Photocatalyzed Decarboxylation of Oxamic acids Under Near- Infrared Conditions.

Ikechukwu Martin Ogbu, ${ }^{\text {a }}$ Dario M. Bassani, ${ }^{a}$ Frédéric Robert, ${ }^{\text {a }}$ and Yannick Landais ${ }^{*}{ }^{a}$
a. University of Bordeaux, Institute of Molecular sciences (ISM), UMR-CNRS 5255, 351, Cours de la
Libération, 33405 Talence Cedex, France. Email: yannick.landais@u-bordeaux.fr

Supporting Information

Table of contents

1. General Information:1
2. General procedure for preparation of oxamic acids 2
3. Synthesis of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4-CzIPN)4
4. Synthesis of 1-Hydroxy-1,2-benziodoxol-3(1H)-one5
5. Synthesis of 1-Acetoxy-1,2-benziodoxol-3-(1 H)-one6
6. Synthesis of $\mathrm{Os}(\text { bptpy })_{2}\left(\mathrm{PF}_{6}\right)_{2}$ 6
7. Synthesis of 2,5,8,11-Tetra(tert-butyl)perylene (TTBP) 7
8. General procedures for urethane synthesis from oxamic acids under red/NIR light conditions 8
9. General procedures for carbamoyl radical addition to heteroarenes under red/NIR light conditions 8
10. Spectroscopic data of the urethanes. 9
11. Spectroscopic data of the amides 13
12. Chiral HPLC of the chiral urethane and amide 16
13. Comparing the penetration depth of the NIR light and blue LED light 17
14. NMR Spectra 21

1. General Information:

1,2-Dichloroethane (DCE) and acetonitrile (MeCN) were distilled using calcium hydride. Dichloromethane (DCM), tetrahydrofuran (THF) and methanol were dried over activated alumina columns on MBraun Solvent Purification System (SPS-800). Haemoglobin bovine (lyophilized powder, CAS Number: 9008-02-0) was procured from Sigma Aldrich company and the solution was made by dissolving the powder in water ($17.0 \mathrm{~g} / \mathrm{L}$). All other reagent-grade chemicals including alcohols were purchased from commercial suppliers and were directly used without further purification unless
otherwise indicated. Yields refer to chromatographically and spectroscopically (${ }^{1} \mathrm{H}-\mathrm{NMR}$) homogeneous material unless otherwise stated.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ were performed using Bruker Avance $300\left({ }^{1} \mathrm{H}: 300 \mathrm{MHz},{ }^{13} \mathrm{C}: 75 \mathrm{MHz}\right)$ and Bruker Avance $400\left({ }^{1} \mathrm{H}: 400 \mathrm{MHz},{ }^{13} \mathrm{C}: 100 \mathrm{MHz}\right), \mathrm{CDCl}_{3}$ was used as an internal reference. Chemical shifts (δ) and coupling constants (J) are expressed in ppm and Hz respectively unless otherwise indicated. The following notations were used for the multiplicity: broad singlet $=b s$, singlet $=s$, doublet $=\mathrm{d}$, triplet $=\mathrm{t}$, quartet $=\mathrm{q}$, doublet of doublets $=\mathrm{dd}$ and multiplets $=\mathrm{m}$. High-resolution mass spectra (HRMS) analysis was performed using a Waters Q-TOF 2 spectrometer in the electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) mode. FTIR analysis was performed using a Perkin-Elmer Spectrum 100 using a KBr disc or pellet. Optical rotation of the chiral compounds were determined using a Rudolph Research Analytical Autopol III Automatic Polarimeter. Melting point (m.p.) determination was done using Stuart melting point apparatus. Thin layer chromatography (TLC) was done using silica gel 60 F254 pre-coated plates (Merck) and visualized with potassium permanganate, ceric ammonium molybdate or UV light. Flash chromatography was performed using silica gel ($0.043-0.063 \mathrm{~mm}$).

2. General procedure for preparation of oxamic acids

Method A: ${ }^{1,2,3,4,5,6 .}$

Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{M})$, corresponding amine ($20 \mathrm{mmol}, 1.0$ eq.) and $\mathrm{Et}_{3} \mathrm{~N}$ (1.2 eq.) were charged into a dry two-neck round-bottom flask equipped with magnetic stirrer and under argon atm, using syringe fitted with metal needle. Note: solid amines were first weighed into the flask, flushed with argon before the other liquid reaction components were added via syringe. The resulted solution was brought to $0^{\circ} \mathrm{C}$ using ice. Then, t-butyl-2-chloro-2-oxo acetate (1.2 eq .) was added to the mixture dropwise over 10 min under constant stirring. The mixture was thereafter warmed to room temperature and allowed to stir for $4-6 \mathrm{~h}$. The mixture was washed with $1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ and the aqueous layer was further extracted with DCM ($2 \times 30 \mathrm{~mL}$). The combined organic layer was washed with brine, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The obtained gel/solid (oxamate ester) was dissolved in DCM (0.3 M), TFA (5.0 eq.) was added into the mixture and was stirred at room temperature for 6 to 12h. The mixture was concentrated in vacuo to deliver the oxamic acids as milky to white solids.

