), 8.05 (d, *J* = 8.2 Hz, 2H), 7.82 (d, *J* = 8.3 Hz, 2H), 7.24-7.16 (m, 1H), 6.92 (d, *J* = 8.3 Hz, 1H), 6.82 (s, 1H), 6.79-6.72 (m, 2H), 6.08 (s, 1H), 2.15 (s, 3H), 1.83 (s, 3H), 1.37 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.7, 159.5, 154.2, 145.1, 135.5 (q, J = 33.4 Hz), 130.4, 129.0, 128.0, 127.6, 126.7 (q, J = 3.4 Hz), 125.7, 123.2 (q, J = 273.2 Hz), 118.9, 117.5, 55.5, 28.0, 26.3, 24.2.

¹⁹F NMR (**376** MHz, CDCl₃): δ -63.13.

HRMS (ESI) calculated for C₂₀H₂₁F₃NO₄S ([M+H]⁺): 428.1138; found: 428.1131.

(Z)-N-(3-(2-hydroxyphenyl)-2-methyl-4-(m-tolylsulfonyl)but-3-en-2-yl)acetamide (3ag)

This compound was obtained in 64% yield (47.6 mg) as light yellow oil. Eluent: PE/EA = 3/1, R_f = 0.5.

¹**H NMR (400 MHz, CDCl₃):** δ 9.79 (s, 1H), 7.72-7.69 (m, 2H), 7.43-7.38 (m, 2H), 7.19 (t, *J* = 8.3 Hz, 1H), 6.93-6.88 (m, 2H), 6.82-6.71 (m, 2H), 6.11 (s, 1H), 2.42 (s, 3H), 2.15 (s, 3H), 1.82 (s, 3H), 1.36 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.7, 157.6, 154.4, 141.5, 139.8, 134.5, 130.2, 129.3, 127.8, 127.6, 126.1, 124.4, 118.8, 117.4, 55.3, 28.0, 26.3, 24.3, 21.4.

HRMS (ESI) calculated for C₂₀H₂₄NO₄S ([M+H]⁺): 374.1421; found: 374.1416.

(Z)-N-(3-(2-hydroxyphenyl)-2-methyl-4-(o-tolylsulfonyl)but-3-en-2-yl)acetamide (3ah)

This compound was obtained in 67% yield (49.8 mg) as light yellow solid, m.p.: 168-169 °C. Eluent: PE/EA = 3/1, $R_f = 0.4$.

¹H NMR (400 MHz, CDCl₃): δ 9.78 (s, 1H), 8.00 (d, *J* = 7.9 Hz, 1H), 7.48 (t, *J* = 7.4

Hz, 1H), 7.38-7.27 (m, 2H), 7.19 (t, *J* = 7.7 Hz, 1H), 6.92 (d, *J* = 8.2 Hz, 1H), 6.88 (brs, 1H), 6.82-6.75 (m, 2H), 6.11 (s, 1H), 2.68 (s, 3H), 2.15 (s, 3H), 1.84 (s, 3H), 1.37 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.8, 158.4, 154.4, 139.8, 137.5, 133.8, 132.6, 130.2, 129.9, 128.4, 127.4, 126.7, 126.1, 118.8, 117.4, 55.4, 27.3, 26.3, 24.3, 20.6.
HRMS (ESI) calculated for C₂₀H₂₄NO₄S ([M+H]⁺): 374.1421; found: 374.1418.

(*Z*)-*N*-(3-(2-hydroxyphenyl)-4-(mesitylsulfonyl)-2-methylbut-3-en-2-yl)acetamide (3ai)

This compound was obtained in 60% yield (48.5 mg) as light yellow oil. Eluent: PE/EA = 3/1, R_f = 0.55.

¹H NMR (400 MHz, CDCl₃): δ 9.82 (s, 1H), 7.19 (t, J = 7.7 Hz, 1H), 6.94-6.91 (m, 3H), 6.85 (brs, 1H), 6.80 (d, J = 7.3 Hz, 1H), 6.75 (t, J = 7.3 Hz, 1H), 6.14 (s, 1H), 2.65 (s, 6H), 2.27 (s, 3H), 2.15 (s, 3H), 1.83 (s, 3H), 1.36 (s, 3H).
¹³C NMR (100 MHz, CDCl₃): δ 171.9, 156.7, 154.5, 143.3, 139.3, 135.7, 132.2, 131.7, 130.0, 127.5, 126.3, 118.8, 117.4, 55.3, 27.2, 26.4, 24.4, 22.8, 21.0.

HRMS (ESI) calculated for C₂₂H₂₈NO₄S ([M+H]⁺): 402.1734; found: 402.1730.

General procedure for the carboamination of *N*-enoxy imides with sulfonyl allenes:

The mixture of *N*-enoxy imide **4** (0.4 mmol, 2.0 equiv), sulfonyl allene **2** (0.2 mmol, 1.0 equiv), [Cp*RhCl₂]₂ (2.5 mol %) and KOPiv (0.2 mmol, 1.0 equiv) in MeOH (2.0

mL) was stirred at 40 °C for 12 h without exclusion of air or moisture. Afterwards, the solvent was removed under reduced pressure, and the resulted mixture was purified by preparative TLC to afford the corresponding allylamine derivatives **5**.

Characterization of products:

(E)-methyl2-((2-methyl-5-oxo-5-phenyl-3-(tosylmethylene)pentan-2-yl)carbamoyl)benzoate (5a)

This compound was obtained in 51% yield (52.9 mg) as light yellow oil. Eluent: PE/EA = 2/1. $R_f = 0.4$.

