Deconstructive Isomerization of Azetidinols via C-C Bond Cleavage

Enabled by N-Heterocyclic Carbene (NHC) Catalysis

Zhen Wang, Xue Chen, Yunayuan Hu,* Huiling, Li, Yunfang Yang,* Yunkui Liu, Hongwei Jin, and Bingwei Zhou*

College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. of China. E-mail: <u>hyy0907@zjut.edu.cn; yangyf@zjut.edu.cn; zhoubw@zjut.edu.cn</u>

Table of Contents

1.	General Information	S2
2.	Preparation of Substrates	S3
3.	NHC-Catalyzed Deconstructive Isomerization of Azetidinols	S10
	3.1 Optimization of reaction conditions	S10
	3.2 Experimental details and characterization of products	S11
	3.3 One-pot synthesis of oxazol-2-ones from azetidinols	S21
4.	Mechanistic studies	S23
	4.1 Radical trapping experiments	S23
	4.2 Deconstructive isomerization of 1B	S24
	4.3 Deuterium experiment	S24
	4.4 Stoichiometric experiment	S25
	4.5 Density functional theory (DFT) calculations	S27
5.	Synthetic Applications	S29
	5.1 Gram-scale synthesis	S29
	5.2 Transformation of α -amino ketone 2	S29
6.	References	S31
7.	¹ H and ¹³ C NMR Spectra	S32

1. General Information

Unless otherwise noted, all reactions were carried out in flame-dried reaction vessels with Teflon screw caps under nitrogen. Solvents were purified and dried according to standard methods prior to use. All commercially available reagents were obtained from chemical suppliers and used after proper purification if necessary. Flash column chromatography was performed on silica gel (200-300 mesh) with the indicated solvent mixtures. TLC analysis was performed on pre-coated, glass-backed silica gel plates and visualized with UV light.

The ¹H NMR and ¹³C NMR spectra were recorded on a Bruker 400 AV or 500 AV spectrometers. Chemical shifts (δ) were reported as parts per million (ppm) downfield from tetramethylsilane and the following abbreviations were used to identify the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, br = broad and all combinations thereof can be explained by their integral parts. Coupling constant (*J*) was reported in hertz unit (Hz). The high resolution mass spectra (HRMS) were recorded on an Agilent 6210 LC/TOF spectrometer.

2. Preparation of Substrates

General procedure^[1]: 3-Azetidinone (5 mmol) was dissolved in 10 mL of dried THF in 50 mL Schlenk tube under N₂. Grignard reagent (1.1 equiv) was added dropwise with stirring under ice bath. Then it was allowed to warm to room temperature and stirred overnight. After completion, the mixture was quenched with NH₄Cl (aq.). The aqueous layer was extracted with ethyl acetate (3×20 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. After removal of the solvent in vacuo, the crude mixture was purified by flash column chromatography on silica gel to give the desired azetidinols. All the azetidinols were synthesized according this general procedure. **1y** were synthesized from N-Boc-3-pyrrolidinone according this procedure. Substrates **1a**¹, **1c**¹, **1d**², **1f**¹, **1g**¹, **1h**¹, **1j**¹, **1m**³, **1q**¹, **1B**⁴ were prepared according to the general procedure and their structural

characterization were in line with previous literature.

tert-butyl 3-hydroxy-3-(p-tolyl)azetidine-1-carboxylate (1b)

¹H NMR (500 MHz, CDCl₃) δ 7.36 (d, J = 8.2 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), δ 4.19 (d, J = 9.1 Hz, 1H), 4.14 (d, J = 9.2 Hz, 1H), 4.09 (s, 1H), 2.35 (s, 3H), 1.45 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 156.5, 140.5, 137.2, 129.1, 124.5, 79.8, 70.9, 64.2, 28.3, 20.9. HRMS(ESI)

Calculated for C₁₄H₂₀O₃N⁻ ([M-H]⁻): 262.1449, found: 262.1447.

tert-butyl 3-hydroxy-3-(4-(methylthio)phenyl)azetidine-1-carboxylate (1e)

¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 4.34 (s, 1H), 4.13 (s, 4H), 2.46 (s, 3H), 1.43 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 156.4, 140.4, 137.8, 126.5, 125.1, 78.0, 70.6, 64.3, 28.3, 15.7. HRMS(ESI) Calculated for C₁₅H₂₀O₃NS⁻ ([M-H]⁻):

294.1169, found: 294.1172.

tert-butyl 3-(4-cyanophenyl)-3-hydroxyazetidine-1-carboxylate (1i)

¹H NMR (500 MHz, CDCl₃) δ 7.67–7.59 (m, 4H), 4.96 (s, 1H), 4.17 (d, J = 9.4 Hz, 2H), 4.08 (d, J = 9.4 Hz, 2H), 1.39 (s, 9H).
¹³C NMR (125 MHz, CDCl₃) δ 156.4, 149.2, 132.1, 125.3, 118.5, 111.0, 80.4, 70.1, 64.7, 28.2.

HRMS(ESI) Calculated for $C_{15}H_{17}O_3N_2^-$ ([M-H]⁻):

273.1245, found: 273.1238.

tert-butyl 3-hydroxy-3-(4-(methoxycarbonyl)phenyl)azetidine-1-carboxylate (1k)

¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 4.70 (s, 1H), δ 4.18 (d, *J* = 9.3 Hz, 1H), 4.14 (d, J = 9.2 Hz, 1H), 3.88 (s, 3H), 1.42 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 166.8, 156.5, 148.8, 129.7, 129.2, 124.5, 80.2, 70.5, 64.7, 52.1, 28.3. HRMS(ESI) Calculated for C₁₆H₂₀O₅N⁻ ([M-H]⁻): 306.1341, found: 306.1350.

tert-butyl 3-hydroxy-3-(m-tolyl)azetidine-1-carboxylate (11)

¹H NMR (500 MHz, CDCl₃) δ 7.33–7.24 (m, 3H), 7.16– 7.08 (m, 1H), δ 4.21 (d, J = 9.2 Hz, 1H), 4.15 (d, J = 9.2 Hz, 1H), 4.04 (s, 1H), 2.37 (s, 3H), 1.46 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 156.5, 143.4, 138.1, 128.4, 128.3, 125.3, 121.6, 79.9, 71.0, 64.2, 28.3, 21.4. HRMS(ESI) Calculated

for C₁₄H₂₀O₃N⁻ ([M-H]⁻): 262.1449, found: 262.1447.

tert-butyl 3-hydroxy-3-(naphthalen-2-yl)azetidine-1-carboxylate (1n)

¹H NMR (500 MHz, CDCl₃) δ 7.92 (s, 1H), 7.86–7.78 (m, 3H), 7.56 (dd, $J_1 = 8.6$, $J_2 = 1.8$ Hz, 1H), 7.52–7.45 (m, 2H), 4.36–4.22 (m, 5H), 1.48 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 156.5, 140.6, 132.9, 132.6, 128.5, 128.1, 127.5, 126.3, 126.1, 123.2, 122.8, 80.0, 71.0, 64.1, 28.3.

