Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

> Electronic Supplementary Information (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2021

# **Electronic Supplementary Information**

## Phosphate anion-induced silver-chalcogenide cluster-based

### metal organic frameworks as dual-functional catalysts for

## detoxifying chemical warfare agent simulant

Chun-Hua Gong,<sup>a</sup> Zhi-Bing Sun,<sup>a</sup> Man Cao,<sup>a</sup> Xi-Ming Luo,<sup>a</sup> Jie Wu,<sup>a</sup> Qian-You Wang,<sup>a\*</sup> Shuang-Quan Zang,<sup>a\*</sup> and Thomas C. W. Mak<sup>a, b</sup>

*a* Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China,

*b* Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR 999077, China

\* E-mail: zangsqzg@zzu.edu.cn; qianyouwang@zzu.edu.cn

#### **S1. Experimental Procedures**

Reagents. Chemical reagents were purchased commercially and were used without further purification.  $CF_3COOAg$  precursor was prepared by the reaction of  $Ag_2O$  and  $CF_3COOH$  in the water solvent. ['PrSAg]<sub>n</sub> precursor was synthesized by the reaction of AgNO<sub>3</sub> and 'PrSH in the presence of triethylamine in the CH<sub>3</sub>CN and C<sub>2</sub>H<sub>5</sub>OH mixture solvent. H<sub>2</sub>TCPP and ZnTCPP ligands were synthesized according to the literatures.<sup>S1</sup> All solvents were analytical grade reagent.

Synthesis of **ZZU-601**. A mixture of CF<sub>3</sub>COOAg (0.1 mmol, 22 mg), [<sup>*i*</sup>PrSAg]<sub>n</sub> (0.05 mmol, 9.2 mg) and H<sub>2</sub>TCPP (2.53  $\mu$ mol, 2 mg) was dissolved in 4 mL CH<sub>3</sub>CN/C<sub>2</sub>H<sub>5</sub>OH (V:V = 1:1) to obtain a purple-red solution at room temperature. Then 30  $\mu$ L 0.4 mol/L H<sub>3</sub>PO<sub>4</sub> was added into the above solution. The resultant solution was sealed into 25 mL Teflon-lined autoclaves and heated at 70 °C for 24 hours. After cooling to room temperature, purple-red block crystals were obtained with a yield of 40% (based on ['PrSAg]<sub>n</sub>). Elemental analysis for **ZZU-601** (calculated): C, 22.42%; H, 2.64%; N, 1.26%; S, 9.21%; (found): C, 22.75%; H, 2.74%, N, 0.92%; S, 8.76%.

Synthesis of **ZZU-602**. A mixture of CF<sub>3</sub>COOAg (0.1 mmol, 22 mg), [<sup>*i*</sup>PrSAg]<sub>n</sub> (0.05 mmol, 9.2 mg) and ZnTCPP (2.34  $\mu$ mol, 2 mg) was dissolved in 4 mL CH<sub>3</sub>CN/C<sub>2</sub>H<sub>5</sub>OH (V:V = 1:1) to obtain a purple-red solution at room temperature. Then 30  $\mu$ L 0.4 mol/L H<sub>3</sub>PO<sub>4</sub> and 3  $\mu$ L triethylamine was added into the above solution. The resultant solution was sealed into 25 mL Teflon-lined autoclaves and heated at 70 °C for 24 hours. After cooling to room temperature, purple-red block crystals were obtained with a yield of 35% (based on [<sup>*i*</sup>PrSAg]<sub>n</sub>). Elemental analysis for **ZZU-602** (calculated): C, 22.83%; H, 2.55%; N, 2.05%; S, 6.25%; (found): C, 21.55%; H, 2.78%; N, 2.22%; S, 5.84%.