¹**H NMR (400 MHz, CDCl₃):** δ 8.86 (brs, 1H), 7.94 (d, *J* = 7.8 Hz, 2H), 7.88-7.83 (m, 3H), 7.79 (d, *J* = 7.7 Hz, 1H), 7.59-7.53 (m, 2H), 7.50 (d, *J* = 7.6 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 2H), 7.30 (d, *J* = 7.9 Hz, 2H), 6.11 (s, 1H), 3.75 (s, 3H), 3.55 (s, 2H), 2.42 (s, 3H), 1.45 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 199.4, 167.3, 167.0, 156.1, 144.4, 138.4, 138.2, 137.5 133.3, 132.4, 130.1, 129.8, 129.3, 128.7, 128.3, 127.9, 127.5, 118.1, 52.6, 48.1, 41.0, 28.1, 21.8.

HRMS (ESI) calculated for $C_{29}H_{30}NO_6S$ ([M⁺H]⁺): 520.1788; found: 520.1793.

(*E*)-methyl 2-((3-(((4-methoxyphenyl)sulfonyl)methylene)-2-methyl-5-oxo-5phenylpentan-2-yl)carbamoyl)benzoate (5b)

This compound was obtained in 47% yield (50.3 mg) as light yellow oil. Eluent: PE/EA = 2/1. $R_f = 0.4$.

¹**H NMR (400 MHz, CDCl₃):** δ 8.80 (brs, 1H), 7.95-7.85 (m, 5H), 7.82 (d, *J* = 7.8 Hz, 1H), 7.60-7.53 (m, 2H), 7.50 (d, *J* = 7.7 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 2H), 6.97 (d, *J* = 8.9 Hz, 2H), 6.11 (s, 1H), 3.86 (s, 3H), 3.76 (s, 3H), 3.54 (s, 2H), 1.44 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 199.5, 167.3, 167.0, 163.6, 155.3, 138.2, 137.5, 133.4, 132.9, 132.4, 130.9, 130.1, 129.8, 129.4, 128.7, 128.3, 128.0, 118.8, 114.4, 55.7, 52.6, 48.1, 41.0, 28.0.

HRMS (ESI) calculated for $C_{29}H_{30}NO_7S$ ([M+H] ⁺): 536.1738; found: 536.1728.

(*E*)-methyl 2-((3-(((4-chlorophenyl)sulfonyl)methylene)-2-methyl-5-oxo-5phenylpentan-2-yl)carbamoyl)benzoate (5c)

This compound was obtained in 42% yield (45.5 mg) as light yellow oil. Eluent: PE/EA = 2/1. R_f = 0.4.

¹**H NMR (400 MHz, CDCl₃):** δ 8.76 (brs, 1H), 7.94-7.91 (m, 4H), 7.88 (d, *J* = 7.8 Hz, 1H), 7.81 (d, *J* = 7.8 Hz, 1H), 7.61-7.55 (m, 2H), 7.51 (d, *J* = 7.5 Hz, 1H), 7.49-7.43 (m, 4H), 6.12 (s, 1H), 3.76 (s, 3H), 3.52 (s, 2H), 1.45 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 199.5, 167.4, 166.9, 156.4, 140.1, 139.7, 138.1, 137.3, 133.5, 132.5, 130.2, 130.1, 129.4, 129.2, 129.1, 128.7, 128.3, 128.0, 117.8, 52.6, 48.2, 41.2, 28.0.

HRMS (ESI) calculated for $C_{28}H_{27}ClNO_6S$ ([M+H]⁺): 540.1242; found: 540.1235. ¹H-¹H NOESY:

(*E*)-methyl 2-((3-(((4-iodophenyl)sulfonyl)methylene)-2-methyl-5-oxo-5-

phenylpentan-2-yl)carbamoyl)benzoate (5d)

This compound was obtained in 39% yield (49.2 mg) as light yellow oil. Eluent: PE/EA = 2/1. $R_f = 0.4$.

¹H NMR (400 MHz, CDCl₃): δ 8.78 (brs, 1H), 7.93 (d, J = 8.0 Hz, 2H), 7.89-7.85 (m, 3H), 7.79 (d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.60-7.55 (m, 2H), 7.51 (d, J = 7.8 Hz, 1H), 7.48-7.43 (m, 2H), 6.10 (s, 1H), 3.76 (s, 3H), 3.52 (s, 2H), 1.45 (s, 6H).
¹³C NMR (100 MHz, CDCl₃): δ 199.5, 167.3, 166.9, 156.6, 140.9, 138.4, 138.1, 137.3, 133.5, 132.5, 131.3, 130.2, 130.1, 129.0, 128.8, 128.6, 128.3, 127.9, 125.2, 117.4, 101.4, 52.6, 48.2, 41.2, 28.0.

HRMS (ESI) calculated for C₂₈H₂₇INO₆S ([M+H] ⁺): 632.0598; found: 632.0592.

(*E*)-methyl 2-((3-(((4-(methoxycarbonyl)phenyl)sulfonyl)methylene)-2-methyl-5oxo-5-phenylpentan-2-yl)carbamoyl)benzoate (5e)

This compound was obtained in 52% yield (58.6 mg) as light yellow oil. Eluent: PE/EA = 2/1. R_f = 0.4.