HRMS(ESI) Calculated for C₁₈H₂₀O₃N⁻ ([M-H]⁻): 298.1449, found: 298.1450.

tert-butyl 3-(benzo[d][1,3]dioxol-5-yl)-3-hydroxyazetidine-1-carboxylate (10)

¹H NMR (500 MHz, CDCl₃) δ 7.00–6.89 (m, 2H), 6.77 (d, J = 8.0 Hz, 1H), 5.93 (s, 2H), 4.16–4.08 (m, 5H), 1.43 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 156.5, 147.8, 146.9, 137.6, 117.9, 107.9, 105.6, 101.0, 79.9, 70.9, 64.4, 28.3. HRMS(ESI) Calculated for C₁₅H₁₈O₅N⁻ ([M-H]⁻):

292.1190, found: 292.1191.

tert-butyl 3-(benzofuran-5-yl)-3-hydroxyazetidine-1-carboxylate (1p)

¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, J = 1.7 Hz, 1H), 7.63 (d, J = 2.2 Hz, 1H), 7.47 (d, J = 8.6 Hz, 1H), 7.39 (dd, $J_1 = 8.6, J_2 = 1.9$ Hz, 1H), 6.77–6.71 (m, 1H), δ 4.26 (d, J= 9.2 Hz, 1H), 4.20 (d, J = 9.2 Hz, 1H), 4.17 (s, 1H), 1.44 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 156.6, 154.3,

145.7, 138.3, 127.4, 121.3, 117.5, 111.4, 106.7, 80.0, 71.3, 64.6, 28.4. **HRMS(ESI)** Calculated for C₁₆H₁₈O₄N⁻ ([M-H]⁻): 288.1241, found: 288.1245.

tert-butyl 3-hydroxy-3-(3-phenylpropyl)azetidine-1-carboxylate (1r)

¹H NMR (500 MHz, CDCl₃) δ 7.29 (t, J = 7.6 Hz, 2H), 7.23–7.18 (m, 3H), 3.89–3.67 (m, 4H), 3.54 (s, 1H), 2.66 (dd, J_1 = 6.6 Hz, J_2 = 3.6 Hz, 2H), 1.75 (d, J = 3.6 Hz, 4H), 1.44 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ

156.5, 141.9, 128.3, 128.3, 125.8, 79.6, 70.1, 61.9, 38.3, 35.7, 28.3, 25.0. **HRMS(ESI)** Calculated for C₁₇H₂₄O₃N⁻ ([M-H]⁻): 290.1762, found: 290.1764.

tert-butyl 3-hydroxy-3-(4-(naphthalen-2-yloxy)butyl)azetidine-1-carboxylate (1s)

¹H NMR (500 MHz, CDCl₃) δ 7.81–7.70 (m, 3H), 7.50–7.40 (m, 1H), 7.38–7.31 (m, 1H), 7.21–7.10 (m, 2H), 4.11–4.03 (m, 2H), 3.92– 3.79 (m, 4H), 3.73–3.47 (m, 1H), 1.98–1.85 (m, 2H), 1.85–1.77 (m, 2H), 1.67–1.54 (m, 2H), 1.46 (s, 9H). ¹³C NMR (125 MHz,

CDCl₃) δ 156.8, 156.5, 134.5, 129.3, 129.2, 128.8, 127.5, 126.6, 126.2, 126.2, 123.4, 123.4, 118.9, 118.8, 106.6, 79.7, 70.2, 67.6, 62.0, 38.5, 29.2, 28.3, 20.1. **HRMS(ESI)** Calculated for C₂₂H₂₉O₄NNa⁺ ([M+Na]⁺): 394.1994, found: 394.1984.

tert-butyl 3-hydroxy-2-isopropyl-3-(naphthalen-2-yl)azetidine-1-carboxylate (1t)

¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, J = 1.4 Hz, 1H),

7.91–7.81 (m, 3H), 7.55 (dd, $J_1 = 8.6$, $J_2 = 1.9$ Hz, 1H), 7.53–7.47 (m, 2H), 4.41 (d, J = 9.9 Hz, 1H), 4.17–4.04 (m, 2H), 2.98 (s, 1H), 2.47–2.31 (m, 1H), 1.49 (s, 9H), 1.11 (d, J = 6.8 Hz, 3H), 1.01 (d, J = 6.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 157.5, 142.0, 133.0, 132.6, 128.8, 128.2, 127.5, 126.4, 126.2, 122.9, 122.7, 79.9, 79.1, 73.4, 63.6, 29.4, 28.3, 19.7, 19.5. HRMS(ESI) Calculated for C₂₁H₂₆O₃N⁻ ([M-H]⁻): 340.1918, found: 340.1921.

tert-butyl 3-hydroxy-2-methyl-3-(naphthalen-2-yl)azetidine-1-carboxylate (1u)

¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, J = 1.3 Hz, 1H), 7.86–7.79 (m, 3H), 7.56–7.45 (m, 3H), 4.56 (s, 1H), 4.33 (d, J = 9.4 Hz, 1H), 4.17–4.04 (m, 1H), 3.63 (s, 1H), 1.53 (d, J = 6.4 Hz, 3H), 1.48 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 156.4, 141.0, 132.9, 132.6, 128.5, 128.1, 127.5,

126.3, 126.1, 123.3, 122.9, 79.7, 72.6, 68.7, 61.8, 28.4, 14.2. **HRMS(ESI)** Calculated for C₁₉H₂₂O₃N⁻ ([M-H]⁻): 312.1605, found: 312.1608.

tert-butyl 3-hydroxy-3-(naphthalen-2-yl)-2-phenylazetidine-1-carboxylate (1v)

¹H NMR (500 MHz, CDCl₃) δ 8.02 (s, 1H), 7.95 (d, J = 8.6 Hz, 1H), 7.92–7.85 (m, 2H), 7.72–7.65 (m, 1H), 7.58–7.49 (m, 2H), 7.48–7.42 (m, 2H), 7.42–7.33 (m, 3H), 5.57 (s, 1H), 4.58 (d, J = 9.2 Hz, 1H), 4.24 (d, J = 9.6 Hz, 1H), 2.25 (s, 1H), 1.43 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 156.3, 140.5, 135.0, 133.0, 132.8, 128.8,

128.8, 128.4, 128.3, 127.6, 127.0, 126.5, 126.3, 123.5, 122.8, 80.2, 73.2, 28.3. **HRMS(ESI)** Calculated for $C_{24}H_{24}O_3N^-$ ([M-H]⁻): 374.1762, found: 374.1765.

(3-hydroxy-3-(naphthalen-2-yl)azetidin-1-yl)(phenyl)methanone (1w)

¹H NMR (500 MHz, CDCl₃) δ 7.92 (s, 1H), 7.84– 7.74 (m, 3H), 7.61–7.51 (m, 3H), 7.51–7.45 (m, 2H), 7.45–7.40 (m, 1H), 7.37–7.28 (m, 2H), 5.47 (s, 1H), 4.74–4.44 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 170.5, 140.2, 132.8, 132.6, 132.6, 131.1, 128.6, 128.3, 128.1, 127.8, 127.5, 126.3, 126.1, 123.4, 122.7, 71.3, 68.3, 63.7. HRMS(ESI) Calculated for C₂₀H₁₆O₂N⁻ ([M-H]⁻): 302.1187, found: 302.1188.

