Supplementary Information

Rh(III)-Catalyzed chemo-, regio- and stereoselective carboamination of sulfonyl allenes with N-phenoxy amides or N-enoxy imides

Min Wu, ${ }^{\S}$ Haiman Zhang, ${ }^{\S}$ Ting Wang, Shuang Lin, Ziyang Guo, Hui Gao, Zhi Zhou* and Wei Yi*
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target \& Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
${ }^{\text {§ }}$ These authors contributed equally to this work.
*E-mail: zhouzhi@gzhmu.edu.cn and yiwei@gzhmu.edu.cn

Contents

\qquad
II. Experimental Information and Characterization DataS2
III. Synthetic Applications S28
IV. X-Ray Characteristic Data S35
V. References S36
VI. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra S37

I. General

NMR spectra were recorded on JEOL 400 NMR (${ }^{1} \mathrm{H} 400 \mathrm{MHz} ;{ }^{13} \mathrm{C} 100 \mathrm{MHz}$) in either CDCl_{3} or DMSO- d_{6}. Abbreviations for data quoted are s, singlet; brs, broad singlet; d, doublet; t, triplet; dd, doublet of doublets; m, multiplet. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.26 \mathrm{ppm}, \delta_{\mathrm{C}}=77.16 \mathrm{ppm} ; d_{6}-\mathrm{DMSO}: \delta_{\mathrm{H}}=2.50 \mathrm{ppm}, \delta_{\mathrm{C}}=39.52\right.$ ppm). Mass spectra and high-resolution mass spectra were measured on an agilent TOF-G6230B mass spectrometer and Thermo-DFS mass spectrometer. Thin-layer chromatographies were done on pre-coated silica gel 60 F254 plates (Merck). Silica gel 60 H (200-300 mesh) and preparative TLC ($200 \times 200 \mathrm{~mm}, 0.2-0.25 \mathrm{~mm}$ in thickness) manufactured by Qingdao Haiyang Chemical Group Co. (China) were used for general chromatography. $\left[\mathrm{Cp} * \mathrm{IrCl}_{2}\right]_{2},\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2},\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$ and CsOAc were purchased from Aldrich and used without further purification. N phenoxy amides, ${ }^{\text {S1 }} \mathrm{N}$-enoxy imides ${ }^{52}$ and the allene substrates ${ }^{53}$ were synthesized according to published procedures. Other chemicals were purchased from commercial suppliers and were dried and purified when necessary. No attempts were made to optimize yields for substrate synthesis.

II. Experimental Information and Characterization Data

 Optimization studies:The mixture of N-phenoxy amide $\mathbf{1 a}$ ($0.1 \mathrm{mmol}, 1.0$ equiv), sulfonyl allene $\mathbf{2 a}$ (0.1 mmol, 1.0 equiv), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ ($2.5 \mathrm{~mol} \%$) and base (1 equiv) in the solvent was stirred in an oil bath without exclusion of air or moisture. Afterwards, it was diluted with EtOAc and filtered through a short silica gel column to remove the metal residues. Then, the reaction mixture was concentrated and purified by preparative TLC (eluent: $\mathrm{PE} / \mathrm{EA}=3 / 1$) to afford the corresponding product 3aa.

Table S1. Conditions Screening for the Synthesis of 3aa. ${ }^{a}$

			$\mathrm{T}^{\mathrm{Ts} \begin{array}{r} {\left[\mathrm{Cp} \mathrm{R}^{\mathrm{RhC}}\right.} \\ \text { add } \end{array}} \begin{gathered} \text { solvent }, \end{gathered}$	2, base ves mp, time			
\#	solvent	Temp $\left({ }^{\circ} \mathrm{C}\right)$	base	additive	Time (h)	Yield (\%) ${ }^{b}$	
						3 aa	3a' ${ }^{\text {' }}$
solvent screening							
1	MeCN	40	NaOAc	1	12	24	trace
2	DCE	40	NaOAc	1	12	27	trace
3	Dioxane	40	NaOAc	1	12	74	nd
4	DMF	40	NaOAc	1	12	trace	nd
5	Toluene	40	NaOAc	1	12	53	trace
6	Acetone	40	NaOAc	1	12	39	trace
7	HFIP	40	NaOAc	1	12	trace	nd
8	DMSO	40	NaOAc	1	12	nd	nd
9	THF	40	NaOAc	1	12	74	nd
reaction temperature screening							
10	THF	rt	NaOAc	1	12	57	nd
11	THF	60	NaOAc	1	12	66	nd
12	THF	80	NaOAc	1	12	63	nd
additive screening							
13	THF	rt	NaOAc	HOAc	12	36	11
14	THF	rt	NaOAc	PivOH	12	28	trace
15	THF	rt	NaOAc	$4 \AA \mathrm{MS}$	12	53	trace
16	THF	rt	NaOAc	Amberlite IRA-400	12	50	nd
17	THF	rt	NaOAc	Amberlite IR-120	12	38	nd
base screening							
18	THF	rt	KOAc	1	12	37	nd
19	THF	rt	CsOAc	1	12	22	nd
20	THF	rt	$\mathrm{Zn}(\mathrm{OAc})_{2}$	1	12	<10	nd
21	THF	rt	$\mathrm{Mn}(\mathrm{OAc})_{2}$	1	12	30	nd
22	THF	rt	$\mathrm{K}_{2} \mathrm{CO}_{3}$	1		28	nd
23	THF	rt	KOPiv	1	12	25	nd
24	THF	rt	$\mathrm{K}_{3} \mathrm{PO}_{4}$	1	12	nd	nd
Reaction time screening							
25	THF	rt	NaOAc	1	8	50	nd
26	THF	rt	NaOAc	1	12	53	nd
27	THF	rt	NaOAc	1	16	52	nd
28	THF	rt	NaOAc	1	24	53	nd

${ }^{a}$ Reaction Conditions: 1a (0.1 mmol), 2a (0.1 mmol), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%)$, base (1.0 equiv), solvent (0.5 mL), temperature, time, under air. ${ }^{b}$ Isolated yields. nd: not detected.

The mixture of N-enoxy imide $\mathbf{4 a}$ ($0.1 \mathrm{mmol}, 1.0$ equiv), sulfonyl allene $\mathbf{2 a}$ (0.1 mmol, 1.0 equiv), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$ ($2.5 \mathrm{~mol} \%$) and base (1 equiv) in the solvent was stirred in an oil bath without exclusion of air or moisture. Afterwards, it was diluted with EtOAc and filtered through a short silica gel column to remove the metal residues. Then, the reaction mixture was concentrated and purified by preparative TLC (eluent: PE/EA = 2/1) to afford the corresponding product 5a.

Table S2. Conditions Screening for the Synthesis of 5a. ${ }^{a}$

			$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$, base additives MeOH, temp, time			
\#	base	Temp/ ${ }^{\circ} \mathrm{C}$	additive	4a:2a	Time/h	yield(\%) ${ }^{\text {b }}$
base screening						
1	KOAc	40	1	1:1	12	18
2	CsOAc	40	1	1:1	12	22
3	$\mathrm{Zn}(\mathrm{OAc})_{2}$	40	1	1:1	12	trace
4	$\mathrm{K}_{2} \mathrm{CO}_{3}$	40	1	1:1	12	trace
5	KOPiv	40	1	1:1	12	25
6	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	40	1	1:1	12	12
7	NaOAc	40	1	1:1	12	12
additive screening						
8	KOPiv	40	HOAc	1:1	12	<10
9	KOPiv	40	PivOH	1:1	12	12
10	KOPiv	40	4ÅMS	1:1	12	22
11	KOPiv	40	Amberlite IRA-400	1:1	12	15
12	KOPiv	40	Amberlite IR-120	1:1	12	trace
13	KOPiv	40	AgSbF_{6}	1:1	12	ND
other parameters screening						
14	KOPiv	40	1	1.5:1	12	31
15	KOPiv	40	1	2:1	12	51
16	KOPiv	40	1	2:1	6	33
17	KOPiv	40	1	2:1	8	36
18	KOPiv	40	1	2:1	24	21
19	KOPiv	rt	1	2:1	12	46
20	KOPiv	60	1	2:1	12	15
21	KOPiv	80	1	2:1	12	<10

${ }^{a}$ Reaction Conditions: 1a, 2a (0.1 mmol), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$ ($2.5 \mathrm{~mol} \%$), base (1.0 equiv), solvent (0.5 mL), temperature, time, under air. ${ }^{b}$ Isolated yields. ND: not detected.