Crystallographic data collection and refinement of the structure. Single-crystal X-ray diffraction measurement of **ZZU-601** and **ZZU-602** was performed on a Rigaku XtaLAB Pro diffractometer at 100 K and 200 K with Cu-Kα radiation ( $\lambda = 1.54184$  Å), respectively. Data collection and reduction were performed using the program CrysAlisPro.<sup>52</sup> All the structures were solved with direct methods (*SHELXS*)<sup>53</sup> and refined by full-matrix least squares on *F*<sup>2</sup> using *OLEX*<sup>2</sup>, <sup>54</sup> which utilizes the *SHELXL-2015* module.<sup>55</sup> All the atoms were refined anisotropically. Hydrogen atoms were placed in calculated positions refined using idealized geometries and assigned fixed isotropic displacement parameters. ISOR, DELU, SIMU, DFIX, DANG and FLAT restraints were used for the disordered atoms. For **ZZU-601** and **ZZU-602**, the solvent mask has been used due to severely disorder of the structures or free solvent molecules in the frameworks. The crystal structures are visualized by *DIAMOND 4*. The detailed information of the crystal data, data collection and refinement results for **ZZU-601** and **ZZU-602** are summarized in Table S5. The selected H-bond data are listed in Table S6.

Characterization. Infrared spectra were obtained using recorded on a Bruker ALPHA II spectrometer with attenuated total reflection attachment in the range of 4000–400 cm<sup>-1</sup>. Elemental analyses (EA) were carried out with a Perkin-Elmer 240 elemental

analyzer. Thermogravimetric (TG) analyses were performed on a SDT 2960 thermal analyzer from room temperature to 1000 °C at a heating rate of 10 °C/min under nitrogen atmosphere and oxygen atmosphere. PXRD patterns of the compounds were collected at room temperature in air on an X'Pert PRO diffractometer (Cu-Ka). A Hitachi UH4150 spectrometer was used to collect diffuse reflection spectra (DRS). Finely powdered MOF was used as a sample and BaSO<sub>4</sub> as a reference to obtain DRS spectra. The adsorption isotherms of  $N_2$  was measured by a volumetric method using a 3H-2000Ps1 Specific surface & pore size analysis instrument at 77 K. Pore width distribution was obtained from Horvath-Kawazoe (HK) method analysis. The adsorption isotherm of CEES at 298 K were measured by gravimetric method using a Beishide 3H-2000PW Adsorption Analyzer. <sup>1</sup>H NMR and <sup>31</sup>P NMR data was recorded on a Bruker DRX spectrometer operating at 600 MHz. Electron paramagnetic resonance (EPR) spectroscopy was performed using a Bruker EMXnano system. The photoluminescence (PL) emission spectra were measured by using a Horiba FluoroLog-3 spectrofluorometer. After as-obtained MOFs was vacuum degassed at room temperature, the adsorption amounts of CEES evaporated into it were monitored by recording the sample mass while altering the pressure. Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES) was used to evaluate the amounts of silver released from the SCC-MOFs in the supernatant of the catalytic reaction.

Photooxidation procedure of CEES. Photosensitizer (0.48  $\mu$ mol porphyrin unit, 2.67 mg for **ZZU-601** and 2 mg for **ZZU-602**) was dispersed in 0.5 mL of CD<sub>3</sub>OD in a sealed glass reactor, and then 5.6  $\mu$ L (48  $\mu$ mol) of CEES with 0.5 mL CD<sub>3</sub>OD was added. After purging with O<sub>2</sub> or air for 15 min, the glass reactor was exposed to white LED light (Power intensity: 80 mW cm<sup>-2</sup>) and the reaction process was monitored by <sup>1</sup>H NMR measurement.

Hydrolysis procedure of DECP. MOF catalysts (3  $\mu$ mol porphyrin unit, 16.7 mg for **ZZU-601** or 12 mg for **ZZU-602**) was dispersed in 2 mL of CH<sub>3</sub>OH in a sealed glass reactor, and then 9  $\mu$ L (60  $\mu$ mol) of DECP and 100  $\mu$ L H<sub>2</sub>O was added. The reaction process was monitored by <sup>31</sup>P NMR measurement.