(3-ethyl-3-hydroxyazetidin-1-yl)(phenyl)methanone (1x)

¹H NMR (500 MHz, CDCl₃) δ 7.54–7.49 (m, 2H), 7.42–7.36 (m, 1H), 7.34–7.29 (m, 2H), 4.83 (s, 1H), 4.19–3.96 (m, 4H), 1.70 (q, J = 7.4 Hz, 2H), 0.89 (t, J = 7.4 Hz, 3H).
¹³C NMR (125 MHz, CDCl₃) δ 170.2, 132.9, 130.9, 128.2,

127.7, 70.7, 65.5, 61.2, 31.4, 7.4. **HRMS(ESI)** Calculated for C₁₂H₁₄NO₂⁻ ([M-H]⁻): 204.2495, found: 204.2498.

benzyl 3-hydroxy-3-(naphthalen-2-yl)azetidine-1-carboxylate (1y)

¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, J = 1.3 Hz, 1H), 7.89–7.79 (m, 3H), 7.59–7.54 (m, 1H), 7.54–7.49 (m, 2H), 7.39–7.30 (m, 5H), 5.12 (s, 2H), 4.42 (d, J = 9.3 Hz, 2H), 4.33 (d, J = 9.3 Hz, 2H), 4.02 (s, 1H). ¹³C NMR (125 MHz,

CDCl₃) δ 156.6, 140.1, 136.2, 132.8, 132.6, 128.7, 128.4, 128.1, 128.0, 127.9, 127.5, 126.4, 126.2, 123.3, 122.7, 71.5, 67.0, 64.1. **HRMS(ESI)** Calculated for C₂₁H₁₈NO₃⁻ ([M-H]⁻): 332.1287, found: 332.1290.

benzyl 3-hydroxy-3-phenylazetidine-1-carboxylate (1z)

¹H NMR (500 MHz, CDCl₃) δ 7.48–7.43 (m, 2H), 7.37 (dd, J_1 = 10.4, J_2 = 4.8 Hz, 2H), 7.35–7.25 (m, 6H), 5.08 (s, 2H), 4.30 (d, J = 9.3 Hz, 2H), 4.22 (d, J = 9.3 Hz, 2H), 3.42 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 156.6, 143.0 (s), 136.4, 128.7,

128.5, 128.1,128.0, 124.6, 71.7, 67.0, 64.4. **HRMS(ESI)** Calculated for C₁₇H₁₆NO₃⁻ ([M-H]⁻): 282.1135, found: 282.1138.

benzyl 3-(4-chlorophenyl)-3-hydroxyazetidine-1-carboxylate (1A)

¹H NMR (500 MHz, CDCl₃) δ 7.44–7.37 (m, 2H), 7.37–7.25 (m, 7H), 5.08 (s, 2H), 4.28–4.15 (m, 4H), 3.66 (s, 1H).
¹³C NMR (125 MHz, CDCl₃) δ 156.6, 141.6, 136.2, 133.8, 128.7, 128.5, 128.2, 128.0, 126.0, 71.1, 67.1, 64.7.

HRMS(ESI) Calculated for C₁₇H₁₅ClNO₃⁻ ([M-H]⁻): 316.0745, found: 316.0748.

3 NHC-Catalyzed Deconstructive Isomerization of Azetidinols

3.1 Optimization of reaction conditions

Survey of the reaction parameters ^a									
HO NBoc		oc Catal. Base, Solve	Catal. Base, Solvent		Boc				
		Temp., Tin	ne						
~	~ 1n			2n					
Entry	Catal./equiv.	Base/equiv.	Temp./ °C	Solvent/mL	Yield/%				
1	NHC 1 (0.1)	NaOt-Bu (0.15)	130	Toluene (1)	96				
2	NHC 2 (0.1)	NaOt-Bu (0.15)	130	Toluene (1)	95				
3	NHC 3 (0.1)	NaOt-Bu (0.15)	130	Toluene (1)	91				
4	NHC 4 (0.1)	NaOt-Bu (0.15)	130	Toluene (1)	15				
5	NHC 5 (0.1)	NaOt-Bu (0.15)	130	Toluene (1)	45				
6	NHC 6 (0.1)	NaOt-Bu (0.15)	130	Toluene (1)	34				
7	NHC 7 (0.1)	NaOt-Bu (0.15)	130	Toluene (1)	0				
8	NHC 8 (0.1)	NaOt-Bu (0.15)	130	Toluene (1)	trace				
9	NHC 1 (0.05)	NaOt-Bu (0.075)	130	Toluene (1)	54				
10	_b	NaOt-Bu (0.15)	130	Toluene (1)	0				
11	_b	NaOt-Bu (1)	130	Toluene (1)	0				
12	NHC 1 (0.1)	_c	130	Toluene (1)	0				
13	DABCO (0.1)	_c	130	Toluene (1)	0				
14	PPh ₃ (0.1)	_c	130	Toluene (1)	0				
15	NHC 1 (0.1)	Na ₂ CO ₃ (0.15)	130	Toluene (1)	73				
16	NHC 1 (0.1)	K ₃ PO ₄ (0.15)	130	Toluene (1)	95				
17	NHC 1 (0.1)	KOt-Bu (0.15)	130	Toluene (1)	87				
18	NHC 1 (0.1)	NaOEt (0.15)	130	Toluene (1)	94				
19	NHC 1 (0.1)	NaH (0.15)	130	Toluene (1)	90				
20	NHC 1 (0.1)	LiOt-Bu (0.15)	130	Toluene (1)	68				
21	NHC 1 (0.1)	DABCO (0.15)	130	Toluene (1)	0				

22	NHC 1 (0.1)	DBU (0.15)	130	Toluene (1)	trace
23	NHC 1 (0.1)	Et ₃ N (0.15)	130	Toluene (1)	0
24	NHC 1 (0.1)	NaOt-Bu (0.15)	110	Toluene (1)	76
25	NHC 1 (0.1)	NaOt-Bu (0.15)	130	Xylene (1)	81
26	NHC 1 (0.1)	NaOt-Bu (0.15)	130	CH ₃ CN (1)	78
27	NHC 1 (0.1)	NaOt-Bu (0.15)	130	Dioxane (1)	41
28	NHC 1 (0.1)	NaOt-Bu (0.15)	130	THF (1)	5
29	NHC 1 (0.1)	NaOt-Bu (0.15)	130	DMF (1)	46
30	NHC 1 (0.1)	NaOt-Bu (0.15)	130	Toluene (1)	88 ^d

^aReaction conditions unless otherwise noted: **1n** (0.4 mmol), Catal. (0.04 mmol), Solvent (1 mL), Base (0.06 mmol), for 12 h under N₂ atmosphere. ^bNo catalyst. ^cNo base. ^dfor 8 h.

3.2 Experimental details and characterization of products

Typical procedure:

To a 25 ml flame-dried Schlenk tube containing a stirring bar was added IMes^{Me}·HCl (NHC 1, 0.04 mmol, 14.7 mg.), NaOt-Bu (0.06 mmol, 6.0 mg), *tert*-butyl 3-hydroxy-3-(naphthalen-2-yl)azetidine-1-carboxylate **1n** (0.4 mmol, 120 mg), toluene (1.0 mL) sequentially under nitrogen. The tube was sealed and stirred at 130 °C for 12 h. After completion, the reaction mixture was concentrated and purified by silica gel column

chromatography to provide the product 2n in 96% yield.

Modified procedure for the synthesis of 2m and 2s

1m or 1s

toluene (2 mL), 150 °C, 24 h

tert-butyl methyl(2-oxo-2-phenylethyl)carbamate (2a)⁵

Purified by flash column chromatography (PE/EA = 10:1 to 5:1) as yellow oil (88 mg, 88% yield). NMR data show the presence of rotamers.