General procedure for the carboamination of N-phenoxy amides with sulfonyl allenes:

The mixture of N-phenoxy amide $\mathbf{1}(0.2 \mathrm{mmol}, 1.0$ equiv), sulfonyl allene $2(0.2$ mmol, 1.0 equiv), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%)$ and $\mathrm{NaOAc}(0.2 \mathrm{mmol}, 1.0$ equiv) in THF (2.0 mL) was stirred at $40{ }^{\circ} \mathrm{C}$ for 12 h without exclusion of air or moisture. Afterwards, the solvent was removed under reduced pressure, and the resulted mixture was purified by preparative TLC to afford the corresponding allylamine derivatives 3.

Characterization of products:

(Z)-N-(3-(2-hydroxyphenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3aa)

This compound was obtained in 74% yield (55.2 mg) as light yellow solid, m.p.: 186$187^{\circ} \mathrm{C}$. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{f}}=0.7$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 9.84(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0$
$\mathrm{Hz}, 2 \mathrm{H}$), 7.18 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.02 (brs, 1H), 6.91 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.71$ $(\mathrm{m}, 2 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 171.6,157.4,154.3,144.7,138.8,130.2,130.1$, $130.0,127.8,127.3,126.1,118.7,117.2,55.3,28.0,26.2,24.2,21.7$.

HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 374.1421; found: 374.1417.
Scale-up synthesis of 3aa: The mixture of N-phenoxyacetamide 1a ($2.0 \mathrm{mmol}, 1.0$ equiv), sulfonyl allene 2a ($2.0 \mathrm{mmol}, 1.0$ equiv), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%)$ and NaOAc ($2.0 \mathrm{mmol}, 1.0$ equiv) in THF (10.0 mL) was stirred at $40^{\circ} \mathrm{C}$ for 12 h without exclusion of air or moisture. Afterwards, the resulted mixture was purified by silica
gel column chromatography to afford the corresponding allylamine derivatives 3aa in $73 \%(0.544 \mathrm{~g})$ isolated yield.
(Z)-N-(3-(2-hydroxy-5-methylphenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3ba)

This compound was obtained in 75% yield (58.0 mg) as light yellow solid, m.p.: 185$187^{\circ} \mathrm{C}$. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{f}}=0.8$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 2.42$ ($\mathrm{s}, 3 \mathrm{H}$), $2.19(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 4 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 171.6, 157.6, 152.0, 144.7, 138.9, 130.7, 130.2, $130.0,128.0,127.9,127.4,125.8,117.1,55.3,28.1,26.3,24.3,21.7,20.4$.

HRMS (ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 388.1577; found: 388.1571.
(Z)-N-(3-(5-(tert-buty))-2-hydroxyphenyl)-2-methyl-4-tosylbut-3-en-2-
yl)acetamide (3ca)

This compound was obtained in 65% yield $(57.0 \mathrm{mg})$ as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{f}}=0.8$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 9.50(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.33$ (d, $J=8.0$
$\mathrm{Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 2.42$ (s, 3H), $2.12(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 171.6,157.9,151.8,144.7,141.6,138.9,130.1$, $130.0,127.4,127.0,125.4,124.1,116.8,55.4,34.0,31.6,28.3,26.5,24.3,21.7$.

HRMS (ESI) calculated for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 392.1327; found: 392.1321.
(Z)-N-(3-(5-fluoro-2-hydroxyphenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3da)

This compound was obtained in 81% yield (63.3 mg) as light yellow solid, m.p.: 136$138^{\circ} \mathrm{C}$. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{f}}=0.8$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 9.72(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.92-6.81(\mathrm{~m}, 3 \mathrm{H}), 6.51(\mathrm{dd}, J=8.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$, $2.14(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 171.7,156.0,155.5(\mathrm{~d}, J=238.1 \mathrm{~Hz}), 150.5,145.0$, 138.6, 130.9, 130.1, 126.2 (d, $J=7.3 \mathrm{~Hz}$), 118.3 (d, $J=8.0 \mathrm{~Hz}$), 116.6 (d, $J=22.5$ $\mathrm{Hz}), 114.1(\mathrm{~d}, J=23.6 \mathrm{~Hz}), 55.1,28.1,26.3$, 24.2, 21.7.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-126.13$.
HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{2} \mathrm{FNO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 392.1327$; found: 392.1322 .
(Z)-N-(3-(5-chloro-2-hydroxyphenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3ea)

This compound was obtained in 78% yield $(65.1 \mathrm{mg})$ as light yellow solid, m.p.: 187$188^{\circ} \mathrm{C}$. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{f}}=0.8$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 10.02(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (brs, 1 H$), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.74(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 171.8,155.8,153.3,145.0,138.5,131.0,130.2$, $130.0,127.4,127.3,127.2,123.3,118.8,55.2,28.0,26.2,24.2,21.7$.

HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ClNO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 408.1031; found: 408.1026.
(Z)-N-(3-(5-bromo-2-hydroxyphenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3fa)

This compound was obtained in 80% yield $(71.6 \mathrm{mg})$ as light yellow solid, m.p.: 168$170{ }^{\circ} \mathrm{C}$. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{f}}=0.8$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 10.07(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.27$ (dd, $J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (brs, 1 H), $6.88(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 171.8,155.7,153.8,145.0,138.5,132.9,131.0$, $130.2,130.0,127.8,127.4,119.3,110.4,55.2,28.0,26.2,24.2,21.7$.

HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrNO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 452.0526; found: 452.0522.

(Z)-N-(3-(2-hydroxy-5-iodophenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3ga)

This compound was obtained in 72% yield (72.0 mg) as light yellow solid, m.p.: 182$183{ }^{\circ} \mathrm{C}$. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{f}}=0.7$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 10.10(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{brs}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 171.8,155.6,154.6,145.0,138.9,138.5,135.7$, $131.0,130.2,128.6,127.4,119.8,79.9,55.2,28.0,26.2,24.2,21.7$.

HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{INO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 500.0387$; found: 500.0383.
(Z)-N-(3-(2-hydroxy-5-(trifluoromethyl)phenyl)-2-methyl-4-tosylbut-3-en-2yl)acetamide (3ha)

This compound was obtained in 86% yield (75.6 mg) as light yellow solid, m.p.: 179$181^{\circ} \mathrm{C}$. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{f}}=0.8$.
${ }^{1} H$ NMR (400 MHz, CDCl $_{3}$): $\delta 10.55(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}$, $1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 172.0,157.6,155.7,145.1,138.4,131.4,130.2$, 127.5, 126.1, 125.1 (q, $J=3.6 \mathrm{~Hz}), 124.4(\mathrm{q}, J=270.9 \mathrm{~Hz}), 121.1(\mathrm{q}, J=32.9 \mathrm{~Hz})$, 117.8, 55.2, 28.1, 26.3, 24.3, 21.7.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ-61.02.
HRMS (ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 442.1295; found: 442.1288.
(Z)-N-(3-(2-hydroxy-5-nitrophenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3ia)

This compound was obtained in 90% yield (75.2 mg) as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{f}}=0.7$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 11.37(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 172.2,161.0,154.4,145.3,139.7,138.1,132.0$, $130.3,127.5,126.5,126.1,124.4,117.9,55.1,27.9,26.1,24.1,21.7$.

HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 419.1272; found: 419.1267 .

(Z)-N-(3-(5-cyano-2-hydroxyphenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide

(3ja)

This compound was obtained in 57% yield $(45.3 \mathrm{mg})$ as light yellow solid, m.p.: 192$193{ }^{\circ} \mathrm{C}$. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{f}}=0.7$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 10.97(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.08$ (s, 1H), 6.96 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (brs, $1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 172.1,158.9,154.7,145.3,138.3,134.3,132.3$, $131.8,130.3,127.5,127.1,119.1,118.6,102.1,55.2,28.0,26.2,24.2,21.8$.