Confirmation experiments for singlet oxygen production. 2,2,6,6-Tetramethyl-4piperidone (TEMP) and 9,10-Dimethylanthracene (DMA) were selected as probes to confirm the generation of singlet oxygen, respectively. Typically, 2 mg of TEMP was dissolved in 4 mL of CH<sub>3</sub>OH with 2.67 mg for **ZZU-601** and 2 mg for **ZZU-602** under white LED light irradiation, and the experimental results were detected via electron paramagnetic resonance (EPR) spectroscopy. 2 mg of DMA was dissolved in 4 mL of  $C_2H_5OH$  with 2.67 mg for **ZZU-601** and 2 mg for **ZZU-602** under white LED light irradiation, and the experimental results were monitored by the fluorescence emission peaks decay at 430 and 451 nm ( $\lambda_{ex}$  = 300 nm). DFT simulation. All the calculations were performed within the framework of the density functional theory (DFT) as implemented in the Vienna Ab initio Software Package (VASP 5.4.4) code within the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation and the projected augmented wave (PAW) method.<sup>S6</sup> The cutoff energy for the plane-wave basis set was set to 400 eV. The Brillouin zone of the surface unit cell was sampled by Monkhorst-Pack (MP) grids for structure optimizations. The convergence criterion for the electronic self-consistent iteration and force was set to  $10^{-5}$  eV and 0.01 eV/Å, respectively.

Data availability. Data supporting the findings of this manuscript are available from the corresponding authors upon reasonable request. The X-ray crystallographic coordinates for structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition number CCDC: 2153380 (**ZZU-601**) and 2153381 (**ZZU-602**).



S2. Supplementary Figures and Tables

**Figure S1.** Structure of  $Ag_{54}$  cluster node in **ZZU-601**. (a) Arrangement of internal six [PO<sub>4</sub>] anion template units. (b) The coordination between [PO<sub>4</sub>] units and Ag atoms of the 54-Ag shell. (c) Coordination modes of six CF<sub>3</sub>COO<sup>-</sup> ligands and Ag<sub>54</sub> cluster. (d) Coordination mode of CH<sub>3</sub>CN molecules and Ag<sub>54</sub> cluster.



**Figure S2.** Coordination modes of S atoms from <sup>*i*</sup>PrS<sup>-</sup> ligands in **ZZU-601**.



**Figure S3.** (a) Coordination environment of  $Ag_{54}$  cluster as eight-connected node in **ZZU-601**. (b and c) Coordination environment of  $H_2$ TCPP ligands (TCPP-1 and TCPP-2) as four-connected linkers in **ZZU-601**.



**Figure S4.** 2D nets of Ag54 cluster bridged by TCPP-1 and TCPP-2 ligands to form 3D frameworks in ball-and-stick mode (a) and polyhedron mode (b) in **ZZU-601**, respectively.



**Figure S5**. (a and b) The 3D *scu* topology net and the double interpenetrating 3D net in **ZZU-601**. (c and d) The double interpenetrating 3D structures in space-filling mode and polyhedron mode in **ZZU-601**, respectively.



**Figure S6.** (a) The structure of  $2[HPO_4]@Ag_{18}(^{i}PrS)_{10}(H_2PO_4)_4$  unit in **ZZU-602**. (b) The infinite 1D Ag-S rod. (c) The coordination environment of Ag\_{18} unit. (d) The coordination environment  $[H_2ZnTCPP(C_2H_5OH)]$  ligand.



**Figure S7.** Coordination modes of S atoms from <sup>*i*</sup>PrS<sup>-</sup> ligands in **ZZU-602**.



**Figure S8.** The intramolecular hydrogen bonds in **ZZU-602**. (a) The H-bond interaction among  $[H_xPO_4]^{(3-x)-}$  anions in the Ag-S rod. (b) The H-bond interaction in the 2D framework. (c) Partial magnification of the H-bond interaction from the adjacent ZnTCPP linkers. (d) Partial magnification of the H-bond interaction between  $[H_xPO_4]^{(3-x)-}$  anions and ZnTCPP linkers.