[^0]Mono-oxamic acids can further be recrystallized by dissolving it in minimum quantity of ether and adding hexane. Bis-oxamic acids can be purified further by washing with ether.

Method B: Preparation of chiral oxamic acids. ${ }^{1,3}$

Amino acid ($30.0 \mathrm{mmol}, 1.0$ eq.) was weighed into a dry two-neck round-bottom flask equipped with a reflux condenser. The content was flushed with argon, methanol (25 mL) was added under argon. The flask was cooled to $0^{\circ} \mathrm{C}$, then thionyl chloride ($45.11 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added to the heterogeneous mixture dropwise over 15 min under constant stirring during which a homogeneous solution was obtained. The mixture was then warmed to room temperature and then refluxed for 4 h . The reaction mixture was concentrated under reduced pressure resulting in a gel. The product was washed with n hexane by stirring it in the solvent for 10 min , then decanting the solvent. This was repeated twice to give a solid product. The solid was dissolved in $\mathrm{DCM}(60 \mathrm{~mL})$ under argon atm, cooled to $0^{\circ} \mathrm{C}$. $\mathrm{Et}_{3} \mathrm{~N}$ ($60.15 \mathrm{mmol}, 2$ eq.) was added into the mixture followed by a dropwise addition of t-butyl-2-chloro-2oxo acetate ($36.08 \mathrm{mmol}, 1.2$ eq.) over 10 min under constant stirring. The mixture was warmed to room temperature and allowed to stir for 6 h . The mixture was washed successively with water (100 mL) and brine $(100 \mathrm{~mL})$, dried over sodium sulfate and concentrated under reduced pressure to give a solid product. The crude product was dissolved in DCM $(60 \mathrm{~mL})$ and treated with TFA $(11.5 \mathrm{~mL}, 150 \mathrm{mmol}$, 5 eq.) at room temperature for 6 h . The resulted solution was concentrated in vacuo to give the desired chiral oxamic acid.

Table S1: Oxamic acids substrates used for the reactions.

[^1]Ref. ${ }^{1}$

3. Synthesis of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4-CzIPN).

4-CzIPN was synthesized following previously reported procedure. ${ }^{10}$ Carbazole ($4.18 \mathrm{~g}, 25 \mathrm{mmol}$) was dissolved in dry THF (100 mL) in a two-neck round-bottom flask under an argon atm, at room temperature. $\mathrm{NaH}(60 \%$ in oil, $1.4 \mathrm{~g}, 60 \mathrm{mmol})$ was added slowly under stirring. The mixture was stirred for 30 min , thereafter tetrafluoroisophthalonitrile ($1.0 \mathrm{~g}, 5 \mathrm{mmol}$) was added and the mixture was stirred further for 12 h . The reaction was quenched with water (5 mL) and concentrated in vacuo. The mixture was washed successively with water and EtOH to afford yellow solid product. This crude 4-CzIPN was recrystallized by dissolving it in minimum quantity of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and adding pentane to give the pure 4CzIPN ($3.1 \mathrm{~g}, 79 \%$) as a yellow solid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.25(\mathrm{dt}, J=7.8,1.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.80-7.66(\mathrm{~m}, 8 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.05(\mathrm{~m}$, 8H), 6.91-6.79 (m, 4H), 6.73-6.60 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 145.2,144.6,140.0$, $138.2,137.0,134.8,127.0,125.79,125.0,124.8,124.6,123.9,122.4,122.0,121.4,121.0,120.4,119.7$, $116.4,111.6,110.0,109.5,109.4$. Spectroscopic data were in good agreement with literature. ${ }^{10}$

[^2]

Figure S1: UV-visible absorption of 4-CzIPN in DCE

4. Synthesis of 1-Hydroxy-1,2-benziodoxol-3(1H)-one

2-iodobenzoic acid (BI-OH), was prepared following a reported procedure. ${ }^{11}$ 2-iodobenzoic acid (7.4 g , $30.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and sodium periodate ($6.7 \mathrm{~g}, 31.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) were weighed into a 100 mL round-bottom flask. A mixture of 13.5 mL acetic acid and 31.5 mL of water was added. The reaction mixture was refluxed for 4 h under constant stirring and protection from light using aluminum foil. Thereafter, 120 mL of cold water was added, and the mixture was allowed to cool to room temperature. The white solid product was obtained by filtration and was successively washed with ice-cold water $(3 \times 30 \mathrm{~mL})$, acetone $(3 \times 30 \mathrm{~mL})$ and then, air dried in the dark overnight. 1-Hydroxy-1,2-benziodoxol$3(1 \mathrm{H})$-one ($6.6 \mathrm{~g}, 84 \%$) was obtained as a white solid compound. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d) δ : $8.09-7.91(\mathrm{~m}, 3 \mathrm{H}), 7.85(\mathrm{dd}, \mathrm{J}=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{td}, \mathrm{J}=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO-d ${ }^{6}$) $\delta: 168.2,134.9,132.0,131.6,130.8,126.7,120.9$. Spectroscopic data were in good agreement with literature. ${ }^{11}$