¹**H NMR (400 MHz, CDCl₃):** δ 8.85 (brs, 1H), 8.16 (d, *J* = 8.1 Hz, 2H), 8.06 (d, *J* = 8.0 Hz, 2H), 7.93 (d, *J* = 7.6 Hz, 2H), 7.88 (d, *J* = 7.7 Hz, 1H), 7.79 (d, *J* = 7.6 Hz, 1H), 7.61-7.54 (m, 2H), 7.51 (d, *J* = 7.7 Hz, 1H), 7.46-7.43 (m, 2H), 6.14 (s, 1H), 3.95 (s, 3H), 3.75 (s, 3H), 3.54 (s, 2H), 1.45 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 199.5, 167.3, 166.9, 165.8, 157.2, 145.1, 138.1, 137.2, 134.4, 133.5, 132.5, 130.3, 130.2, 130.1, 129.1, 128.9, 128.7, 128.3, 127.9, 127.6, 125.3, 117.0, 52.8, 52.6, 48.2, 41.2, 28.0.

HRMS (ESI) calculated for $C_{30}H_{30}NO_8S([M+H]^+)$: 564.1687; found: 564.1683.

(*E*)-methyl 2-((2-methyl-5-oxo-5-phenyl-3-((m-tolylsulfonyl)methylene)pentan- 2yl)carbamoyl)benzoate (5f)

This compound was obtained in 43% yield (44.8 mg) as light yellow oil. Eluent: PE/EA = 2/1. R_f = 0.4.

¹**H NMR (400 MHz, CDCl₃):** δ 8.92 (brs, 1H), 7.94 (d, *J* = 7.8 Hz, 2H), 7.86 (d, *J* = 8.2 Hz, 1H), 7.79-7.74 (m, 3H), 7.70 (s, 1H), 7.58-7.53 (m, 2H), 7.48 (d, *J* = 7.6 Hz, 1H), 7.45 (d, *J* = 7.9 Hz, 2H), 7.40-7.39 (m, 1H), 6.10 (s, 1H), 3.74 (s, 3H), 3.58 (s, 2H), 2.41 (s, 3H), 1.46 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 199.5, 167.4, 166.9, 156.4, 140.1, 139.7, 138.1, 137.3, 133.5, 132.5, 130.2, 130.1, 129.4, 129.2, 129.1, 128.7, 128.3, 128.0, 117.8, 52.6, 48.2, 40.9, 28.1, 21.5.

HRMS (ESI) calculated for $C_{29}H_{30}NO_6S([M+H]^+)$: 520.1788; found: 520.1784.

(E)-methyl2-((3-methyl-6-oxo-6-phenyl-4-(tosylmethylene)hexan-3-yl)carbamoyl)benzoate (5g)

This compound was obtained in 65% yield (69.2 mg) as light yellow oil. Eluent: PE/EA = 2/1. $R_f = 0.4$.

¹**H NMR (400 MHz, CDCl₃):** δ 8.68 (brs, 1H), 7.93 (d, *J* = 7.8 Hz, 2H), 7.87-7.81 (m, 4H), 7.59-7.53 (m, 2H), 7.50-7.42 (m, 3H), 7.30-7.26 (m, 2H), 6.08 (s, 1H), 3.75 (s, 3H), 3.67 (d, *J* = 17.3 Hz, 1H), 3.35 (d, *J* = 17.0 Hz, 1H), 2.41 (s, 3H), 2.10-2.03 (m, 1H), 1.79-1.74 (m, 1H), 1.31 (s, 3H), 0.89 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 199.7, 167.3, 167.0, 154.3, 144.4, 138.5, 138.3, 137.5, 133.4, 132.4, 130.0, 129.8, 129.2, 128.7, 128.3, 128.0, 127.5, 120.1, 52.5, 46.9, 44.7, 32.5, 23.8, 21.8, 8.8.

HRMS (ESI) calculated for C₃₀H₃₂NO₆S ([M+H]⁺): 534.1945; found: 534.1941.

(E)-methyl2-((3-methyl-6-oxo-1,6-diphenyl-4-(tosylmethylene)hexan-3-yl)carbamoyl)benzoate (5h)

This compound was obtained in 59% yield (71.8 mg) as light yellow oil. Eluent: PE/EA = 2/1. $R_f = 0.4$.

¹**H NMR (400 MHz, CDCl₃):** δ 8.61 (brs, 1H), 7.93-7.88 (m, 4H), 7.85 (d, *J* = 7.7 Hz, 2H), 7.59-7.53 (m, 2H), 7.50-7.42 (m, 3H), 7.30 (d, *J* = 8.2 Hz, 2H), 7.22 (d, *J* = 7.1 Hz, 2H), 7.17-7.13 (m, 3H), 6.15 (s, 1H), 3.74-3.68 (m, 4H), 3.38 (d, *J* = 17.2 Hz, 1H), 2.69-2.61 (m, 1H), 2.57-2.49 (m, 1H), 2.40 (s, 3H), 2.37-2.30 (m, 1H), 2.03-1.95 (m, 1H), 1.42 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 199.5, 167.5, 167.0, 154.0, 144.5, 142.1, 138.4, 138.2, 137.5, 133.4, 132.4, 130.0, 129.9, 129.8, 129.3, 128.7, 128.6, 128.5, 128.4, 128.3, 128.1, 127.6, 126.0, 120.8, 52.5, 47.2, 44.7, 42.0, 30.7, 24.3, 21.8.