**Figure S9.** The intermolecular hydrogen bonds in **ZZU-602**. (a) Intermolecular hydrogen bonds of the adjacent Ag-S rods to form 2D net. (b) Intermolecular hydrogen bonds between the outer  $[H_xPO_4]^{(3-x)-}$  anion of the Ag-S rods and ZnTCPP linkers to form 2D net. (c) Partial magnification of the H-bond interaction among the adjacent Ag-S rods. (d) Partial magnification of the H-bond interaction between the outer  $[H_xPO_4]^{(3-x)-}$  anion of the Ag-S rods and ZnTCPP linkers to form 2D net. (d) Partial magnification of the H-bond interaction between the outer  $[H_xPO_4]^{(3-x)-}$  anion of the Ag-S rods and ZnTCPP linkers.



**Figure S10.** (a) 3D supramolecular network of **ZZU-602** in ball-stick mode through intermolecular hydrogen bonds. (b) 3D supramolecular network **ZZU-602** in space-filling mode through intermolecular hydrogen bonds.



**Figure S11.** (a) The ellipsoid diagram of  $Ag_{54}$  cluster unit in **ZZU-601**. (b) The ellipsoid diagram of  $Ag_{18}$  cluster unit in **ZZU-602**.



Figure S12. PXRD patterns of ZZU-601 (a) and ZZU-602 (b).



Figure S13. The IR spectra of ZZU-601 (a) and ZZU-602 (b).



**Figure S14.** The thermogravimetric curves of **ZZU-601** (a) and **ZZU-602** (b) under  $N_2$  atmosphere.



Figure S15. The chemical stability of ZZU-601 (a) and ZZU-602 (b).



**Figure S16.** (a) Schematic diagram of channels in **ZZU-602**. (b) Pore size distribution profile based on nonlocal density function theory (NLDFT) of **ZZU-602**. Inset: Selected BET Plots of **ZZU-602** for BET surface area calculation based on N<sub>2</sub> adsorption isotherm at 77 K.



**Figure S17.** (a) UV-Vis diffuse reflectance spectra of **ZZU-601** and **ZZU-602** at room-temperature. (b) Tauc plot displaying the band gap of **ZZU-601** and **ZZU-602**.



**Figure S18.** <sup>1</sup>H NMR spectrum of CEES reaction substrate in CD<sub>3</sub>OD.



**Figure S19.** <sup>1</sup>H NMR spectrum of CEESO oxidation product in CD<sub>3</sub>OD.



**Figure S20.** (a) <sup>1</sup>H NMR spectra monitoring of the photooxidation reaction of CEES by **ZZU-601** under  $O_2$  atmosphere and white LED irradiation. (b) <sup>1</sup>H NMR spectra monitoring of the photooxidation reaction of CEES by **ZZU-602** under  $O_2$  atmosphere and white LED irradiation.



**Figure S21.** PXRD patterns before and after CEES adsorption of **ZZU-601** and **ZZU-602**.



**Figure S22.** (a) <sup>1</sup>H NMR spectra monitoring of the photooxidation reaction of CEES by **ZZU-601** under air atmosphere and white LED irradiation. (b) <sup>1</sup>H NMR spectra monitoring of the photooxidation reaction of CEES by **ZZU-602** under air atmosphere and white LED irradiation.



**Figure S23.** Conversion of the CEES photooxidation in the presence of **ZZU-601** and **ZZU-602** under air atmosphere.



**Figure S24.** <sup>1</sup>H NMR spectra monitoring of the photooxidation reaction of CEES under O<sub>2</sub> atmosphere and white LED irradiation without any catalyst.



**Figure S25.** (a) <sup>1</sup>H NMR spectra monitoring of the photooxidation reaction of CEES by  $H_2$ TCPP ligand under  $O_2$  atmosphere and white LED irradiation. (b) <sup>1</sup>H NMR spectra monitoring of the photooxidation reaction of CEES by ZnTCPP ligand under  $O_2$  atmosphere and white LED irradiation.



**Figure S26.** (a) <sup>1</sup>H NMR spectra monitoring of the photooxidation cycling reaction of CEES by **ZZU-601**. (b) <sup>1</sup>H NMR spectra monitoring of the photooxidation cycling reaction of CEES by **ZZU-602**.