2m or 2s

¹H NMR (500 MHz, CDCl₃) δ 8.01–7.90 (m, 2H), 7.65– 7.54 (m, 1H), 7.52–7.41 (m, 2H), 4.64 (d, 2H), 2.96 (d, 3H), 1.44 (d, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 195.1, 194.7, 156.1, 155.6, 135.2, 135.1, 133.4, 133.4, 128.7, 128.6, 127.8, 127.6, 79.9, 79.9, 55.6, 55.0, 35.6, 35.5, 28.3, 28.1.

tert-butyl methyl(2-oxo-2-(p-tolyl)ethyl)carbamate (2b)

Purified by flash column chromatography (PE/EA = 10:1 to 5:1) as white solid (90 mg, 86% yield). mp: 71-73 °C. NMR data show the presence of rotamers.

¹H NMR (500 MHz, CDCl₃) δ 7.88–7.80 (m, 2H), 7.32–

7.23 (m, 2H), 4.61 (d, 2H), 2.95 (d, 3H), 2.41 (d, 3H), 1.44 (d, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 194.7, 194.3, 156.2, 155.7, 144.3, 144.2, 132.7, 129.4, 129.3, 127.9, 127.8, 79.9, 79.8, 55.5, 54.9, 35.6, 35.5, 28.3, 28.2, 21.6. HRMS(ESI) Calculated for

C₁₅H₂₁O₃NNa⁺ ([M+Na]⁺): 286.1414, found: 286.1411.

tert-butyl (2-(4-methoxyphenyl)-2-oxoethyl)(methyl)carbamate (2c)

Purified by flash column chromatography (PE/EA = 10:1 to 4:1) as colorless oil (104 mg, 93% yield). NMR data show the presence of rotamers.

¹H NMR (500 MHz, CDCl₃) δ 7.96–7.90 (m, 2H),

6.98–6.90 (m, 2H), 4.59 (d, 2H), 3.87 (d, 3H), 2.95 (d, 3H), 1.44 (d, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 193.5, 193.1, 163.6, 163.6, 156.1, 155.7, 130.0, 129.8, 128.2, 113.8, 113.7, 79.8, 79.7, 55.4, 55.3, 55.1, 54.6, 35.6, 35.5, 28.2, 28.1. HRMS(ESI) Calculated for C₁₅H₂₁O₄NNa⁺ ([M+Na]⁺): 302.1363, found: 302.1361.

tert-butyl (2-(4-(dimethylamino)phenyl)-2-oxoethyl)(methyl)carbamate (2d)

Purified by flash column chromatography (PE/EA = 10:1 to 4:1) as white solid (110 mg, 94% yield). mp: 74-76 °C. NMR data show the presence of rotamers.

¹H NMR (500 MHz, CDCl₃) δ 7.88–7.82 (m, 2H), 6.69– 6.60 (m, 2H), 4.56 (d, 2H), 3.05 (d, 6H), 2.94 (d, 3H), 1.44 (d, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 192.7, 192.3, 156.2, 155.9, 153.4, 129.9, 129.7, 123.1, 123.0, 110.6, 110.5, 79.5, 79.5, 54.7, 54.2, 39.8, 35.5, 35.4, 28.3, 28.2. HRMS(ESI) Calculated for C₁₆H₂₄O₃N₂Na⁺ ([M+Na]⁺): 315.1679, found: 315.1676.

tert-butyl methyl(2-(4-(methylthio)phenyl)-2-oxoethyl)carbamate (2e)

Purified by flash column chromatography (PE/EA = 10:1 to 5:1) as yellow solid (112 mg, 93% yield). mp: 48-50 °C. NMR data show the presence of rotamers.

¹H NMR (500 MHz, CDCl₃) δ 7.89 – 7.78 (m, 2H), 7.32

- 7.20 (m, 2H), 4.57 (d, 2H), 2.93 (d, 3H), 2.49 (d, 3H), 1.41 (d, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 194.0, 193.7, 156.1, 155.6, 146.4, 146.3, 131.4, 128.2, 128.0, 125.0,

124.9, 79.9, 79.8, 55.3, 54.7, 35.6, 35.5, 28.3, 28.1, 14.6. **HRMS(ESI)** Calculated for C₁₅H₂₁O₃NNaS⁺ ([M+Na]⁺): 318.1134, found: 318.1132.

tert-butyl (2-(4-fluorophenyl)-2-oxoethyl)(methyl)carbamate (2f)

Purified by flash column chromatography (PE/EA = 10:1 to 5:1) as white solid (41 mg, 38% yield). mp: 72-74 °C. NMR data show the presence of rotamers.

¹H NMR (500 MHz, CDCl₃) δ 8.07–7.91 (m, 2H), 7.22– 7.07 (m, 2H), 4.60 (d, 2H), 2.96 (d, 3H), 1.44 (d, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 193.7, 193.3, 166.9, 164.9, 156.2, 155.6, 131.7, 130.6, 130.6, 130.4, 130.3, 116.0, 115.9, 115.7, 80.1, 80.1, 55.5, 54.9, 35.7, 35.6, 28.3, 28.2. HRMS(ESI) Calculated for C₁₄H₁₈O₃NFNa⁺ ([M+Na]⁺): 290.1163, found: 290.1163.

tert-butyl (2-(4-chlorophenyl)-2-oxoethyl)(methyl)carbamate (2g)⁶

Purified by flash column chromatography (PE/EA = 10:1 to 5:1) as colorless oil (84 mg, 74% yield). NMR data show the presence of rotamers.

29 ¹H NMR (500 MHz, CDCl₃) δ 7.89–7.83 (m, 2H), 7.47– 7.37 (m, 2H), 4.57 (d, 2H), 2.93 (d, 3H), 1.41 (d, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 194.0, 193.6, 156.1, 155.5, 139.9, 139.8, 133.4, 129.2, 129.0, 128.9, 80.0, 80.0, 55.5, 54.9, 35.6, 35.5, 28.2, 28.1.

tert-butyl (2-(4-bromophenyl)-2-oxoethyl)(methyl)carbamate (2h)⁶

Purified by flash column chromatography (PE/EA = 10:1 to 5:1) as yellow oil (108 mg, 83% yield). NMR data show the presence of rotamers.

¹H NMR (500 MHz, CDCl₃) δ 7.87–7.74 (m, 2H), 7.68–

7.56 (m, 2H), 4.59 (d, 2H), 2.95 (d, 3H), 1.43 (d, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 194.3, 193.9, 156.2, 155.6, 133.9, 132.1, 132.0, 129.4, 129.2, 128.7, 128.6, 126.4, 80.2, 80.1, 55.6, 55.0, 35.7, 35.6, 28.3, 28.3, 28.2.

tert-butyl (2-(4-cyanophenyl)-2-oxoethyl)(methyl)carbamate (2i)

Purified by flash column chromatography (PE/EA = 10:1 to 4:1) as white solid (34 mg, 31% yield). mp: 114-116 °C. NMR data show the presence of rotamers.