HRMS (ESI) calculated for $C_{36}H_{36}NO_6S([M+H]^+)$: 610.2258; found: 610.2251.

(*E*)-ethyl 2-((2-methyl-5-oxo-5-phenyl-3-(tosylmethylene)pentan-2-yl)carbamoyl) benzoate (5i)

This compound was obtained in 53% yield (56.7 mg) as light yellow oil. Eluent: PE/EA = 2/1. $R_f = 0.4$.

¹**H NMR (400 MHz, DMSO-***d*₆): δ 9.51 (s, 1H), 7.91 (d, *J* = 7.8 Hz, 2H), 7.85 (d, *J* = 7.6 Hz, 1H), 7.81-7.76 (m, 3H), 7.68 (t, *J* = 7.5 Hz, 1H), 7.62-7.53 (m, 2H), 7.49 (t, *J* = 7.8 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 6.48 (s, 1H), 4.19 (q, *J* = 7.3 Hz, 2H), 3.39 (s, 2H), 2.39 (s, 3H), 1.25 (s, 6H), 1.22 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 199.4, 167.4, 166.4, 156.3, 144.4, 138.4, 138.3, 137.5, 133.3, 132.2, 130.0, 129.8, 129.6, 128.8, 128.6, 128.3, 127.9, 127.5, 117.7, 61.5, 48.0, 41.0, 28.1, 21.8, 14.3.

HRMS (ESI) calculated for $C_{30}H_{32}NO_6S([M+H]^+)$: 534.1945; found: 534.1940.

(*E*)-methyl 2-((3-((diphenylphosphoryl)methylene)-2-methyl-5-oxo-5-phenyl pentan-2-yl)carbamoyl)benzoate (5j)

This compound was obtained in 62% yield (70.0 mg) as white soild. Eluent: PE/EA = 1/2. $R_f = 0.5$.

¹**H NMR (400 MHz, CD₃OD) :** δ 8.02 (d, *J* = 7.9 Hz, 2H), 7.82-7.76 (m, 5H), 7.67 (d, *J* = 7.7 Hz, 1H), 7.56-7.53 (m, 3H), 7.50-7.46 (m, 8H), 6.26-6.21 (m, 1H), 3.74 (s, 3H), 3.57 (s, 2H), 1.47 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 199.6, 167.4, 167.1, 164.9 (d, J = 4.3 Hz), 138.4, 138.1, 133.9, 132.9, 132.0, 131.9, 131.3, 131.2, 129.9, 129.6, 129.3, 128.8, 128.7, 128.5, 128.4, 128.3, 127.7, 125.8, 123.4, 105.8 (d, J = 100.9 Hz), 52.3, 47.8, 41.0 (d, J = 11.1 Hz), 28.9.

³¹P NMR (162 MHz, CDCl₃): δ 27.37.

HRMS (ESI) calculated for C₃₄H₃₃NO₅P ([M+H]⁺): 566.2091; found: 566.2088.

(*E*)-methyl 4-((2-methyl-5-oxo-5-phenyl-3-(tosylmethylene)pentan-2-yl)amino)-4-oxobutanoate (5k)

This compound was obtained in 52% yield (48.9 mg) as light yellow oil. Eluent: PE/EA = 2/1. R_f = 0.4.

¹H NMR (400 MHz, CDCl₃): δ 8.45 (brs, 1H), 7.88 (d, J = 7.9 Hz, 2H), 7.79 (d, J = 8.5 Hz, 2H), 7.58-7.55 (m, 1H), 7.46-7.43 (m, 2H), 7.31 (d, J = 8.2 Hz, 2H), 6.06 (s, 1H), 3.64 (s, 3H), 3.32 (s, 2H), 2.69-2.63 (m, 4H), 2.43 (s, 3H), 1.32 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 198.9, 173.3, 170.6, 156.1, 144.4, 138.4, 137.3, 133.5, 129.8, 128.7, 128.2, 127.4, 52.0, 48.4, 40.6, 31.8, 29.0, 27.8, 21.8. HRMS (ESI) calculated for C₂₅H₃₀NO₆S ([M+H]⁺): 472.1788; found: 472.1789.

(*E*)-methyl 4-((5-(4-(*tert*-butyl)phenyl)-2-methyl-5-oxo-3-(tosylmethylene)pentan-2-yl)amino)-4-oxobutanoate (5l)

This compound was obtained in 48% yield (50.5 mg) as light yellow oil. Eluent: PE/EA = 2/1. R_f = 0.4.

¹**H NMR (400 MHz, CDCl₃):** δ 8.40 (brs, 1H), 7.84-7.79 (m, 4H), 7.46 (d, *J* = 8.1 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 6.07 (s, 1H), 3.64 (s, 3H), 3.28 (s, 2H), 2.70-2.65 (m, 4H), 2.43 (s, 3H), 1.34 (s, 9H), 1.31 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 198.7, 173.3, 170.6, 157.4, 156.1, 144.4, 138.5, 134.7, 129.8, 128.3, 127.5, 125.7, 52.0, 48.4, 40.7, 35.3, 31.8, 31.2, 29.1, 27.8, 21.8.

HRMS (ESI) calculated for $C_{29}H_{38}NO_6S$ ([M+H]⁺): 528.2414; found: 528.2414.