**Figure S27.** PXRD patterns before and after CEES photooxidation of **ZZU-601** and **ZZU-602**.

**Table S1.** Comparison of the required time under different experimental conditions inCEES complete photooxidation in this work.

| Entry | Photosensitizer     | O <sub>2</sub> /Air | Light | The time with 100% conversion rate |
|-------|---------------------|---------------------|-------|------------------------------------|
| 1     | ZZU-601             | O <sub>2</sub>      | ON    | 6 min                              |
| 2     | ZZU-601             | Air                 | ON    | 20 min                             |
| 3     | ZZU-602             | O <sub>2</sub>      | ON    | 5 min                              |
| 4     | ZZU-602             | Air                 | ON    | 15 min                             |
| 5     | H <sub>2</sub> TCPP | O <sub>2</sub>      | ON    | 40 min                             |
| 6     | ZnTCPP              | O <sub>2</sub>      | ON    | 50 min                             |
| 7     | a                   | O <sub>2</sub>      | ON    | b                                  |

<sup>a</sup> Control experiment without photosensitizer. <sup>b</sup> CEES was not oxidized within 60 minutes.

**Table S2.** Comparison of the photo-oxidative efficiency of reported MOFs with porphyrin unit in CEES photooxidation under  $O_2$  atmosphere.

| Dhotoconsitizor | Photosensitizer | Half-life | Light source           | Deference |
|-----------------|-----------------|-----------|------------------------|-----------|
| Photosensitizer | Loading         | (min)     | (mW cm <sup>-2</sup> ) | Reference |

|                       |       | 13  | Blue (325)  |           |
|-----------------------|-------|-----|-------------|-----------|
| PCN-222               | 0.5 % | 26  | White (310) | S7a       |
|                       |       | 33  | Red (160)   |           |
| PCN-222/MOF-          | 0.5%  | 11  | Blue        | S7h       |
| 545                   | 0.570 | 11  | Dide        | 576       |
| Ag <sub>12</sub> TPyP | 1%    | 1.5 | White (80)  | S8        |
| Fe-TCPP-La            |       | 2.5 |             |           |
| Ni-TCPP-La            |       | 3.5 |             |           |
| Zn-TCPP-La            | 1%    | 4   | Blue        | S7c       |
| Mn-TCPP-La            |       | 5   |             |           |
| Co-TCPP-La            |       | 5.5 |             |           |
| AI-PMOF               | 0.7%  | 16  | Blue        | S7d       |
| ZZU-601               | 1%    | 2.3 | White (80)  | This work |
| ZZU-602               | 1%    | 1.1 | White (80)  | This work |



**Figure S28.** (a) Photooxidation process of TEMP and DMA as probes in the presence of singlet oxygen  $({}^{1}O_{2})$ . (b) Fluorescence spectra of DMA without any catalyst upon light irradiation. (c) Fluorescence spectra of DMA in the presence of **ZZU-601** upon light irradiation. (d) Fluorescence spectra of DMA in the presence of **ZZU-602** upon light irradiation.



**Figure S29.** Conversion of DECP hydrolysis in the presence of <sup>*i*</sup>PrSAg, H<sub>2</sub>TCPP, ZnTCPP and no catalyst, respectively.



**Figure S30.** PXRD patterns before and after DECP hydrolysis of **ZZU-601** and **ZZU-602** in 30 min.

**Table S3.** Comparison of DECP hydrolysis by the reported MOFs under the same reaction conditions.

| Catalyst | Time (min) | Conversion (%) |
|----------|------------|----------------|
| ZZU-601  | 30 min     | 48             |
| ZZU-602  | 30 min     | 61             |
| HKUST-1  | 30 min     | 90             |
| Uio-66   | 30 min     | 100            |

| Catalyst                                        | ZZU-601               | ZZU-602               | ZZU-601               | ZZU-602               |
|-------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Catalytic substrate                             | CEES                  | CEES                  | DECP                  | DECP                  |
| The total mass of silver in the catalyst (mg)   | 1.39                  | 0.95                  | 8.73                  | 5.68                  |
| The content of silver in the supernatant (mg/L) | 3.4                   | 4.2                   | 3.9                   | 6.9                   |
| The mass of silver in the supernatant (mg)      | 3.42×10 <sup>-3</sup> | 4.22×10 <sup>-3</sup> | 8.22×10 <sup>-3</sup> | 1.46×10 <sup>-2</sup> |
| The leaching amounts of silver ions (%)         | 0.24                  | 0.44                  | 0.09                  | 0.25                  |