¹H NMR (500 MHz, CDCl₃) δ 8.12–7.99 (m, 2H), 7.92–

7.70 (m, 2H), 4.64 (d, 2H), 2.97 (d, 3H), 1.43 (d, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 194.3, 193.8, 156.1, 155.4, 138.1, 132.6, 132.5, 132.2, 132.1), 130.9, 130.3, 128.3, 128.1, 127.9, 125.3, 117.7, 117.6, 116.7, 116.6, 81.6, 80.4, 80.3, 55.9, 55.3, 35.7, 35.6, 28.2, 28.2, 28.1. HRMS(ESI) Calculated for C₁₅H₁₇O₃N₂⁻ ([M-H]⁻): 273.1245, found: 273.1245.

tert-butyl methyl(2-oxo-2-(4-(trifluoromethyl)phenyl)ethyl)carbamate (2j)

Purified by flash column chromatography (PE/EA = 10:1 to 5:1) as yellow solid (33 mg, 26% yield). mp: 72-74 °C. NMR data show the presence of rotamers. **¹H NMR (500 MHz, CDCl₃)** δ 9.12–9.00 (m, 2H), 8.81–8.68 (m, 2H), 5.64 (d, 2H), 3.97 (d, 3H), 2.44 (d,

10H). ¹³C NMR (125 MHz, CDCl₃) δ 194.6, 194.1, 156.2, 155.5, 137.9, 128.3, 128.1, 125.9, 125.8, 125.7, 80.3, 80.3, 55.9, 55.3, 35.7, 35.6, 28.3, 28.2. HRMS(ESI) Calculated for C₁₅H₁₇O₃NF₃⁻ ([M-H]⁻): 316.1166, found: 316.1166.

methyl 4-(N-(*tert*-butoxycarbonyl)-N-methylglycyl)benzoate (2k)

Purified by flash column chromatography (PE/EA = 10:1 to 5:1) as yellow oil (25 mg, 20% yield). NMR data show the presence of rotamers.

¹H NMR (500 MHz, CDCl₃) δ 8.20–8.10 (m, 2H), 8.06–7.94 (m, 2H), 4.64 (d, 2H), 3.95 (d, 3H), 2.97 (d,

3H), 1.43 (d, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 194.9, 194.6, 192.3, 166.1, 156.2, 155.6, 138.4, 134.2, 130.0, 129.9, 129.5, 128.4, 127.8, 127.7, 127.4, 124.6, 81.3, 80.3, 56.0, 55.4, 52.5, 35.7, 35.6, 28.4, 28.3, 28.2. HRMS(ESI) Calculated for C₁₆H₂₁O₅NNa⁺ ([M+Na]⁺): 330.1312, found: 330.1311.

tert-butyl methyl(2-oxo-2-(m-tolyl)ethyl)carbamate (2l)

Purified by flash column chromatography (PE/EA = 10:1 to 5:1) as colorless oil (88 mg, 84% yield). NMR data show the presence of rotamers.

¹H NMR (500 MHz, CDCl₃) δ 7.78–7.70 (m, 2H), 7.44– 7.31 (m, 2H), 4.63 (d, 2H), 2.95 (d, 3H), 2.41 (d, 3H), 1.44

(d, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 199.3, 198.8, 156.2, 155.7, 138.5, 138.2, 135.9, 135.7, 132.0, 132.0, 131.6, 128.2, 127.7, 125.7, 125.6, 79.9, 57.7, 57.0, 35.7, 35.7, 28.3, 28.2, 21.1, 20.9. HRMS(ESI) Calculated for C₁₅H₂₁ONNa⁺ ([M+Na]⁺): 286.1414, found: 286.1412.

tert-butyl methyl(2-oxo-2-(o-tolyl)ethyl)carbamate (2m)

Purified by flash column chromatography (PE/EA = 10:1 to 5:1) as colorless oil (45 mg, 43% yield). NMR data show the presence of rotamers.

¹H NMR (500 MHz, CDCl₃) δ 7.69–7.54 (m, 1H), 7.44–7.34 (m, 1H), 7.30–7.23 (m, 2H), 4.49 (d, 2H), 2.96 (d, 3H), 2.51

(d, 3H), 1.45 (d, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 199.3, 198.8, 156.2, 155.7, 138.5, 138.2, 135.9, 135.7, 132.0, 132.0, 131.6, 128.2, 127.7, 125.7, 125.6, 79.9, 57.7, 57.0, 35.7, 35.7, 28.3, 28.2, 21.1, 20.9. HRMS(ESI) Calculated for C₁₅H₂₁ONNa⁺ ([M+Na]⁺): 286.1414, found: 286.1411.

tert-butyl methyl(2-(naphthalen-2-yl)-2-oxoethyl)carbamate (2n)

Purified by flash column chromatography (PE/EA =

10:1 to 5:1) as off-white solid (115 mg, 96% yield). mp: 71-73 °C. NMR data show the presence of rotamers.

¹**H** NMR (500 MHz, CDCl₃) δ 8.47 (d, 1H), 8.05-7.85 (m, 4H), 7.66-7.54 (m, 2H), 4.78 (d, 2H), 3.01 (d, 3H), 1.46 (d, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 195.2, 194.7, 156.2, 155.7, 135.7, 132.5, 132.4, 129.6, 129.5, 129.4, 129.2, 128.7, 128.6, 128.6, 128.5, 127.8, 127.8, 126.9, 126.8, 123.5, 123.4, 80.0, 80.0, 55.7, 55.1, 35.7, 35.5, 28.3, 28.2. **HRMS(ESI)** Calculated for C₁₈H₂₁O₃NNa⁺ ([M+Na]⁺): 322.1414, found: 322.1411.

tert-butyl (2-(benzo[d][1,3]dioxol-5-yl)-2-oxoethyl)(methyl)carbamate (20)

Purified by flash column chromatography (PE/EA = 10:1 to 4:1) as colorless oil (96 mg, 82% yield). NMR data show the presence of rotamers.

¹H NMR (500 MHz, CDCl₃) δ 7.58–7.49 (m, 1H), 7.44–

7.39 (m, 1H), 6.89–6.82 (m, 1H), 6.05 (d, 2H), 4.56 (d, 2H), 2.94 (d, 3H), 1.44 (d, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 193.2, 192.8, 156.2, 155.7, 152.1, 152.0, 148.3, 148.2, 123.0, 124.1, 123.8, 108.0, 108.0, 107.7, 107.6, 101.9, 101.9, 78.0, 79.9, 55.4, 54.8, 35.7, 35.6, 28.4, 28.2. HRMS(ESI) Calculated for C₁₅H₁₉O₅NNa⁺ ([M+Na]⁺): 316.1155, found: 316.1153.

tert-butyl (2-(benzofuran-5-yl)-2-oxoethyl)(methyl)carbamate (2p)

Purified by flash column chromatography (PE/EA = 10:1 to 5:1) as white solid (50 mg, 43% yield). mp: 80-82 °C. NMR data show the presence of rotamers.

¹**H NMR (500 MHz, CDCl₃)** δ 8.24 (d, *J* = 9.4 Hz, 1H), 7.97–7.91 (m, 1H), 7.75–7.65 (m, 1H), 7.59–7.51 (m, 1H),

6.90–6.79 (m, 1H), 4.69 (d, 2H), 2.97 (d, 3H), 1.44 (d, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 194.6, 194.1, 157.5, 156.2, 155.7, 146.5, 146.4, 130.7, 127.60 (s), 127.5, 124.5, 124.3, 122.1, 121.9, 111.7, 111.6, 107.2, 107.2, 79.9, 79.9, 55.6, 55.0, 35.7, 35.5,

28.3, 28.2. **HRMS(ESI)** Calculated for C₁₆H₁₉O₄NNa⁺ ([M+Na]⁺): 312.1206, found: 312.1205.

tert-butyl methyl(2-oxo-2-(thiophen-2-yl)ethyl)carbamate (2q)

Purified by flash column chromatography (PE/EA = 10:1 to 5:1) as yellow oil (75 mg, 73% yield). NMR data show the presence of rotamers.