(*E*)-methyl 4-((5-(4-chlorophenyl)-2-methyl-5-oxo-3-(tosylmethylene)pentan-2-yl) amino)-4-oxobutanoate (5m)

This compound was obtained in 67% yield (67.6 mg) as light yellow oil. Eluent: PE/EA = 2/1. $R_f = 0.4$.

¹H NMR (400 MHz, CDCl₃): δ 8.53 (brs, 1H), 7.82 (d, J = 8.3 Hz, 2H), 7.77 (d, J = 8.3 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.2 Hz, 2H), 6.04 (s, 1H), 3.64 (s, 3H), 3.30 (s, 2H), 2.69-2.63 (m, 4H), 2.43 (s, 3H), 1.32 (s, 6H).
¹³C NMR (100 MHz, CDCl₃): δ 197.7, 173.3, 170.6, 156.3, 144.5, 139.9, 138.4,

135.7, 129.9, 129.7, 129.0, 127.4, 52.0, 48.2, 40.6, 31.8, 29.0, 27.9, 21.8. **HRMS (ESI)** calculated for C₂₅H₂₉ClNO₆S ([M+H]⁺): 506.1399; found: 506.1403.

(*E*)-methyl 4-((3-((diphenylphosphoryl)methylene)-2-methyl-5-oxo-5phenylpentan-2-yl)amino)-4-oxobutanoate (5n)

This compound was obtained in 55% yield (56.8 mg) as white soild. Eluent: PE/EA = 1/2. $R_f = 0.5$.

¹**H NMR (400 MHz, CDCl₃):** δ 9.59 (brs, 1H), 7.94 (d, *J* = 7.9 Hz, 2H), 7.72-7.67 (m, 4H), 7.54-7.49 (m, 3H), 7.45-7.42 (m, 6H), 5.68 (d, *J* = 19.6 Hz, 1H), 3.56 (s, 3H), 3.51 (s, 2H), 2.48-2.44 (m, 4H), 1.45 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 199.4, 173.1, 170.5, 164.6, 137.9, 133.9, 133.1, 132.9, 131.9, 131.2, 131.1, 128.8, 128.7, 128.6, 128.2, 106.1 (d, *J* = 101.8 Hz), 51.8, 48.0, 40.8 (d, *J* = 10.5 Hz), 31.7, 29.1, 28.7.

³¹P NMR (162 MHz, CDCl₃): δ 26.75.

HRMS (ESI) calculated for C₃₀H₃₃NO₅P ([M+H]⁺): 518.2091; found: 518.2088.

III. Synthetic Applications

Late-stage C-H modification of complex molecules:

The mixture of tyrosine derivative (0.2 mmol, 1.0 equiv), sulfonyl allene **2a** (0.2 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (2.5 mol %) and NaOAc (0.2 mmol, 1.0 equiv) in THF (2.0 mL) was stirred at 40 °C for 12 h without exclusion of air or moisture. Afterwards, the solvent was removed under reduced pressure, and the resulted mixture was purified by preparative TLC (Eluent: PE/EA = 2/1, R_f = 0.4) to afford the desired product **6** in 61% (71.6 mg) isolated yield as yellowish oil. NMR analysis showed that the tautomerization was observed in CDCl₃.

¹**H NMR (400 MHz, CDCl₃):** δ 9.77-9.74 (m, 1H), 7.81-7.75 (m, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 6.93-6.81 (m, 3H), 6.51 (s, 1H), 6.10-6.05 (m, 1H), 4.95 (t, *J* = 9.0 Hz, 1H), 4.55-4.42 (m, 1H), 3.63-3.56 (m, 3H), 3.03-2.84 (m, 2H), 2.42 (s, 3H), 2.13 (s, 3H), 1.82-1.80 (m, 3H), 1.39 (s, 9H), 1.34-1.31 (m, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 172.5, 172.3, 171.7, 157.2, 155.1, 155.0, 153.5, 144.8, 138.8, 131.1, 131.0, 130.4, 130.3, 130.1, 128.6, 128.4, 127.4, 126.13, 126.07, 117.44, 117.36, 80.0, 55.29, 55.25, 54.7, 54.5, 52.2, 52.1, 37.44, 37.36, 28.4, 28.1, 26.3, 24.2, 21.7.

HRMS (ESI) calculated for C₂₉H₃₉N₂O₈S ([M+H]⁺): 575.2422; found: 575.2421.

The mixture of dopamine derivative (0.2 mmol, 1.0 equiv), sulfonyl allene **2a** (0.2 mmol, 1.0 equiv), [Cp*RhCl₂]₂ (2.5 mol %) and NaOAc (0.2 mmol, 1.0 equiv) in THF (2.0 mL) was stirred at 40 °C for 12 h without exclusion of air or moisture. Afterwards, the solvent was removed under reduced pressure, and the resulted

mixture was purified by preparative TLC (Eluent: PE/EA = 2/1, $R_f = 0.4$) to afford the desired product 7 in 60% (61.8 mg) isolated yield as light yellow solid, m.p.: 118-121 °C.

¹**H NMR (400 MHz, CDCl₃):** δ 9.67 (s, 1H), 7.79 (d, *J* = 7.9 Hz, 2H), 7.34 (d, *J* = 7.8 Hz, 2H), 7.00 (d, *J* = 8.2 Hz, 1H), 6.85 (d, *J* = 8.3 Hz, 1H), 6.77 (s, 1H), 6.58 (s, 1H), 6.09 (s, 1H), 4.52 (brs, 1H), 3.33-3.18 (m, 2H), 2.64 (t, *J* = 6.4 Hz, 2H), 2.43 (s, 3H), 2.14 (s, 3H), 1.81 (s, 3H), 1.41 (s, 9H), 1.34 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 171.7, 157.2, 156.0, 152.8, 144.7, 138.8, 130.3, 130.2, 130.1, 129.1, 127.8, 127.4, 126.1, 117.4, 79.3, 55.3, 42.1, 35.2, 28.5, 28.1, 26.3, 24.2, 21.7.