**Table S4**. The leaching amounts of silver ions in the supernatant after the catalytic reaction using ICP-OES.

 Table S5.
 Crystal data and structure refinements for ZZU-601 and ZZU-602.

| Identification code               | ZZU-601                                              | ZZU-602                                 |
|-----------------------------------|------------------------------------------------------|-----------------------------------------|
| CCDC number                       | 2153380                                              | 2153381                                 |
| Empirical formula                 | $C_{208}H_{292}Ag_{54}F_{18}N_{10}O_{52}P_{6}S_{32}$ | $C_{78}H_{104}Ag_{18}N_6O_{33}P_6S_8Zn$ |
| Formula weight                    | 11143.22                                             | 4103.03                                 |
| Temperature/K                     | 100                                                  | 200                                     |
| Crystal system                    | triclinic                                            | triclinic                               |
| Space group                       | РĪ                                                   | РĪ                                      |
| a/Å                               | 20.7199(8)                                           | 14.4671(2)                              |
| b/Å                               | 21.3162(9)                                           | 18.4226(2)                              |
| <i>c</i> /Å                       | 21.6663(15)                                          | 24.9929(3)                              |
| α/°                               | 67.507(5)                                            | 74.157(10)                              |
| <i>в</i> /°                       | 70.652(5)                                            | 78.318(10)                              |
| γ/°                               | 71.542(4)                                            | 81.167(10)                              |
| Volume/ų                          | 8141.8(8)                                            | 6241.14(14)                             |
| Z                                 | 1                                                    | 2                                       |
| $ ho_{ m calc/g\cdot cm^{-3}}$    | 2.273                                                | 2.183                                   |
| $\mu/{ m mm^{-1}}$                | 28.133                                               | 24.815                                  |
| F(000)                            | 5328.0                                               | 3856.0                                  |
| Radiation                         | CuKα<br>(λ = 1.54184)                                | CuKα<br>(λ = 1.54184)                   |
| 2θ range for data<br>collection/° | 5.56 to 148.972                                      | 5.014 to 147.78                         |

|                                                | -25 ≤ h ≤ 23                       | -15 ≤ h ≤ 18                       |  |
|------------------------------------------------|------------------------------------|------------------------------------|--|
| Index ranges                                   | -26 ≤ k ≤ 25                       | -22 ≤ k ≤ 22                       |  |
|                                                | -26 ≤ l ≤ 20                       | -30 ≤ l ≤ 31                       |  |
| Reflections collected                          | 67854                              | 67884                              |  |
| Independent reflections                        | 31427                              | 24364                              |  |
| R <sub>int</sub>                               | 0.0866                             | 0.0565                             |  |
| $R_{\sf sigma}$                                | 0.1179                             | 0.0596                             |  |
| Data/restraints/parameter<br>s                 | 31427/461/1999                     | 24364/545/1515                     |  |
| Goodness-of-fit on F <sup>2</sup>              | 1.057                              | 1.013                              |  |
| $R_1^{a}, w R_2^{b} [I > = 2\sigma (I)]$       | $R_1 = 0.0902,$<br>$wR_2 = 0.2419$ | $R_1 = 0.0984,$<br>$wR_2 = 0.2351$ |  |
| $R_1^a$ , $wR_2^b$ [all data]                  | $R_1 = 0.1458,$<br>$wR_2 = 0.2889$ | $R_1 = 0.1100,$<br>$wR_2 = 0.2418$ |  |
| Largest diff. peak/hole / e<br>Å <sup>-3</sup> | 2.49/-1.98                         | 2.35/-1.99                         |  |