HRMS (ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 399.1373$; found: 399.1369 .
methyl
(Z)-3-(3-acetamido-3-methyl-1-tosylbut-1-en-2-yl)-4-hydroxybenzoate (3ka)

This compound was obtained in 58% yield $(50.0 \mathrm{mg})$ as light yellow solid, m.p.: 191$192{ }^{\circ} \mathrm{C}$. Eluent: PE/EA $=3 / 1, \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 10.65(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.94-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H})$, 3.85 (s, 3H), 2.43 (s, 3H), 2.17 (s, 3H), 1.84 (s, 3H), 1.35 ($\mathrm{s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 171.9,166.7,159.1,156.0,145.0,138.5,132.1$, 131.2, 130.2, 130.0, 127.5, 126.0, 120.8, 117.3, 55.3, 52.0, 28.0, 26.2, 24.2, 21.7. HRMS (ESI) calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{6} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 432.1476; found: 432.1475 .
(Z)-N-(3-(4-hydroxy-[1,1'-biphenyl]-3-yl)-2-methyl-4-tosylbut-3-en-2yl)acetamide (3la)

This compound was obtained in 72% yield (64.9 mg) as light yellow solid, m.p.: 175$177{ }^{\circ} \mathrm{C}$. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{f}}=0.8$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 9.96(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.41(\mathrm{~m}$, $3 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.96$ $(\mathrm{m}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 171.8,157.2,154.1,144.8,140.4,138.7,132.0$, $130.6,130.1,128.9,127.4,126.9,126.7,126.4,126.3,117.8,55.4,28.2,26.4,24.3$, 21.7.

HRMS (ESI) calculated for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 450.1734; found: 450.1729.
(Z)-N-(3-(2-hydroxy-3-methylphenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3ma)

This compound was obtained in 64% yield $(49.8 \mathrm{mg})$ as light yellow solid, m.p.: 205$207{ }^{\circ} \mathrm{C}$. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{f}}=0.8$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 9.81$ ($\mathrm{s}, 1 \mathrm{H}$), 7.77 ($\mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.31 (d, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (brs, 1H), 6.66-6.57 (m, 2H), $6.09(\mathrm{~s}, 1 \mathrm{H})$, $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 171.7,157.7,152.3,144.7,138.9,131.0,130.2$, 130.0, 127.3, 126.4, 125.6, 125.3, 118.3, 55.3, 28.1, 26.3, 24.2, 21.7, 16.4.

HRMS (ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 388.1577; found: 388.1572.
(Z)-N-(3-(2-hydroxy-4-methoxyphenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3na) \& (Z)-N-(3-(2-hydroxy-6-methoxyphenyl)-2-methyl-4-tosylbut-3-en-2-yl)
acetamide (3na')

This compound was obtained in 54% yield (43.4 mg) as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{f}}=0.7$. An inseparable mixture of two regio isomers was obtained, and the ratio was determined to be 3na/3na' $=5 / 1$ by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 9.89$ ($\mathrm{s}, 0.83 \mathrm{H}$), 9.84 ($\mathrm{s}, 0.17 \mathrm{H}$), 7.77 (d, $J=8.0 \mathrm{~Hz}$, 2 H), 7.32 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.09 (t, $J=8.2 \mathrm{~Hz}, 0.17 \mathrm{H}$), 7.02 (brs, 0.83 H), 6.93 (brs, $0.17 \mathrm{H}), 6.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.83 \mathrm{H}), 6.59-6.53(\mathrm{~m}, 0.17 \mathrm{H}), 6.47(\mathrm{~s}, 0.83 \mathrm{H}), 6.33-6.29$ $(\mathrm{m}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 6 \mathrm{H}), 3.74(\mathrm{~s}, 2.49 \mathrm{H}), 3.71(\mathrm{~s}, 0.51 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 2.49 \mathrm{H})$, $2.12(\mathrm{~s}, 0.51 \mathrm{H}), 1.91(\mathrm{~s}, 0.51 \mathrm{H}), 1.79(\mathrm{~s}, 2.49 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 171.7,171.5,161.3,157.5,156.6,155.7,155.6$, $153.4,144.7,144.5,138.9,138.8,131.0,130.5,130.0,129.9,129.8,128.5,127.3$, $127.2,118.9,115.9,110.5,105.5,101.9,101.3,55.5,55.3,28.3,28.0,26.7,26.2$, 24.20, 24.15, 21.6.

HRMS (ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 404.1526; found: 404.1521.
(Z)-N-(3-(2-hydroxy-4-methylphenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3oa)

This compound was obtained in 62% yield (47.3 mg) as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{f}}=0.8$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 9.68(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1$ Hz, 2H), 6.88 (brs, 1H), 6.74 (s, 1H), 6.65 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.55$ (d, $J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 171.6, 157.6, 154.2, 144.7, 140.4, 138.9, 130.3, 130.0, 127.6, 127.3, 123.4, 119.6, 117.8, 55.4, 28.1, 26.3, 24.2, 21.7, 21.3.

HRMS (ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 388.1577; found: 388.1573.
(Z)-N-(3-(4-chloro-2-hydroxyphenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3pa)

This compound was obtained in 82% yield (66.8 mg) as light yellow solid, m.p.: 174$176{ }^{\circ} \mathrm{C}$. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{f}}=0.8$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 10.17(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.93-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}$, $3 \mathrm{H}), 1.80$ ($\mathrm{s}, 3 \mathrm{H}$), 1.34 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 171.8,156.3,155.4,144.9,138.6,135.4,130.9$, 130.1, 128.7, 127.4, 124.7, 119.0, 117.6, 55.2, 28.1, 26.3, 24.2, 21.7.

HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ClNO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 408.1031; found: 408.1027.
(Z)-N-(3-(2-fluoro-6-hydroxyphenyl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3qa)

This compound was obtained in 66% yield $(51.6 \mathrm{mg})$ as light yellow solid, m.p.: $130-$ $132{ }^{\circ} \mathrm{C}$. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{f}}=0.8$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C l}_{3}$) $\delta 10.12(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.11 (dd, $J=15.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (brs, 1H), 6.71 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $6.49(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 171.7,158.9(\mathrm{~d}, J=242.8 \mathrm{~Hz}), 156.3(\mathrm{~d}, J=4.7 \mathrm{~Hz})$, $150.5,144.9,138.6,132.3,130.2,130.1,127.4,114.8(\mathrm{~d}, J=19.7 \mathrm{~Hz}), 113.1(\mathrm{~d}, J=$ $1.9 \mathrm{~Hz}), 105.6$ (d, $J=22.3 \mathrm{~Hz}$), 55.3, 27.7, 26.7, 24.3, 21.7.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-113.82$.
HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{2} \mathrm{FNO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 392.1327; found: 392.1321.
(Z)-N-(3-(3-hydroxynaphthalen-2-yl)-2-methyl-4-tosylbut-3-en-2-yl)acetamide (3ra)

This compound was obtained in 47% yield (39.7 mg) as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{f}}=0.7$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 9.98(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.89$ (brs, 1H), $6.18(\mathrm{~s}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 171.9,157.0,152.3,144.9,138.7,135.2,130.8$, $130.1,129.1,127.4,127.3,127.1,126.8,126.5,123.6,111.5,55.5,28.2,26.2,24.3$, 21.7.

HRMS (ESI) calculated for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 424.1577; found: 424.1571 .

(Z)-N-(3-(2-hydroxyphenyl)-2-methyl-4-tosylbut-3-en-2-yl)propionamide (3sa)

This compound was obtained in 78% yield (60.4 mg) as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=3 / 1, \mathrm{R}_{\mathrm{f}}=0.7$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 9.96(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (brs, 1H), 6.78-6.70 $(\mathrm{m}, 2 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 2.50-2.31(\mathrm{~m}, 5 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 174.8,157.5,154.4,144.7,138.8,130.3,130.1$, $130.0,127.8,127.3,126.2,118.7,117.3,55.1,30.1,28.2,26.3,21.7,9.0$.