HRMS (ESI) calculated for $C_{27}H_{37}N_2O_6S([M+H]^+)$: 517.2367; found: 517.2366.

The mixture of estrone derivative (0.2 mmol, 1.0 equiv), sulfonyl allene **2a** (0.2 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (2.5 mol %) and NaOAc (0.2 mmol, 1.0 equiv) in THF (2.0 mL) was stirred at 40 °C for 12 h without exclusion of air or moisture. Afterwards, the solvent was removed under reduced pressure, and the resulted mixture was purified by preparative TLC (Eluent: PE/EA = 2/1, R_f = 0.5) to afford the desired product **8** in 52% (56.0 mg) isolated yield as light yellow solid, m.p.: 185-186 °C. NMR analysis showed that the tautomerization was observed in CDCl₃.

¹H NMR (400 MHz, DMSO-*d₆*): δ 9.86 (s, 1H), 8.82 (s, 1H), 7.75 (d, *J* = 7.7 Hz, 2H), 7.42 (s, 2H), 6.80 (s, 1H), 6.46 (s, 1H), 5.99 (s, 1H), 2.75-2.70 (m, 2H), 2.43-2.35 (m, 4H), 2.27-2.21 (m, 1H), 2.08-1.98 (m, 2H), 1.90-1.85 (m, 5H), 1.75-1.69 (m, 1H), 1.58-1.43 (m, 6H), 1.32-1.24 (m, 6H), 0.79 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 221.2, 171.6, 157.7, 157.6, 152.1, 152.0, 144.7, 138.90, 138.86, 138.6, 130.3, 130.2, 130.0, 127.4, 124.6, 124.2, 123.9, 117.0, 116.9,

55.34, 55.31, 50.5, 50.4, 48.1, 48.0, 43.9, 43.8, 31.6, 31.5, 29.31, 29.25, 28.20, 28.15, 26.54, 26.50, 26.46, 26.42, 14.0, 13.9.

HRMS (ESI) calculated for C₃₂H₄₀NO₅S ([M+H]⁺): 550.2622; found: 550.2619.

Derivatization of compound 3aa:

A sealed tube was charged with **3aa** (0.1 mmol, 1.0 equiv) in 1,4-dioxane (0.5 mL), followed by the addition of concentrated HCl solution (0.5 mL). The reaction mixture was stirred at 100 °C for 8 h. Afterwards, the resulted mixture was quenched with saturated NaHCO₃ and extracted by EA for three times. The combined extracts were washed with brine and dried over Na₂SO₄. The solvent was evaporated, and the residue was purified by preparative TLC (Eluent: PE/EA = 1/1, R_f = 0.5) to afford the desired product **9** in 70% (23.3 mg) isolated yield as light yellow oil.

¹**H NMR (400 MHz, DMSO-***d*₆): δ 7.83 (d, *J* = 7.8 Hz, 2H), 7.45 (d, *J* = 7.7 Hz, 2H), 7.11 (t, *J* = 7.6 Hz, 1H), 6.88 (d, *J* = 7.3 Hz, 1H), 6.77-6.70 (m, 2H), 6.10 (s, 1H), 2.40 (s, 3H), 1.37 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 158.6, 154.8, 145.0, 138.7, 133.5, 130.1, 129.9, 128.7, 128.0, 127.6, 119.2, 116.9, 53.1, 31.6, 21.7.

HRMS (ESI) calculated for C₁₈H₂₂NSO₃ ([M+H]⁺): 332.1315; found: 332.1316.

The mixture of **3aa** (0.2 mmol, 1.0 equiv) and Mg (2 mmol, 10 equiv) in MeOH (4.0 mL) was stirred at 80 °C for 18 h under an atmosphere of N₂. Afterwards, the reaction mixture was cooled to room temperature and filtered, the filtrate was concentrated and purified by preparative TLC (eluent: PE/EA = 2/1, R_f = 0.6) to give the target product in 49% isolated yield (21.5 mg) as light yellow oil.

¹**H NMR (400 MHz, CDCl₃):** δ 8.96 (s, 1H), 7.18 (t, *J* = 7.7 Hz, 1H), 6.93-6.86 (m, 2H), 6.78 (t, *J* = 7.3 Hz, 1H), 6.07 (brs, 1H), 5.51 (s, 1H), 5.15 (s, 1H), 2.03 (s, 3H), 1.38 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 170.1, 155.0, 150.4, 129.1, 129.0, 127.6, 118.8, 116.5, 116.2, 56.5, 29.8, 24.0.

HRMS (ESI) calculated for C13H18NO₂ ([M+H]⁺): 220.1332; found: 220.1331.

A sealed tube was charged with **5a** (0.1 mmol, 1.0 equiv) in 1,4-dioxane (0.5 mL), followed by the addition of concentrated HCl solution (0.5 mL). The reaction mixture was stirred at 100 °C for 8 h. Afterwards, the resulted mixture was quenched with saturated NaHCO₃ and extracted by EA for three times. The combined extracts were washed with brine and dried over Na₂SO₄. The solvent was evaporated, and the residue was purified by preparative TLC (Eluent: PE/EA = 2/1, R_f = 0.6) to afford the desired product **11** in 82% yield (33.3 mg) as light yellow oil.