¹H NMR (500 MHz, CDCl₃) δ 7.82–7.73 (m, 1H), 7.73–7.62 (m, 1H), 7.20–7.09 (m, 1H), 4.55 (d, 2H), 2.98 (d, 3H), 1.43 (d, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 188.2, 188.0, 156.1, 155.5, 141.5, 141.3, 133.7, 131.9, 131.6, 128.1, 80.1, 80.0, 55.8, 55.1, 35.7, 35.6, 28.3, 28.1. HRMS(ESI) Calculated for C₁₂H₁₇O₃NNaS⁺ ([M+Na]⁺): 278.0821, found: 278.0820.

tert-butyl methyl(2-oxo-5-phenylpentyl)carbamate (2r)

Purified by flash column chromatography (PE/EA = 10:1 to 5:1) as yellow oil (47 mg, 41% yield). NMR data show the presence of rotamers.

¹H NMR (500 MHz, CDCl₃) δ 7.32–7.26 (m, 2H),

7.22–7.14 (m, 3H), 3.92 (d, 2H), 2.87 (d, 3H), 2.68–2.58 (m, 2H), 2.44–2.33 (m, 2H), 1.98–1.90 (m, 2H), 1.43 (d, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 206.4, 206.3, 156.1, 155.4, 141.4, 141.2, 128.4, 128.4, 128.3, 126.0, 125.9, 80.0, 80.0, 62.2, 58.6, 57.9, 38.7, 38.4, 35.7, 35.0, 34.2, 32.0, 28.3, 28.2, 24.8, 24.8. HRMS(ESI) Calculated for $C_{17}H_{25}O_3NNa^+$ ([M+Na]⁺): 314.1727, found: 314.1725.

tert-butyl methyl(6-(naphthalen-2-yloxy)-2-oxohexyl)carbamate (2s)

Purified by flash column chromatography (PE/EA = 10:1 to 5:1) as yellow oil (90 mg, 61% yield). NMR data show the presence of rotamers.

¹**H** NMR (500 MHz, CDCl₃) δ 7.84–7.63 (m, 3H), 7.47–7.38 (m, 1H), 7.37–7.27 (m, 1H), 7.19–7.06 (m, 2H), 4.05 (d, 2H), 3.95 (d, 2H), 2.88 (d, 3H), 2.55–2.42 (m, 2H), 1.83 (d, 4H), 1.43 (d, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 206.3, 206.2, 156.8, 156.8, 156.0, 155.3, 134.5, 129.3, 129.2, 128.8, 127.5, 126.6, 126.3, 126.2, 123.5, 123.4, 118.8, 118.8, 106.5, 80.0, 80.0, 67.4, 67.3, 58.5, 57.8, 39.0, 38.8, 35.7, 28.6, 28.6, 28.3, 28.2, 20.2, 20.0. HRMS(ESI) Calculated for C₂₂H₂₉O₄NNa⁺ ([M+Na]⁺): 394.1989, found: 394.1987.

tert-butyl methyl(3-methyl-1-(naphthalen-2-yl)-1-oxobutan-2-yl)carbamate (2t)

Purified by flash column chromatography (PE/EA = 15:1 to 6:1) as yellow oil (50 mg, 88% yield). NMR data show the presence of rotamers.

¹H NMR (400 MHz, CDCl₃) δ 8.81 (s, 1H), 8.61 (s, 1H), 8.18 – 8.11 (m, 1H), 8.10 – 8.05 (m, 1H), 8.03 – 7.93 (m,

1H), 7.92 - 7.78 (m, 2H), 7.64 - 7.44 (m, 2H), 5.49 (d, 1H), 5.24 (d, 1H), 2.68 (d, 3H), 2.57 - 2.42 (m, 1H), 1.53 (d, 9H), 1.05 - 0.91 (m, 6H). ¹³**C NMR (100 MHz, CDCl₃)** δ 197.9, 197.2, 155.9, 155.0, 135.7, 133.6, 133.1, 132.6, 132.,4, 130.9, 130.1, 129.8, 129.3, 128.6, 128.5, 128.4, 128.2, 127.8, 127.5, 126.8, 126.6, 124.1, 80.6, 80.1, 63.8, 62.7, 29.2, 28.9, 28.5, 28.2, 26.1, 25.7, 20.0, 19.9, 18.5, 18.1. **HRMS(ESI)** Calculated for C₂₁H₂₇O₃NNa⁺ ([M+Na]⁺): 364.1883, found: 364.1880.

tert-butyl methyl(1-(naphthalen-2-yl)-1-oxopropan-2-yl)carbamate (2u)

Purified by flash column chromatography (PE/EA = 15:1 to 6:1) as colorless oil (50 mg, 40% yield). NMR data show the presence of rotamers.

¹H NMR (500 MHz, CDCl₃) δ 8.61 (s, 0.66H), 8.45 (s,

0.34H), 8.13–7.82 (m, 4H), 7.65–7.47 (m, 2H), 5.97–5.81 (m, 0.66H), 5.46–5.33 (m, 0.32H), 2.73 (d, 3H), 1.46 (s, 9H), 1.42 (d, 3H). ¹³**C NMR (125 MHz, CDCl₃)** δ 199.7, 198.8, 155.5, 154.6, 135.6, 132.9, 132.6, 130.2, 129.7, 129.6, 129.4, 128.4, 128.3,

127.7, 127.6, 126.8, 126.6, 124.1, 80.6, 80.2, 56.8, 54.6, 30.5, 29.4, 28.3, 13.8, 13.3. **HRMS(ESI)** Calculated for C₁₉H₂₃O₃NNa⁺ ([M+Na]⁺): 336.1570, found: 336.1568.

tert-butyl benzyl(2-(naphthalen-2-yl)-2-oxoethyl)carbamate (2v)

Purified by flash column chromatography (PE/EA = 15:1 to 6:1) as yellow oil (50 mg, 87% yield). NMR data show the presence of rotamers.

¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, 1H), 8.00–7.93

(m, 1H), 7.93–7.77 (m, 3H), 7.65–7.47 (m, 2H), 7.36–7.23 (m, 5H), 4.76 (s, 1H), 4.66 (s, 1H), 4.60 (d, 2H), 1.47 (d, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 195.0, 194.6, 156.0, 155.9, 137.8, 137.7, 135.6, 132.4, 132.4, 132.3, 129.6, 129.5, 129.4, 129.2, 128.6, 128.5, 128.5, 128.1, 127.8, 127.7, 127.5, 127.4, 127.3, 126.9, 126.8, 123.5, 123.4, 80.6, 80.3, 52.4, 52.1, 51.3, 51.0, 28.3, 28.2. HRMS(ESI) Calculated for C₂₄H₂₅O₃NNa⁺ ([M+Na]⁺): 398.1727, found: 398.1726.

N-methyl-N-(2-(naphthalen-2-yl)-2-oxoethyl)benzamide (2w)

Purified by flash column chromatography (DCM/EA = 10:1 to 4:1) as white solid (107 mg, 88% yield). mp: 136-138 °C. NMR data show the presence of rotamers.

¹H NMR (500 MHz, CDCl₃) δ 8.37 (d, 1H), 8.09–7.90 (m, 1H), 7.90–7.77 (m, 3H), 7.66–7.47 (m, 3H), 7.46–7.35 (m, 3H), 7.29 (s, 1H), 4.96 (d, 2H), 3.12 (d, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 193.9, 193.8, 172.4 171.9, 135.9, 135.6, 132.3, 132.2, 132.1, 131.7, 129.6, 129.6, 129.4, 129.3, 128.8, 128.6, 128.6, 128.5, 128.4, 128.3, 127.6, 127.0, 126.9, 126.8, 126.4, 123.3, 123.0, 57.8, 53.8, 38.7, 34.6. HRMS(ESI) Calculated for C₂₀H₁₇O₂NNa⁺ ([M+Na]⁺): 326.1152, found: 326.1149.