HRMS (ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 388.1577; found: 388.1572.
(Z)-N-(3-(2-hydroxyphenyl)-2-methyl-4-tosylbut-3-en-2-yl)-2-phenylacetamide (3ta)

This compound was obtained in 65% yield $(54.7 \mathrm{mg})$ as white soild. Eluent: $\mathrm{PE} / \mathrm{EA}=$ $3 / 1 . \mathrm{R}_{\mathrm{f}}=0.7$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.28(\mathrm{~m}$, 7H), 7.19-7.16 (m, 1H), 6.91 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.70$ (m, 2H), 6.65 (s, 1H), $6.10(\mathrm{~s}, 1 \mathrm{H}), 3.85-3.71(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 172.3,156.8,154.3,144.8,138.8,134.5,130.5$, $130.1,130.0,129.0,127.8,127.5,127.4,126.0,118.7,117.3,55.4,44.2,27.7,26.3$, 21.7.

HRMS (ESI) calculated for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 450.1734$; found:450.1727.
(Z)-N-(3-(2-hydroxyphenyl)-2-methyl-4-(phenylsulfonyl)but-3-en-2-yl)acetamide (3ab)

This compound was obtained in 65% yield $(46.8 \mathrm{mg})$ as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=3 / 1, \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 9.79$ ($\mathrm{s}, 1 \mathrm{H}$), 7.91 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.62 (t, $J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 6.79-6.71 (m, 2H), $6.11(\mathrm{~s}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 171.7,157.9,154.3,141.7,133.8,130.2,130.0$, 129.5, 127.8, 127.3, 126.0, 118.8, 117.4, 55.4, 28.0, 26.3, 24.3.

HRMS (ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 360.1264$; found: 360.1260.
(Z)-N-(3-(2-hydroxyphenyl)-4-((4-methoxyphenyl)sulfonyl)-2-methylbut-3-en-2yl)acetamide (3ac)

This compound was obtained in 70% yield $(55.5 \mathrm{mg})$ as light yellow solid, m.p.: $120-$ $122{ }^{\circ} \mathrm{C}$. Eluent: $\mathrm{PE} / \mathrm{EA}=3 / 1, \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), ~ 7.01-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.91$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), ~ 6.78-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 171.7,163.7,156.9,154.3,133.3,130.6,130.1$, $129.5,127.8,126.1,118.6,117.3,114.6,55.8,55.3,28.0,26.3,24.2$.

HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 390.1370; found: 390.1361.
(Z)-N-(4-((4-fluorophenyl)sulfonyl)-3-(2-hydroxyphenyl)-2-methylbut-3-en-2yl)acetamide (3ad)

This compound was obtained in 54% yield (40.7 mg) as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=3 / 1, \mathrm{R}_{\mathrm{f}}=0.5$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 9.75(\mathrm{~s}, 1 \mathrm{H}), 7.97-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 3 \mathrm{H})$, $6.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{brs}, 1 \mathrm{H}), 6.78-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})$, 1.81 (s, 3H), 1.36 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 171.7,165.8(\mathrm{~d}, J=256.4 \mathrm{~Hz}), 158.2,154.3,137.8$ $(\mathrm{d}, J=3.0 \mathrm{~Hz}), 130.33,130.31,130.24,129.9,127.7,125.9,118.9,117.5,116.8(\mathrm{~d}, J$
$=22.5 \mathrm{~Hz}$), 55.4, 28.0, 26.3, 24.3.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-103.31$.
HRMS (ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{2} \mathrm{FNO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 378.1170; found: 378.1167.

(Z)-N-(4-((4-chlorophenyl)sulfonyl)-3-(2-hydroxyphenyl)-2-methylbut-3-en-2-yl)

 acetamide (3ae)

This compound was obtained in 77% yield (60.8 mg) as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=3 / 1, \mathrm{R}_{\mathrm{f}}=0.6$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 9.76(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.78-6.71(\mathrm{~m}, 2 \mathrm{H})$, $6.08(\mathrm{~s}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 171.7,158.5,154.3,140.5,140.2,130.3,129.8$, 129.6, 128.9, 127.7, 125.9, 118.9, 117.4, 55.4, 28.0, 26.3, 24.3.

HRMS (ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClNO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 394.0875; found: 394.0873 .
(Z)-N-(3-(2-hydroxyphenyl)-2-methyl-4-((4-(trifluoromethyl)phenyl)sulfonyl)but-3-en-2-yl)acetamide (3af)

This compound was obtained in 49% yield (41.8 mg) as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=3 / 1, \mathrm{R}_{\mathrm{f}}=0.6$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 9.74$ ($\mathrm{s}, 1 \mathrm{H}$), 8.05 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.82 (d, $J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.79-6.72(\mathrm{~m}, 2 \mathrm{H})$, $6.08(\mathrm{~s}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 171.7,159.5,154.2,145.1,135.5(\mathrm{q}, J=33.4 \mathrm{~Hz})$, 130.4, 129.0, 128.0, 127.6, $126.7(\mathrm{q}, ~ J=3.4 \mathrm{~Hz}), 125.7,123.2(\mathrm{q}, J=273.2 \mathrm{~Hz})$, 118.9, 117.5, 55.5, 28.0, 26.3, 24.2.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-63.13$.
HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 428.1138; found: 428.1131.
(Z)-N-(3-(2-hydroxyphenyl)-2-methyl-4-(m-tolylsulfonyl)but-3-en-2-yl)acetamide (3ag)

This compound was obtained in 64% yield (47.6 mg) as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=3 / 1, \mathrm{R}_{\mathrm{f}}=0.5$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 9.79(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 2 \mathrm{H})$, $7.19(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 2.42(\mathrm{~s}$, $3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 171.7,157.6,154.4,141.5,139.8,134.5,130.2$, 129.3, 127.8, 127.6, 126.1, 124.4, 118.8, 117.4, 55.3, 28.0, 26.3, 24.3, 21.4.

HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 374.1421; found: 374.1416.
(Z)-N-(3-(2-hydroxyphenyl)-2-methyl-4-(o-tolylsulfonyl)but-3-en-2-yl)acetamide (3ah)

This compound was obtained in 67% yield $(49.8 \mathrm{mg})$ as light yellow solid, m.p.: 168$169^{\circ} \mathrm{C}$. Eluent: $\mathrm{PE} / \mathrm{EA}=3 / 1, \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 9.78(\mathrm{~s}, \underset{18}{1 \mathrm{H}}), 8.00(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.4$

Hz, 1H), 7.38-7.27 (m, 2H), 7.19 (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (brs, 1H), 6.82-6.75 (m, 2H), 6.11 (s, 1H), $2.68(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H})$, 1.37 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 171.8,158.4,154.4,139.8,137.5,133.8,132.6$, 130.2, 129.9, 128.4, 127.4, 126.7, 126.1, 118.8, 117.4, 55.4, 27.3, 26.3, 24.3, 20.6.

HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 374.1421; found: 374.1418.
(Z)-N-(3-(2-hydroxyphenyl)-4-(mesitylsulfonyl)-2-methylbut-3-en-2-yl)acetamide (3ai)

This compound was obtained in 60% yield $(48.5 \mathrm{mg})$ as light yellow oil. Eluent: PE/EA $=3 / 1, \mathrm{R}_{\mathrm{f}}=0.55$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.91(\mathrm{~m}$, 3H), 6.85 (brs, 1H), 6.80 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.14$ (s, 1H), $2.65(\mathrm{~s}, 6 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 171.9,156.7,154.5,143.3,139.3,135.7,132.2$, $131.7,130.0,127.5,126.3,118.8,117.4,55.3,27.2,26.4,24.4,22.8,21.0$.

HRMS (ESI) calculated for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 402.1734$; found: 402.1730 .

General procedure for the carboamination of N -enoxy imides with sulfonyl allenes:

The mixture of N-enoxy imide 4 (0.4 mmol , 2.0 equiv), sulfonyl allene 2 (0.2 mmol , 1.0 equiv), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%)$ and $\mathrm{KOPiv}(0.2 \mathrm{mmol}, 1.0$ equiv) in MeOH (2.0
mL) was stirred at $40^{\circ} \mathrm{C}$ for 12 h without exclusion of air or moisture. Afterwards, the solvent was removed under reduced pressure, and the resulted mixture was purified by preparative TLC to afford the corresponding allylamine derivatives 5 .