¹**H NMR (400 MHz, DMSO-***d*₆): δ 7.90 (d, *J* = 7.5 Hz, 2H), 7.80 (d, *J* = 8.1 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.51 (t, *J* = 7.5 Hz, 2H), 7.43 (d, *J* = 7.9 Hz, 2H), 4.83 (s, 2H), 3.47 (s, 2H), 2.40 (s, 3H), 1.09 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 203.7, 198.0, 145.0, 136.5, 136.1, 133.7, 129.8, 128.78, 128.77, 128.2, 62.8, 51.7, 45.9, 25.1, 21.8.

HRMS (ESI) calculated for C₂₀H₂₂Cl₂NSO₄ ([M+Cl]⁻): 442.0652; found: 442.0647.

Switchable assembly of compound 3aa':

The mixture of *N*-phenoxyacetamide **1a** (0.1 mmol, 1.0 equiv), sulfonyl allene **2a** (0.1 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (5 mol %) and NaOAc (1 equiv) in the solvent was stirred in an oil bath without exclusion of air or moisture. Afterwards, it was diluted with EtOAc and filtered through a short silica gel column to remove the metal

residues. Then, the reaction mixture was concentrated and purified by preparative TLC (eluent: PE/EA = 3/1, $R_f = 0.6$) to afford the corresponding product **3aa'**.

	ONHAc +	Ts [Cp*RhCl ₂ Ts NaOAc] ₂ (5 mol %) (1 equiv)		-
		solvent, t	emp, 12 h		`
	1a 2	a		3aa'	-s
#	solvent	pH of PBS	1a:2a	Temp/°C	yield(%) ^b
1	THF/PBS = $1/1$	4.2	1:1	40	19
2	THF/PBS = $1/1$	7.0	1:1	40	20
3	THF/PBS = $1/1$	9.4	1:1	40	20
4	PBS	7.0	1:1	40	15
5	dioxane/PBS = $1/1$	7.0	1:1	40	13
6	MeOH/PBS = 1/1	7.0	1:1	40	25
7	MeOH/PBS = 1/1	7.0	1:1	80	31
8	MeOH/PBS = 1/1	7.0	1:1.5	80	55
9	MeOH/PBS = 1/1	7.0	1:2	80	61
10	MeOH/PBS = 2/1	7.0	1:2	80	60
11	MeOH/PBS = 4/1	7.0	1:2	80	72 (69)°
12	MeOH/PBS = 6/1	7.0	1:2	80	66

Table S3. Conditions Screening for the Synthesis of 3aa'.^a

^{*a*}Reaction Conditions: **1a** (0.1 mmol), **2a**, [Cp*RhCl₂]₂ (5 mol %), NaOAc (1.0 equiv), solvent (0.5 mL), temperature, 12 h, under air. ^{*b*} ¹H-NMR yields using 1,3,5-trimethoxybenzene as an internal standard. ^{*c*}Isolated yield was reported in the parentheses.

2,2-dimethyl-3-(tosylmethylene)-2,3-dihydrobenzofuran (3aa')

¹**H NMR (400 MHz, CDCl₃):** δ 7.95 (d, *J* = 8.1 Hz, 2H), 7.31 (d, *J* = 7.9 Hz, 2H), 7.25 (t, *J* = 7.7 Hz, 1H), 7.16 (d, *J* = 7.3 Hz, 1H), 7.12-7.06 (m, 2H), 5.80 (s, 1H), 2.41 (s, 3H), 1.40 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 175.9, 155.4, 143.8, 140.0, 133.3, 129.5, 128.8, 127.4, 124.1, 122.5, 110.7, 102.3, 46.8, 29.0, 21.7.

HRMS (ESI) calculated for $C_{18}H_{19}SO_3([M+H]^+)$: 315.1050; found: 315.1050.

Conversion of compound 3aa to 3aa':

Two batches of the mixture of compound **3aa** (0.1 mmol, 1.0 equiv) and NaOAc (1 equiv) in THF (0.1 M) was stirred in an oil bath in the presence or absence of $[Cp*RhCl_2]_2$ (2.5 mol %) without exclusion of air or moisture. Afterwards, the reaction was monitored by TLC and no corresponding dihydrobenzofuran product **3aa'** was formed.

Scheme S1 Proposed Catalytic Cycle for the C-H Coupling of *N*-Phenoxyacetamide with Sulfonyl Allene

Proposed catalytic cycle for N-enoxyphthalimide substrate:

Initially, *N*-enoxyphthalimide **4a** converted into the active substrate **F** with the assistance of MeOH, which underwent the Rh(III)-catalyzed N-H/C-H bond cleavage to afford the intermediate **G**. Subsequent allene insertion from **G** delivered the sevenmembered intermediate **H**, which underwent the oxidative addition followed by a C-N bond reductive elimination to give intermediate **J**. Alternatively, the direct C-N bond reductive elimination from **H** could also be involved to afford intermediate **K** along with the generation of Rh(I) species, further O-N bond cleavage re-oxidized the Rh(I) to intermediate J. Finally, the protonolysis of intermediate J led to the release of desired carboamination product 5a with the regeneration of active Cp*Rh(OAc)₂ catalyst.