N-methyl-N-(2-oxobutyl)benzamide (2x)

Purified by flash column chromatography (DCM/EA = 10:1

to 4:1) as colorless oil (30 mg, 37% yield). NMR data show the presence of rotamers. ¹H NMR (500 MHz, CDCl₃) δ 7.58–7.28 (m, 5H), 4.19 (d, 2H), 3.04 (d, 3H), 2.39 (q, J = 7.3 Hz, 2H), 1.08 (t, J = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ δ 205.7, 171.9, 135.6, 129.7, 128.5, 128.4, 127.1, 126.4, 56.4, 38.9, 33.3, 29.7, 7.4. HRMS(ESI) Calculated for C₁₂H₁₅O₂NNa⁺ ([M+Na]⁺): 228.0994, found: 228.0992.

3.3 One-pot synthesis of oxazol-2-ones from azetindinols

General procedure:

One-pot procedure for the synthesis of **3**: To a 25 ml flame-dried Schlenk tube containing a stirring bar was added IMes^{Me.}HCl (0.08 mmol, 29.4 mg.), NaOt-Bu (0.6 mmol, 58.8 mg), *tert*-butyl 3-hydroxy-3-(naphthalen-2-yl)azetidine-1-carboxylate **1n** (0.4 mmol, 120 mg), toluene (2.0 mL) sequentially under nitrogen. The tube was sealed and stirred at 150 °C for 24 h. After completion, the reaction mixture was concentrated and purified by silica gel column chromatography to provide the product **3a** in 63% yield.

3-methyl-5-(naphthalen-2-yl)oxazol-2(3H)-one (3a)

Purified by flash column chromatography (DCM/EA = 20:1) as off-white solid (57 mg, 63% yield). mp: 181-183 °C. Under modified reaction conditions: **NHC 1** (10 mol%), NaO'Bu (15 mol%), Toluene (2 ml), 130 °C, 12 h, **3a** was isolated in 72% yield.

¹**H NMR (500 MHz, CDCl₃)** δ 7.96 (s, 1H), 7.83 – 7.77 (m, 3H), 7.51 – 7.44 (m, 3H), 6.80 (s, 1H), 3.31 (s, 3H). ¹³**C NMR (125 MHz, CDCl₃)** δ 155.2, 139.1, 133.3, 132.8, 128.6, 128.1, 127.7, 126.8, 126.4, 124.5, 121.8, 120.4, 111.0, 30.8. **HRMS(ESI)** Calculated for C₁₄H₁₁O₂NNa⁺ ([M+Na]⁺): 248.0682, found: 248.0683.

3-methyl-5-phenyloxazol-2(3H)-one (3b)

Under modified reaction conditions: NHC 1 (10 mol%), NaO'Bu (15 mol%), Toluene (2 ml), 130 °C, 12 h, **3b** was isolated in 66% yield (46 mg). Purified by flash column chromatography (DCM/EA = 20:1) as white solid. mp: 142-144 °C

¹H NMR (500 MHz, CDCl₃) δ 7.52 – 7.44 (m, 2H), 7.41 – 7.35 (m, 2H), 7.33 – 7.27 (m, 1H), 6.74 (s, 1H), 3.30 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 155.2, 139.0, 128.8, 128.1, 127.3, 122.8, 110.5, 30.7.

5-(4-fluorophenyl)-3-methyloxazol-2(3H)-one (3c)

Purified by flash column chromatography (DCM/EA = 20:1) as white solid (35 mg, 45% yield). mp: 146-148 °C ¹H NMR (500 MHz, CDCl₃) δ 7.51–7.39 (m, 2H), 7.15–7.04 (m, 2H), 6.68 (s, 1H), 3.31 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.4 (d, ¹J_{C-F} = 248.5 Hz), 155.1, 138.3, 124.8 (d,

 ${}^{3}J_{C-F} = 8.2$ Hz), 123.7, 116.0 (d, ${}^{2}J_{C-F} = 22.2$ Hz), 110.1, 30.8. **HRMS(ESI)** Calculated for C₁₀H₈O₂NFNa⁺ ([M+Na]⁺): 216.0431, found: 216.0432.

5-(4-chlorophenyl)-3-methyloxazol-2(3H)-one (3d)

Purified by flash column chromatography (DCM/EA = 20:1) as white solid (44 mg, 53% yield). mp: 170-172 °C. Under modified reaction conditions: **NHC 1** (10 mol%), NaO'Bu (15 mol%), Toluene (2 ml), 130 °C, 12 h, **3d** was isolated in 61% yield.

¹H NMR (500 MHz, CDCl₃) δ 7.43–7.33 (m, 4H), 6.74 (s, 1H), 3.31 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 155.0, 138.1, 133.8, 129.1, 125.9, 124.1, 110.9, 30.8. HRMS(ESI) Calculated for C₁₀H₈O₂NClNa⁺ ([M+Na]⁺): 232.0136, found: 232.0136.

5-(4-bromophenyl)-3-methyloxazol-2(3H)-one (3e)

Purified by flash column chromatography (DCM/EA = 20:1) as yellow solid (42 mg, 41% yield). mp: 168-170 °C ¹H NMR (500 MHz, CDCl₃) δ 7.59–7.45 (m, 2H), 7.40–7.29 (m, 2H), 6.76 (s, 1H), 3.31 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 155.0, 138.1, 132.0, 126.3, 124.3, 121.9,

111.0, 30.8. **HRMS(ESI)** Calculated for $C_{10}H_9O_2NBr^+$ ([M+H]⁺): 253.9817, found: 254.0185.

3,4-dimethyl-5-(naphthalen-2-yl)oxazol-2(3H)-one (3f)

Purified by flash column chromatography (DCM/EA = 20:1) as white solid (46 mg, 48% yield). mp: 103-105 °C ¹H NMR (500 MHz, CDCl₃) δ 7.89 (s, 1H), 7.84 – 7.78 (m, 3H), 7.58 – 7.53 (m, 1H), 7.50 – 7.44 (m, 2H), 3.20 (s, 3H), 2.30 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 155.0, 134.0,

133.2, 132.3, 128.4, 128.0, 127.6, 126.6, 126.2, 125.7, 123.6, 122.5, 119.4, 27.9, 9.4. HRMS(ESI) Calculated for C₁₅H₁₄O₂NNa⁺ ([M+Na]⁺): 262.0839, found: 262.0839.

4 Mechanistic studies

4.1 Radical trapping experiment

Experimental procedure:

To a 25 ml flame-dried Schlenk tube containing a stirring bar was added IMes^{Me}·HCl (0.04 mmol, 14.7 mg.), NaOt-Bu (0.06 mmol, 6.0 mg), *tert*-butyl 3-hydroxy-3-(naphthalen-2-yl)azetidine-1-carboxylate **1n** (0.4 mmol, 120 mg), radical scavenger (1 equiv), toluene (1.0 mL) sequentially under nitrogen. The tube was sealed and stirred at 130 °C for 12 h. After completion, the resulting mixture was monitored by TLC and crude ¹H NMR analysis.

4.2 Deconstructive isomerization of 1B

Experimental procedure:

To a 25 ml flame-dried Schlenk tube containing a stirring bar was added IMes^{Me}·HCl (0.04 mmol, 14.7 mg.), NaOt-Bu (0.06 mmol, 6.0 mg), *tert*-butyl 3-hydroxy-3-(naphthalen-2-yl)pyrrolidine-1-carboxylate **1B** (0.4 mmol, 120 mg), toluene (1.0 mL) sequentially under nitrogen. The tube was sealed and stirred at 130 °C for 12 h. After completion, the reaction mixture was detected by TLC and crude NMR analysis. Unfortunately, no reaction took place and the starting material was recovered.