Characterization of products:

(E)-methyl
2-((2-methyl-5-oxo-5-phenyl-3-(tosylmethylene)pentan-2-yl) carbamoyl)benzoate (5a)

This compound was obtained in 51% yield (52.9 mg) as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1 . \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.86$ (brs, 1 H), $7.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.88-7.83(\mathrm{~m}$, $3 \mathrm{H}), 7.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}$, $3 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 199.4,167.3,167.0,156.1,144.4,138.4,138.2$, $137.5133 .3,132.4,130.1,129.8,129.3,128.7,128.3,127.9,127.5,118.1,52.6,48.1$, 41.0, 28.1, 21.8.

HRMS (ESI) calculated for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{NO}_{6} \mathrm{~S}\left(\left[\mathrm{M}^{+} \mathrm{H}\right]{ }^{+}\right)$: 520.1788 ; found: 520.1793.
(E)-methyl 2-((3-(((4-methoxyphenyl)sulfonyl)methylene)-2-methyl-5-oxo-5-phenylpentan-2-yl)carbamoyl)benzoate (5b)

This compound was obtained in 47% yield (50.3 mg) as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1 . \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.80(\mathrm{brs}, 1 \mathrm{H}), 7.95-7.85(\mathrm{~m}, 5 \mathrm{H}), 7.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 199.5,167.3,167.0,163.6,155.3,138.2,137.5$, $133.4,132.9,132.4,130.9,130.1,129.8,129.4,128.7,128.3,128.0,118.8,114.4$, 55.7, 52.6, 48.1, 41.0, 28.0.

HRMS (ESI) calculated for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{NO}_{7} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 536.1738; found: 536.1728 .
(E)-methyl 2-((3-(((4-chlorophenyl)sulfonyl)methylene)-2-methyl-5-oxo-5-phenylpentan-2-yl)carbamoyl)benzoate (5c)

This compound was obtained in 42% yield $(45.5 \mathrm{mg})$ as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1 . \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.76$ (brs, 1H), $7.94-7.91$ (m, 4H), $7.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.43$ $(\mathrm{m}, 4 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 199.5,167.4,166.9,156.4,140.1,139.7,138.1$, $137.3,133.5,132.5,130.2,130.1,129.4,129.2,129.1,128.7,128.3,128.0,117.8$, 52.6, 48.2, 41.2, 28.0.

HRMS (ESI) calculated for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{ClNO}_{6} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 540.1242; found: 540.1235 .

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY:

(E)-methyl 2-((3-(((4-iodophenyl)sulfonyl)methylene)-2-methyl-5-oxo-5-

 phenylpentan-2-yl)carbamoyl)benzoate (5d)

This compound was obtained in 39% yield (49.2 mg) as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1 . \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 8.78$ (brs, 1 H), $7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.89-7.85(\mathrm{~m}$, $3 \mathrm{H}), 7.79$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.69 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.55$ (m, 2H), 7.51 (d, $J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 199.5,167.3,166.9,156.6,140.9,138.4,138.1$, $137.3,133.5,132.5,131.3,130.2,130.1,129.0,128.8,128.6,128.3,127.9,125.2$, 117.4, 101.4, 52.6, 48.2, 41.2, 28.0.

HRMS (ESI) calculated for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{INO}_{6} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 632.0598; found: 632.0592 .
(E)-methyl 2-((3-(((4-(methoxycarbonyl)phenyl)sulfonyl)methylene)-2-methyl-5-oxo-5-phenylpentan-2-yl)carbamoyl)benzoate (5e)

This compound was obtained in 52% yield (58.6 mg) as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1 . \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.85(\mathrm{brs}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H})$, $3.95(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 199.5,167.3,166.9,165.8,157.2,145.1,138.1$, $137.2,134.4,133.5,132.5,130.3,130.2,130.1,129.1,128.9,128.7,128.3,127.9$, 127.6, 125.3, 117.0, 52.8, 52.6, 48.2, 41.2, 28.0.

HRMS (ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{NO}_{8} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 564.1687; found: 564.1683.
(E)-methyl 2-((2-methyl-5-oxo-5-phenyl-3-((m-tolylsulfonyl)methylene)pentan- 2yl)carbamoyl)benzoate (5f)

This compound was obtained in 43% yield (44.8 mg) as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1 . \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.92$ (brs, 1H), 7.94 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.86 (d, $J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.39(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}$, $2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, $\mathbf{C D C l}_{3}$): δ 199.5, 167.4, 166.9, 156.4, 140.1, 139.7, 138.1, $137.3,133.5,132.5,130.2,130.1,129.4,129.2,129.1,128.7,128.3,128.0,117.8$, 52.6, 48.2, 40.9, 28.1, 21.5 .

HRMS (ESI) calculated for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{NO}_{6} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 520.1788$; found: 520.1784.

(E)-methyl 2-((3-methyl-6-oxo-6-phenyl-4-(tosylmethylene)hexan-3-yl) carbamoyl)benzoate (5g)

This compound was obtained in 65% yield (69.2 mg) as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1 . \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.68$ (brs, 1H), $7.93(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.87-7.81(\mathrm{~m}$, $4 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 3.67(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.03(\mathrm{~m}$, $1 \mathrm{H}), 1.79-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 199.7,167.3,167.0,154.3,144.4,138.5,138.3$, $137.5,133.4,132.4,130.0,129.8,129.2,128.7,128.3,128.0,127.5,120.1,52.5,46.9$, 44.7, 32.5, 23.8, 21.8, 8.8.

HRMS (ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{NO}_{6} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 534.1945; found: 534.1941.

(E)-methyl 2-((3-methyl-6-oxo-1,6-diphenyl-4-(tosylmethylene)hexan-3-yl) carbamoyl)benzoate (5h)

This compound was obtained in 59% yield (71.8 mg) as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1 . \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.61$ (brs, 1H), 7.93-7.88 (m, 4H), $7.85(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.59-7.53$ (m, 2H), 7.50-7.42 (m, 3H), 7.30 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.22 (d, $J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 3.74-3.68(\mathrm{~m}, 4 \mathrm{H}), 3.38(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.69-2.61 (m, 1H), 2.57-2.49 (m, 1H), $2.40(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.95(\mathrm{~m}$, $1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 199.5,167.5,167.0,154.0,144.5,142.1,138.4$, $138.2,137.5,133.4,132.4,130.0,129.9,129.8,129.3,128.7,128.6,128.5,128.4$, $128.3,128.1,127.6,126.0,120.8,52.5,47.2,44.7,42.0,30.7,24.3,21.8$.

HRMS (ESI) calculated for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{NO}_{6} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): ~ 610.2258$; found: 610.2251 .
(E)-ethyl 2-((2-methyl-5-oxo-5-phenyl-3-(tosylmethylene)pentan-2-yl)carbamoyl) benzoate (5i)

This compound was obtained in 53% yield $(56.7 \mathrm{mg})$ as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1 . \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$) : $\delta 9.51$ (s, 1H), 7.91 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.85 (d, $J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.68(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{~s}$, $2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 6 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 199.4,167.4,166.4,156.3,144.4,138.4,138.3$, $137.5,133.3,132.2,130.0,129.8,129.6,128.8,128.6,128.3,127.9,127.5,117.7$, $61.5,48.0,41.0,28.1,21.8,14.3$.

HRMS (ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{NO}_{6} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 534.1945$; found: 534.1940.