Scheme S2 Proposed Catalytic Cycle for the C-H Coupling of *N*-Enoxyphthalimide with Sulfonyl Allene

IV. X-Ray Crystallographic Data

X-ray crystallographic data of compound 3aa:

Single crystals of $C_{20}H_{23}NO_4S$ [805-3B] were prepared using the mixed PE/EA solvent at room temperature. A suitable crystal was selected and on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 149.99(10) K during data collection.

Crystal Data for C₂₀H₂₃NO₄S (M=373.45 g/mol): monoclinic, space group P2₁/c (no. 14), a = 19.1418(19) Å, b = 11.1056(12) Å, c = 20.762(2) Å, $\beta = 90.211(11)^{\circ}$, V = 4413.7(8) Å³, Z = 8, T = 149.99(10) K, μ (Mo K α) = 0.168 mm⁻¹, Dcalc = 1.124 g/cm³, 25767 reflections measured ($3.924^{\circ} \le 2\Theta \le 50^{\circ}$), 7719 unique ($R_{int} =$

0.0947, $R_{sigma} = 0.0922$) which were used in all calculations. The final R_1 was 0.0950 (I > 2 σ (I)) and wR_2 was 0.2662 (all data).

Table S4. Crystal data and structure refinement for 805-3B

Identification code	805-3B
Empirical formula	$C_{20}H_{23}NO_4S$
Formula weight	373.45
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	19.1418(19)
b/Å	11.1056(12)
c/Å	20.762(2)
α/°	90
β/°	90.211(11)
γ/°	90
Volume/Å ³	4413.7(8)
Ζ	8
$\rho_{calc}g/cm^3$	1.124
µ/mm ⁻¹	0.168
F(000)	1584.0
Crystal size/mm ³	$0.15 \times 0.12 \times 0.11$
Radiation	Mo Kα ($\lambda = 0.71073$)
2Θ range for data collection/°	3.924 to 50
Index ranges	$-22 \le h \le 21, -13 \le k \le 13, -24 \le l \le 19$
Reflections collected	25767
Independent reflections	7719 [$R_{int} = 0.0947, R_{sigma} = 0.0922$]
Data/restraints/parameters	7719/3/487
Goodness-of-fit on F ²	1.054
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0950, wR_2 = 0.2462$

V. References

- [S1] (a) Liu, G.; Shen, Y.; Zhou, Z.; Lu, X. Angew. Chem. Int. Ed., 2013, 52, 6033. (b)
 Li, B.; Lan, J.; Wu, D.; You, J. Angew. Chem. Int. Ed., 2015, 54, 14008. (c) Wu,
 Y.; Chen, Z.; Yang, Y.; Zhu, W.; Zhou, B. J. Am. Chem. Soc. 2018, 140, 42.
- [S2] (a) Phipps, E. J. T.; Rovis, T. J. Am. Chem. Soc. 2019, 141, 6807. (b) Duchemin,
 C.; Cramer, N. Org. Chem. Front. 2019, 6, 209.

[S3] Tata, R. R.; Hampton, C. S.; Harmata, M. Adv. Synth. Catal. 2017, 359, 1232.
VI. Copies of ¹H, ¹³C and ¹⁹F NMR spectra

3aa-1H NMR (400 MHz, CDCl₃)

f1 (ppm)

30 20

180 170 160 150

3da-¹⁹F NMR (376 MHz, CDCl₃)

OH F

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 -220 -240 -260 f1 (ppm)

3ha-¹⁹F NMR (376 MHz, CDCl₃)

---61.022

3qa-1H NMR (400 MHz, CDCl₃)

3qa-¹⁹F NMR (376 MHz, CDCl₃)

3ad-19F NMR (376 MHz, CDCl₃)

80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 f1 (ppm)

3af-¹⁹F NMR (376 MHz, CDCl₃)

---63.130

5b-¹H NMR (400 MHz, CDCl₃)

¹H-¹H NOESY of 5c:

--3.78 --3.576 --2.415 --2.415 ----0.000

Ph O O S S O O

5g- ¹ H NMR (400 MHz, CDCl ₃)						
	7,922 7,922 7,922 7,856 7,856 7,856 7,856 7,857 7,858 7,785 7,858 7,785 7,787 7,7577 7,7577 7,7577 7,7577 7,7577 7,7577 7,7577 7,7577 7,7577 7,7577 7,	23.753 2.650 2.3650	~3.329	2.075 2.059 7.1.793 1.775 1.775 1.775	0.908 0.889 0.870	0.000

Ph

5h-¹H NMR (400 MHz, CDCl₃)

5i - ¹ H NMR (400 MHz, DMSO- d_6)		
741 74 74 74 74 74 74 74 74 74 74	219 200 165	386

à	4 m m m m m m m m m m m m m m m m m m m	1925	33	
6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4444	ŝ	

~2.500

-27.374

1H-1H NOESY of 5k:

5m-¹H NMR (400 MHz, CDCl₃)

-8.530 ₇ 7.828	7.807 -7.783 -7.762 -7.386 -7.386 -7.314 -7.294	-6.036	-3.645	2.655 2.665 2.665 2.665 2.665 2.655 2.655 2.631 2.631 2.631 2.431	-1.323	0.000
------------------------------	---	--------	--------	---	--------	-------

CI O TS

5n-³¹P NMR (162 MHz, CDCl₃)

-26.754

9-¹H NMR (400 MHz, CDCl₃)

-1.368

C C NH