 $aR_1 = \sum ||F_o| - |F_c|| / \sum |F_o| \cdot bwR_2 = \{ \sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2] \}^{1/2}, w = 1 / [\sigma^2(F_o^2) + (0.1000P)^2] where P = (F_o^2 + 2F_c^2) / 3.$ 

| Туре  | Donor–H…Acceptor | D–H (Å) | H…A (Å) | D…A (Å) | D–H…A (°) |
|-------|------------------|---------|---------|---------|-----------|
| Intra | 014–H14…014      | 0.82    | 1.871   | 2.626   | 152.377   |
| Intra | 015–H15…07       | 0.82    | 1.849   | 2.637   | 160.697   |
| Intra | 016–H16…O22      | 0.82    | 1.780   | 2.593   | 151.378   |
| Intra | 019–H19…011      | 0.82    | 1.935   | 2.600   | 137.505   |
| Intra | 021–H21…O24      | 0.85    | 2.045   | 2.831   | 153.677   |
| Intra | 032–H32A…O0AA    | 0.82    | 2.085   | 2.819   | 148.990   |
| Inter | O5–H5…O6         | 0.82    | 1.746   | 2.554   | 167.762   |
| Inter | 010-H10…012      | 0.82    | 1.756   | 2.556   | 164.645   |
| Inter | 025–H25…013      | 0.82    | 1.668   | 2.474   | 165.813   |
| Inter | 029–H29A…O24     | 0.83    | 2.128   | 2.923   | 161.620   |
| Inter | O30–H30…O2AA     | 0.82    | 1.882   | 2.682   | 165.105   |

 Table S6.
 Hydrogen bond data used for ZZU-602.

#### **S3.** References

- S1 a) H.-Q. Xu, J. Hu, D. Wang, Z. Li, Q. Zhang, Y. Luo, S.-H. Yu and H.-L. Jiang, J. Am. Chem. Soc., 2015, 137, 13440–13443; b) D. Feng, Z.-Y. Gu, J.-R. Li, H.-L. Jiang, Z. Wei and H.-C. Zhou, Angew. Chem. Int. Ed., 2012, 51, 10307–10310.
- S2 a) CrysAlisPro, Version 1.171.36.31. Agilent Technologies Inc., Santa Clara, CA, USA 2012; b) O. D. Rigaku, CrysAlisPro Software System, Version 1.171.38.41k,

Rigaku Coorporation, Oxford, UK 2015.

- S3 G. M. Sheldrick, *Acta Cryst. A*, 2008, **64**, 112-122.
- S4 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, **42**, 339-341.
- S5 G. M. Sheldrick, Acta Cryst. C, 2015, **71**, 3-8.
- S6 a) J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865-3868;
  b) B. Hammer, L. B. Hansen and J. K. Nørskov, *Phys. Rev. B*, 1999, **59**, 7413-7421;
  c) P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953-17979;
  d) G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758-1775.
- S7 a) Y. Liu, A. J. Howarth, J. T. Hupp and O. K. Farha, *Angew. Chem. Int. Ed.*, 2015,
  54, 9001–9005; b) C. T. Buru, M. B. Majewski, A. J. Howarth, R. H. Lavroff, C.-W. Kung, A. W. Peters, S. Goswami and O. K. Farha, *ACS Appl. Mater. Interfaces*, 2018, 10, 23802–23806; c) Z.-H. Long, D. Luo, K. Wu, Z.-Y. Chen, M.-M. Wu, X.-P. Zhou and D. Li, *ACS Appl. Mater. Interfaces*, 2021, 13, 37102–37110; d) D. T. Lee, J. D. Jamir, G. W. Peterson and G. N. Parsons, *Matter*, 2020, 2, 404–415.
- S8 M. Cao, R. Pang, Q.-Y. Wang, Z. Han, Z.-Y. Wang, X.-Y. Dong, S.-F. Li, S.-Q. Zang and T. C. W. Mak, J. Am. Chem. Soc., 2019, 141, 14505–14509.