(E)-methyl 2-((3-((diphenylphosphoryl)methylene)-2-methyl-5-oxo-5-phenyl

 pentan-2-yl)carbamoyl)benzoate (5j)

This compound was obtained in 62% yield $(70.0 \mathrm{mg})$ as white soild. Eluent: $\mathrm{PE} / \mathrm{EA}=$ $1 / 2 . \mathrm{R}_{\mathrm{f}}=0.5$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CD $_{3} \mathbf{O D}$) : $\delta 8.02(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.82-7.76(\mathrm{~m}, 5 \mathrm{H}), 7.67(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 8 \mathrm{H}), 6.26-6.21(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}$, $3 \mathrm{H}), 3.57$ (s, 2H), 1.47 (s, 6H).
${ }^{13}$ C NMR (100 MHz, CDCl ${ }_{3}$): $\delta 199.6,167.4,167.1,164.9(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 138.4$, 138.1, 133.9, 132.9, 132.0, 131.9, 131.3, 131.2, 129.9, 129.6, 129.3, 128.8, 128.7, 128.5, 128.4, 128.3, 127.7, 125.8, 123.4, $105.8(\mathrm{~d}, J=100.9 \mathrm{~Hz}), 52.3,47.8,41.0$ (d, $J=11.1 \mathrm{~Hz}$), 28.9.
${ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): δ 27.37.
HRMS (ESI) calculated for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{P}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 566.2091; found: 566.2088.
(E)-methyl 4-((2-methyl-5-oxo-5-phenyl-3-(tosylmethylene)pentan-2-yl)amino)-4-oxobutanoate (5 k)

This compound was obtained in 52% yield (48.9 mg) as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1 . \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.45$ (brs, 1H), 7.88 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.79 (d, $J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.06$ (s, $1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 2 \mathrm{H}), 2.69-2.63(\mathrm{~m}, 4 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 198.9,173.3,170.6,156.1,144.4,138.4,137.3$, 133.5, 129.8, 128.7, 128.2, 127.4, 52.0, 48.4, 40.6, 31.8, 29.0, 27.8, 21.8.

HRMS (ESI) calculated for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}_{6} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 472.1788; found: 472.1789 .
1H-1H NOESY:

(E)-methyl 4-((5-(4-(tert-butyl)phenyl)-2-methyl-5-oxo-3-(tosylmethylene)pentan-2-yl)amino)-4-oxobutanoate (51)

This compound was obtained in 48% yield (50.5 mg) as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1 . \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.40$ (brs, 1H), 7.84-7.79 (m, 4H), $7.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 2 \mathrm{H}), 2.70-2.65(\mathrm{~m}$, $4 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 198.7,173.3,170.6,157.4,156.1,144.4,138.5$, $134.7,129.8,128.3,127.5,125.7,52.0,48.4,40.7,35.3,31.8,31.2,29.1,27.8,21.8$.

HRMS (ESI) calculated for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{NO}_{6} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 528.2414; found: 528.2414.
(E)-methyl 4-((5-(4-chlorophenyl)-2-methyl-5-oxo-3-(tosylmethylene)pentan-2-yl) amino)-4-oxobutanoate (5m)

This compound was obtained in 67% yield $(67.6 \mathrm{mg})$ as light yellow oil. Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1 . \mathrm{R}_{\mathrm{f}}=0.4$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.53$ (brs, 1H), $7.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{~s}$, $3 \mathrm{H}), 3.30(\mathrm{~s}, 2 \mathrm{H}), 2.69-2.63(\mathrm{~m}, 4 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 197.7,173.3,170.6,156.3,144.5,139.9,138.4$, 135.7, 129.9, 129.7, 129.0, 127.4, 52.0, 48.2, 40.6, 31.8, 29.0, 27.9, 21.8.

HRMS (ESI) calculated for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{ClNO}_{6} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 506.1399$; found: 506.1403.

(E)-methyl 4-((3-((diphenylphosphoryl)methylene)-2-methyl-5-ox0-5-

 phenylpentan-2-yl)amino)-4-oxobutanoate (5n)

This compound was obtained in 55% yield $(56.8 \mathrm{mg})$ as white soild. Eluent: $\mathrm{PE} / \mathrm{EA}=$ $1 / 2 . R_{f}=0.5$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 9.59(\mathrm{brs}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.67(\mathrm{~m}$, $4 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 6 \mathrm{H}), 5.68(\mathrm{~d}, J=19.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H})$, $3.51(\mathrm{~s}, 2 \mathrm{H}), 2.48-2.44(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 199.4,173.1,170.5,164.6,137.9,133.9,133.1$, $132.9,131.9,131.2,131.1,128.8,128.7,128.6,128.2,106.1(\mathrm{~d}, J=101.8 \mathrm{~Hz}), 51.8$, $48.0,40.8(\mathrm{~d}, ~ J=10.5 \mathrm{~Hz}), 31.7,29.1,28.7$.
${ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 26.75$.
HRMS (ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{P}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 518.2091$; found: 518.2088.

III.Synthetic Applications

Late-stage C-H modification of complex molecules:

The mixture of tyrosine derivative ($0.2 \mathrm{mmol}, 1.0$ equiv), sulfonyl allene $\mathbf{2 a}$ (0.2 mmol, 1.0 equiv), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ ($2.5 \mathrm{~mol} \%$) and NaOAc ($0.2 \mathrm{mmol}, 1.0$ equiv) in THF (2.0 mL) was stirred at $40{ }^{\circ} \mathrm{C}$ for 12 h without exclusion of air or moisture. Afterwards, the solvent was removed under reduced pressure, and the resulted mixture was purified by preparative TLC (Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{f}}=0.4$) to afford the desired product 6 in $61 \%(71.6 \mathrm{mg})$ isolated yield as yellowish oil. NMR analysis showed that the tautomerization was observed in CDCl_{3}.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 9.77-9.74(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.93-6.81(\mathrm{~m}, 3 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.10-6.05(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{t}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.55-4.42(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.56(\mathrm{~m}, 3 \mathrm{H}), 3.03-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}$, $3 \mathrm{H}), 1.82-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.34-1.31(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 172.5,172.3,171.7,157.2,155.1,155.0,153.5$, $144.8,138.8,131.1,131.0,130.4,130.3,130.1,128.6,128.4,127.4,126.13,126.07$, $117.44,117.36,80.0,55.29,55.25,54.7,54.5,52.2,52.1,37.44,37.36,28.4,28.1$, 26.3, 24.2, 21.7.

HRMS (ESI) calculated for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 575.2422; found: 575.2421.

The mixture of dopamine derivative ($0.2 \mathrm{mmol}, 1.0$ equiv), sulfonyl allene $\mathbf{2 a}$ (0.2 mmol, 1.0 equiv), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%)$ and $\mathrm{NaOAc}(0.2 \mathrm{mmol}, 1.0$ equiv) in THF (2.0 mL) was stirred at $40^{\circ} \mathrm{C}$ for 12 h without exclusion of air or moisture. Afterwards, the solvent was removed under reduced pressure, and the resulted
mixture was purified by preparative TLC (Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{f}}=0.4$) to afford the desired product 7 in $60 \%(61.8 \mathrm{mg})$ isolated yield as light yellow solid, m.p.: 118-121 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 9.67(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H})$, $6.09(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{brs}, 1 \mathrm{H}), 3.33-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$, $2.14(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 171.7,157.2,156.0,152.8,144.7,138.8,130.3$, $130.2,130.1,129.1,127.8,127.4,126.1,117.4,79.3,55.3,42.1,35.2,28.5,28.1,26.3$, 24.2, 21.7.

HRMS (ESI) calculated for $\mathrm{C}_{2} 7 \mathrm{H}_{3} 7 \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 517.2367; found: 517.2366.

The mixture of estrone derivative ($0.2 \mathrm{mmol}, 1.0$ equiv), sulfonyl allene $\mathbf{2 a}$ (0.2 mmol, 1.0 equiv), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%)$ and $\mathrm{NaOAc}(0.2 \mathrm{mmol}, 1.0$ equiv) in THF (2.0 mL) was stirred at $40{ }^{\circ} \mathrm{C}$ for 12 h without exclusion of air or moisture. Afterwards, the solvent was removed under reduced pressure, and the resulted mixture was purified by preparative TLC (Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{f}}=0.5$) to afford the desired product $\mathbf{8}$ in $52 \%(56.0 \mathrm{mg})$ isolated yield as light yellow solid, m.p.: 185-186 ${ }^{\circ} \mathrm{C}$. NMR analysis showed that the tautomerization was observed in CDCl_{3}.
${ }^{1} H$ NMR (400 MHz, DMSO- $_{6}$): $\delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.42(\mathrm{~s}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 2.75-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.43-$ $2.35(\mathrm{~m}, 4 \mathrm{H}), 2.27-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.85(\mathrm{~m}, 5 \mathrm{H}), 1.75-1.69(\mathrm{~m}$, $1 \mathrm{H}), 1.58-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 6 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 221.2,171.6,157.7,157.6,152.1,152.0,144.7$, $138.90,138.86,138.6,130.3,130.2,130.0,127.4,124.6,124.2,123.9,117.0,116.9$,
55.34, 55.31, 50.5, 50.4, 48.1, 48.0, 43.9, 43.8, 31.6, 31.5, 29.31, 29.25, 28.20, 28.15, 26.54, 26.50, 26.46, 26.42, 14.0, 13.9.