4.3 Deuterium experiments

Experimental procedure:

To a 25 ml flame-dried Schlenk tube containing a stirring bar was added IMes^{Me}·HCl (0.04 mmol, 14.7 mg.), NaOt-Bu (0.06 mmol, 6.0 mg), *tert*-butyl 3-hydroxy-3-phenylazetidine-1-carboxylate **1a** (0.4 mmol, 120 mg), toluene (1.0 mL) and CH₃OD (1.5 equiv, 19.8 mg) sequentially under nitrogen. The tube was sealed and

Experimental procedure:

1n

✓ ✓
INT: Detected by HRMS

To a 25 ml flame-dried Schlenk tube containing a stirring bar was added IMes^{Me}·HCl (0.2 mmol, 75 mg.), NaO*t*-Bu(1.05 equiv, 20.6 mg), *tert*-butyl 3-hydroxy-3-phenylazetidine-1-carboxylate **1n** (0.2 mmol, 60 mg) and toluene (1.0 mL) sequentially under nitrogen. The tube was sealed and stirred at 130 °C for 12 h. After completion, the reaction mixture was directly subjected to HRMS analysis and the possible **INT** was detected which might be a key intermediate in the catalytic cycle. **HRMS(ESI)** Calculated for $C_{41}H_{49}O_3N_3^+$ ([M]⁺):631.37684, found: 631.37195.

stirred at 130 °C for 12 h. After completion, the reaction mixture was concentrated and purified by silica gel column chromatography to provide the product **2a-D** in 31% yield.

4.5 Density functional theory (DFT) calculations

We also conducted the density functional theory (DFT) calculations to support the proposed mechanism of the NHC-catalyzed deconstructive isomerization of azetidinols. The free energy profile of the most favorable pathway for the reaction is

shown in Figure 1. As shown, the reaction started from the catalyst–substrate complex **INT1**, and the key step is the NHC-catalyzed ring opening of azetidinols via **TS1**, which requires an activation energy of 31.8 kcal/mol. Subsequently, the formation of **2a** from **INT2** was studied computationally. For this step, three mechanistic pathways were investigated, concerted alpha-elimination via **TS4**, the NaO'Bu-mediated concerted alpha-elimination via **TS5**, and the NaO'Bu-mediated stepwise elimination pathway via **TS2** and **TS3**. The NaO'Bu-mediated stepwise elimination pathway is the most favorable pathway, which has a barrier of 30.8 kcal/mol.

Figure 1. Free energy profiles for the NHC-catalyzed deconstructive isomerization of azetidinols. Calculations were carried out at the M06-2X/6-311++G(2df,2pd)-IEFPCM_{toluene}//M06-2X/6-31G(d,p)-IEFPCM_{toluene} level of theory.

5. Synthetic Applications

5.1 Gram-scale reaction

Experimental procedure:

To a 100 ml flame-dried Schlenk tube containing a stirring bar was added IMes^{Me}·HCl (0.5 mmol, 185 mg.), NaO*t*-Bu (0.75 mmol, 73.5 mg), *tert*-butyl 3-hydroxy-3-(naphthalen-2-yl)azetidine-1-carboxylate **1n** (5 mmol, 1495 mg), toluene (12.5 mL) sequentially under nitrogen. The tube was sealed and stirred at 130 °C for 12 h. After completion, the reaction mixture was concentrated and purified by silica gel column chromatography (PE/EA = 20:1 to 8:1) to provide the product **2n** in 93% yield (1.39 g).

5.2 Transformation of α-amino ketone

Experimental procedure⁷:

Under N₂, to a solution of methyl triphenylphosphonium bromide (0.65 mmol) in anhydrous THF (2 mL) was added KO'Bu (0.75 mmol) and stirred at room temperature for 30 min. A solution of **2a** (0.50 mmol,125 mg) in anhydrous THF (1.0 mL) was added dropwise to the yellow suspension and the mixture was stirred for another 1 h at room temperature. After completion, the reaction mixture was diluted with ethyl acetate (5.0 mL) and filtered through a short pad silica gel washing with ethyl acetate (10 mL). The filtrate was concentrated and purified by silica gel column chromatography to provide the product *tert*-butyl methyl(2-phenylallyl)carbamate (**4a**) as a colorless oil. (104 mg, 84% yield). The NMR data are consistent with previously reported literature.⁸

Experimental procedure⁵:

To a solution of **2a** (0.50 mmol, 125 mg) in DCM (2.0 mL) was added TFA (1.75 mmol, 199.5 mg) dropwise. The reaction mixture was stirred for 1 h at room temperature. Then, the mixture was basified with NaHCO₃ (aq) to pH \approx 8 and extracted with DCM (3×5 mL). The combined organic phases were dried over anhydrous Na₂SO₄. Then, the mixture was filtered through a short pad silica gel washing with ethyl acetate (20 mL). Organic phases concentrated in vacuo to afford 2-(methylamino)-1-phenylethan-1-one (**5a**) as a yellow oil (72 mg, 96% yield). The NMR data are consistent with previously reported literature.⁹

Experimental procedure⁵:

To a solution of **2a** (0.50 mmol, 125 mg) in MeOH (1.0 mL) was added NaBH₄ (0.75mmol, 28.4 mg) at 0 °C, and stirred at room temperature for 1 h. The mixture was evaporated to remove MeOH, and diluted with EA. The organic layer was washed with brine, dried over anhydrous Na₂SO₄, filtered, and evaporated. The crude residue was purified by column chromatography on silica gel to afford *tert*-butyl (2-hydroxy-2-phenylethyl)(methyl)carbamate (**4b**) as a colorless oil (117 mg, 93% yield). The NMR data are consistent with previously reported literature.⁹

6. References

[1] Raclea, R.-C.; Natho, P.; Allen, L. A. T.; White, A. J. P.; Parsons, P. J. J. Org. Chem. 2020, 85, 9375.

- [2] Reiners, F.; Joseph, E.; Nißl, B.; Didier, D. Org. Lett. 2020, 22, 8533.
- [3] Boiteau, J.-G.; Rodeville, N.; Martin, C.; Tabet, S.; Moureou, C.; Muller, F.; Jetha,
- J.-C.; Cardinaud, I. Org. Process. Res. Dev. 2015, 19, 646.
- [4] Du, H.-J.; Zhen, L.; Wen, X.; Xu, Q.-L.; Sun, H. Org. Biomol. Chem. 2014, 12, 9716.
- [5] Goliszewska, K.; Rybicka-Jasińska, K.; Szurmak, J.; Gryko, D. J. Org. Chem. 2019, 84, 15834.
- [6] Ruggeri, M.; Dombrowski, A. W.; Djuric, S. W.; Baxendale, I. R. *ChemPhotoChem* **2019**, *3*, 1212.
- [7] Hu, X. E.; Kim, N. K.; Ledoussal, B. Org. Lett. 2002, 4, 4499.
- [8] Cabré, A.; Sciortino, G.; Ujaque, G.; Verdaguer, X.; Lledós, A.; Riera, A. Org. Lett.
 2018, 20, 5747.
- [9] Prasad, P. K.; Reddi, R. N.; Sudalai, A. Org. Lett. 2016, 18, 500.

7. ¹H and ¹³C NMR Spectra

S32

S44

S61