HRMS (ESI) calculated for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{NO}_{5} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 550.2622 ; found: 550.2619 .

Derivatization of compound 3a:

A sealed tube was charged with 3aa ($0.1 \mathrm{mmol}, 1.0$ equiv) in 1,4-dioxane (0.5 mL), followed by the addition of concentrated HCl solution $(0.5 \mathrm{~mL})$. The reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 8 h . Afterwards, the resulted mixture was quenched with saturated NaHCO_{3} and extracted by EA for three times. The combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated, and the residue was purified by preparative TLC (Eluent: $\mathrm{PE} / \mathrm{EA}=1 / 1, \mathrm{R}_{\mathrm{f}}=0.5$) to afford the desired product 9 in $70 \%(23.3 \mathrm{mg})$ isolated yield as light yellow oil.
${ }^{1}$ H NMR (400 MHz, DMSO-d \boldsymbol{d}_{6}): $\delta 7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H})$, 2.40 ($\mathrm{s}, 3 \mathrm{H}$), 1.37 (s, 6H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 158.6,154.8,145.0,138.7,133.5,130.1,129.9$, 128.7, 128.0, 127.6, 119.2, 116.9, 53.1, 31.6, 21.7.

HRMS (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NSO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 332.1315; found: 332.1316.

The mixture of $\mathbf{3 a a}$ ($0.2 \mathrm{mmol}, 1.0$ equiv) and Mg ($2 \mathrm{mmol}, 10$ equiv) in MeOH $(4.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ for 18 h under an atmosphere of N_{2}. Afterwards, the reaction mixture was cooled to room temperature and filtered, the filtrate was concentrated and purified by preparative TLC (eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{f}}=0.6$) to give the target product in 49% isolated yield (21.5 mg) as light yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 8.96(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.86(\mathrm{~m}$, $2 \mathrm{H}), 6.78(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{brs}, 1 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H})$, 1.38 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 170.1,155.0,150.4,129.1,129.0,127.6,118.8$, 116.5, 116.2, 56.5, 29.8, 24.0.

HRMS (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 220.1332; found: 220.1331.

A sealed tube was charged with $5 \mathbf{5 a}$ ($0.1 \mathrm{mmol}, 1.0$ equiv) in 1,4 -dioxane (0.5 mL), followed by the addition of concentrated HCl solution $(0.5 \mathrm{~mL})$. The reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 8 h . Afterwards, the resulted mixture was quenched with saturated NaHCO_{3} and extracted by EA for three times. The combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated, and the residue was purified by preparative TLC (Eluent: $\mathrm{PE} / \mathrm{EA}=2 / 1, \mathrm{R}_{\mathrm{f}}=0.6$) to afford the desired product 11 in 82% yield (33.3 mg) as light yellow oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$): $\delta 7.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.64(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H})$, 3.47 (s, 2H), 2.40 ($\mathrm{s}, 3 \mathrm{H}$), 1.09 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta 203.7$, 198.0, 145.0, 136.5, 136.1, 133.7, 129.8, 128.78, 128.77, 128.2, 62.8, 51.7, 45.9, 25.1, 21.8.

HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{NSO}_{4}\left([\mathrm{M}+\mathrm{Cl}]^{-}\right)$: 442.0652 ; found: 442.0647 .

Switchable assembly of compound 3aa':

The mixture of N-phenoxyacetamide 1a ($0.1 \mathrm{mmol}, 1.0$ equiv), sulfonyl allene 2a ($0.1 \mathrm{mmol}, 1.0$ equiv), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%$) and NaOAc (1 equiv) in the solvent was stirred in an oil bath without exclusion of air or moisture. Afterwards, it was diluted with EtOAc and filtered through a short silica gel column to remove the metal
residues. Then, the reaction mixture was concentrated and purified by preparative TLC (eluent: $\mathrm{PE} / \mathrm{EA}=3 / 1, \mathrm{R}_{\mathrm{f}}=0.6$) to afford the corresponding product 3aa'.

Table S3. Conditions Screening for the Synthesis of 3aa' ${ }^{\text {a }}{ }^{a}$

\#	solvent	pH of PBS	1a:2a	Temp/ ${ }^{\circ} \mathrm{C}$	yield(\%) ${ }^{\text {b }}$
1	THF/PBS $=1 / 1$	4.2	1:1	40	19
2	THF/PBS $=1 / 1$	7.0	1:1	40	20
3	THF/PBS $=1 / 1$	9.4	1:1	40	20
4	PBS	7.0	1:1	40	15
5	dioxane/PBS $=1 / 1$	7.0	1:1	40	13
6	$\mathrm{MeOH} / \mathrm{PBS}=1 / 1$	7.0	1:1	40	25
7	$\mathrm{MeOH} / \mathrm{PBS}=1 / 1$	7.0	1:1	80	31
8	$\mathrm{MeOH} / \mathrm{PBS}=1 / 1$	7.0	1:1.5	80	55
9	$\mathrm{MeOH} / \mathrm{PBS}=1 / 1$	7.0	1:2	80	61
10	$\mathrm{MeOH} / \mathrm{PBS}=2 / 1$	7.0	1:2	80	60
11	$\mathrm{MeOH} / \mathrm{PBS}=4 / 1$	7.0	1:2	80	72 (69) ${ }^{\text {c }}$
12	$\mathrm{MeOH} / \mathrm{PBS}=6 / 1$	7.0	1:2	80	66

${ }^{a}$ Reaction Conditions: 1a (0.1 mmol), 2a, $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$ ($5 \mathrm{~mol} \%$), NaOAc (1.0 equiv), solvent $(0.5 \mathrm{~mL})$, temperature, 12 h , under air. ${ }^{b}{ }^{1} \mathrm{H}$-NMR yields using $1,3,5$-trimethoxybenzene as an internal standard. ${ }^{c}$ Isolated yield was reported in the parentheses.

2,2-dimethyl-3-(tosylmethylene)-2,3-dihydrobenzofuran (3aa')

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl $\left.\mathbf{C l}_{3}\right): \delta 7.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.25 (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.06$ (m, 2H), $5.80(\mathrm{~s}, 1 \mathrm{H})$, 2.41 ($\mathrm{s}, 3 \mathrm{H}$), 1.40 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 175.9,155.4,143.8,140.0,133.3,129.5,128.8$, 127.4, 124.1, 122.5, 110.7, 102.3, 46.8, 29.0, 21.7.

HRMS (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{SO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 315.1050; found: 315.1050.

Two batches of the mixture of compound 3aa ($0.1 \mathrm{mmol}, 1.0$ equiv) and NaOAc (1 equiv) in THF (0.1 M) was stirred in an oil bath in the presence or absence of $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%)$ without exclusion of air or moisture. Afterwards, the reaction was monitored by TLC and no corresponding dihydrobenzofuran product 3aa' was formed.

Scheme S1 Proposed Catalytic Cycle for the C-H Coupling of N -Phenoxyacetamide with Sulfonyl Allene

Proposed catalytic cycle for N-enoxyphthalimide substrate:

Initially, N-enoxyphthalimide 4 a converted into the active substrate \mathbf{F} with the assistance of MeOH , which underwent the $\mathrm{Rh}(\mathrm{III})$-catalyzed $\mathrm{N}-\mathrm{H} / \mathrm{C}-\mathrm{H}$ bond cleavage to afford the intermediate \mathbf{G}. Subsequent allene insertion from \mathbf{G} delivered the sevenmembered intermediate \mathbf{H}, which underwent the oxidative addition followed by a $\mathrm{C}-\mathrm{N}$ bond reductive elimination to give intermediate \mathbf{J}. Alternatively, the direct $\mathbf{C}-\mathrm{N}$ bond reductive elimination from \mathbf{H} could also be involved to afford intermediate \mathbf{K} along
with the generation of $\mathrm{Rh}(\mathrm{I})$ species, further $\mathrm{O}-\mathrm{N}$ bond cleavage re-oxidized the $\mathrm{Rh}(\mathrm{I})$ to intermediate \mathbf{J}. Finally, the protonolysis of intermediate \mathbf{J} led to the release of desired carboamination product 5a with the regeneration of active $\mathrm{Cp} * \mathrm{Rh}(\mathrm{OAc})_{2}$ catalyst.

Scheme S2 Proposed Catalytic Cycle for the C-H Coupling of N -Enoxyphthalimide with Sulfonyl Allene

IV.X-Ray Crystallographic Data

X-ray crystallographic data of compound 3aa:

Single crystals of $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$ [805-3B] were prepared using the mixed PE/EA solvent at room temperature. A suitable crystal was selected and on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 149.99(10) K during data collection.

Crystal Data for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}(M=373.45 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P}_{1} / \mathrm{c}$ (no. 14), $a=19.1418(19) \AA, b=11.1056(12) \AA, c=20.762(2) \AA, \beta=90.211(11)^{\circ}, V$ $=4413.7(8) \AA^{3}, Z=8, T=149.99(10) \mathrm{K}, \mu(\mathrm{Mo} \mathrm{K} \alpha)=0.168 \mathrm{~mm}^{-1}$, Dcalc $=$ $1.124 \mathrm{~g} / \mathrm{cm}^{3}, 25767$ reflections measured $\left(3.924^{\circ} \leq 2 \Theta \leq 50^{\circ}\right), 7719$ unique ($R_{\mathrm{int}}=$
$0.0947, \mathrm{R}_{\text {sigma }}=0.0922$) which were used in all calculations. The final R_{1} was 0.0950 ($\mathrm{I}>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.2662 (all data).

Table S4. Crystal data and structure refinement for 805-3B

Identification code	805-3B
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$
Formula weight	373.45
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a / \AA	19.1418(19)
b/ \AA	11.1056(12)
c/Å	20.762(2)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90.211(11)
γ°	90
Volume/ \AA^{3}	4413.7(8)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.124
μ / mm^{-1}	0.168
F(000)	1584.0
Crystal size/mm ${ }^{3}$	$0.15 \times 0.12 \times 0.11$
Radiation	Mo K $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	3.924 to 50
Index ranges	$-22 \leq \mathrm{h} \leq 21,-13 \leq \mathrm{k} \leq 13,-24 \leq 1 \leq 19$
Reflections collected	25767
Independent reflections	$7719\left[\mathrm{R}_{\text {int }}=0.0947, \mathrm{R}_{\text {sigma }}=0.0922\right]$
Data/restraints/parameters	7719/3/487
Goodness-of-fit on F^{2}	1.054
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0950, \mathrm{wR}_{2}=0.2462$

V. References

[S1] (a) Liu, G.; Shen, Y.; Zhou, Z.; Lu, X. Angew. Chem. Int. Ed., 2013, 52, 6033. (b) Li, B.; Lan, J.; Wu, D.; You, J. Angew. Chem. Int. Ed., 2015, 54, 14008. (c) Wu, Y.; Chen, Z.; Yang, Y.; Zhu, W.; Zhou, B. J. Am. Chem. Soc. 2018, 140, 42.
[S2] (a) Phipps, E. J. T.; Rovis, T. J. Am. Chem. Soc. 2019, 141, 6807. (b) Duchemin, C.; Cramer, N. Org. Chem. Front. 2019, 6, 209.
[S3] Tata, R. R.; Hampton, C. S.; Harmata, M. Adv. Synth. Catal. 2017, 359, 1232.

VI. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra

3aa- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3aa- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ba- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ba- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\xrightarrow[\text { ¢ }]{\substack{\text { ¢ }}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\ominus}{\top} \\ & \hline \end{aligned}$		$\stackrel{\text { 寺 }}{\substack{\text { ¢ }}}$	$\begin{aligned} & \stackrel{\varrho}{\infty} \\ & \stackrel{\omega}{m} \\ & \stackrel{m}{\Gamma} \end{aligned}$	 		$\begin{aligned} & \text { ®్ల్ల } \\ & \text { ip } \end{aligned}$	악우숭우

3ca－${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

3ca－${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$\stackrel{\infty}{6}$	ल	
Nべ¢	$\stackrel{\sim}{\circ}$	
1		〈1\1！

3da－${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

3da－${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$\begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{N} \end{aligned}$	\％	®
	年戸「	

	ま	¢®®
N大゚	$\stackrel{\circ}{\circ}$	
\checkmark	｜	≤ 1

3da- ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ea- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\circ}{\circ}$

3ea- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3fa- ${ }^{-1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3fa- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ga- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
し
$\stackrel{\circ}{\circ}$
$\stackrel{1}{\circ}$

3ga- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

®్న్స్
NัN N

3ha- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

先
$\stackrel{\circ}{\circ}$

8

.
保

	$\stackrel{4}{6}$										$\begin{aligned} & \stackrel{4}{0} \\ & \hline \end{aligned}$							$\stackrel{H}{\text { ¢ }}$						
11.0	10.5	10.0	9.5	9.0	8.5	8.0		. 5	7.0	6.5	6.0	5. 5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.		1.0	0.5	0.0

3ha- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\cong}{ }$
®o

3ha- ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ia－${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

3ia－${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

年导筞

Nobo
Ni๗j

$\mathbf{3 j a}-{ }^{-1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ja- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\infty}{\stackrel{\infty}{i}}$

3ka- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ka- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3la- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3la- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\&\% \% 웅
$\stackrel{5}{0}$
$\stackrel{0}{6}$
$\stackrel{0}{0}$
ㅊฐํํํ
Nicio

3ma- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Oibo eow en
NOMN

3na/3na'- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3na/3na'- ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3oa- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3oa- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3pa- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3pa- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3qa- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3qa- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\infty}{9}$ ¢ \% \%	$\stackrel{\sim}{0}$	N్ర్రొ
N人年	$\stackrel{\sim}{\circ}$	

3qa- ${ }^{-19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ra- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ra- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\otimes}{\text { ® }}$	\%	
N大゚	\%	พั¢

3sa- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3sa- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ta- ${ }^{-1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\circ
i
i
i

3ta- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{aligned} & \stackrel{\text { IN}}{N} \\ & \underset{~}{1} \end{aligned}$		 			\%

3ab- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ab- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ac- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ac- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

순
드ㄷㅜㅜ

3ad- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ad- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ad- ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ae- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ae- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	\%
Nべ	$\stackrel{\sim}{6}$

3af- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3af- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3af- ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ag- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ag- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ah- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ah- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ai- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ai- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$$
\begin{aligned}
& \underset{\substack{\mathrm{N} \\
\mathrm{O} \\
i}}{ } \\
& \text { Ñ®iN }
\end{aligned}
$$

5a- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5b- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\ddagger}{\frac{+}{i}}$

\circ
0

5b- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5c- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathbf{5 c -}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY of $\mathbf{5 c}$:

5d- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5d- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5e- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\text { Q }}{\stackrel{8}{4}}$

5e- ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5f- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5f- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
岕
$\mathbf{5 g}-{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathbf{5 g -}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5h- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5h- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5i－${ }^{1} \mathrm{H}$ NMR（ 400 MHz, DMSO－d_{6} ）

5i－${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

畣		产		枵事感	＊		高		$\stackrel{\circ}{\square}$	\％
$\stackrel{\text { T }}{ }$	$\frac{8}{5}$	$\stackrel{\square}{2}$	T \％	E\％	$\bar{\square}$	¢	\％		$\bar{\sim}$	

5j-1 H NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\mathbf{5 j}-{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathbf{5 j}{ }^{-31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathbf{5 k}-{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\underbrace{\text { U }}$

5k- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathbf{1 H}-1 \mathrm{H}$ NOESY of $\mathbf{5 k}$:

51- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5I- ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5m- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

5m- ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5n- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

No No

5n- ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathbf{5 n}-{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

7- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

8- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

8- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

9－${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

9－${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）
萨

10- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

10- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

11- ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6})

3aa'- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3aa'- ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