[^3]
5. Synthesis of 1-Acetoxy-1,2-benziodoxol-3-(1H)-one

1-Acetoxy-1,2-benziodoxol-3-(1H)-one (BI-OAc) was acetylated following previously reported procedure. ${ }^{12} \mathrm{BI}-\mathrm{OH}(6.0 \mathrm{~g}, 22.7 \mathrm{mmol})$ was treated with acetic anhydride $(20 \mathrm{~mL})$ in a round-bottom flask equipped with reflux condenser. The mixture was refluxed until BI-OH completely dissolved. The solution was allowed to cool to room temperature, and thereafter further cooled to $-20^{\circ} \mathrm{C}$ using dry ice/acetone. BI-OAc was obtained as white crystals and was dried under vacuum for 12 h after separation by filtration. BI-OAc ($6.1 \mathrm{~g}, 88 \%$, m.p. : $171-173^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.23$ (dt, $\mathrm{J}=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.99 (ddt, $\mathrm{J}=8.3,1.2,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{ddd}, \mathrm{J}=8.4,7.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ (ddt, $\mathrm{J}=7.6,7.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 176.4,168.2,136.1,133.2$, 131.3, 129.3, 129.0, 118.3, 20.3. Spectroscopic data were in good agreement with literature. ${ }^{12}$

6. Synthesis of $\operatorname{Os}(b p t p y)_{2}\left(\mathrm{PF}_{6}\right)_{2}$

(0.3 mmol)

$\mathrm{Os}(\text { bptpy })_{2}\left(\mathrm{PF}_{6}\right)_{2}$
$\mathrm{Os}(\text { bptpy })_{2}\left(\mathrm{PF}_{6}\right)_{2}$ complex was synthesized according to reported literature ${ }^{13}$ with some modifications. Osmium (III) chloride hydrate ($89.4 \mathrm{mg}, 0.30 \mathrm{mmol}$) and 4'-(4-bromophenyl)-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (CAS: 89972-76-9, $234.6 \mathrm{mg}, 0.60 \mathrm{mmol}$) were mixed in ethylene glycol (3 mL) in a round bottom flask equipped with magnetic stirrer and reflux condenser. The mixture was degassed, heated under argon atm and continuous stirring in a $200^{\circ} \mathrm{C}$ pre-heated hotplate (fitted with heat-on block) for 5 h . Thereafter, the dark mixture was directly transferred into 5 mL saturated solution of $\mathrm{NH}_{4} \mathrm{PF}_{6}(2 \mathrm{~g}$ in 5 mL of deionized water). The resulted dark purple precipitates were collected by filtration, purified using column chromatography (alumina, toluene/ $\mathrm{CH}_{3} \mathrm{CN} 1: 1$) to obtain the desired complex as a dark purple solid $298 \mathrm{mg}, 79 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$) $\delta: 9.53(\mathrm{~s}, 4 \mathrm{H}), 9.11(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 8.40(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 4 \mathrm{H}), 8.10-7.86(\mathrm{~m}, 8 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.22(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (76 MHz , DMSO) $\delta: 160.1,155.2,152.7,145.2,138.3,135.1,132.6,130.4,128.5,125.4,124.6,120.1 . \mathrm{MS}$ (MALDI-TOF) : $\mathrm{m} / \mathrm{z}=965\left[\mathrm{M}-\left(2 \mathrm{PF}_{6}-\right)-\mathrm{H}\right]^{+}, 887\left[\mathrm{M}-\left(2 \mathrm{PF}_{6}{ }^{-}\right)-\mathrm{Br}\right]^{+}$. Spectroscopic data were in good agreement with literature. ${ }^{13,14}$

[^4]

Figure S2: UV-visible absorption of $\mathrm{Os}(\text { bptpy })_{2}\left(\mathrm{PF}_{6}\right)_{2}$ complex in $\mathrm{CH}_{3} \mathrm{CN}$

7. Synthesis of 2,5,8,11-Tetra(tert-butyl)perylene (TTBP)

2,5,8,11-Tetra(tert-butyl) perylene (TTBP) was synthesized following a reported literature. ${ }^{15}$ Perylene $(0.5 \mathrm{~g}, 1.98 \mathrm{mmol})$ was weighed into a dry two-neck round bottom flask equipped with reflux condenser and magnetic bar. The content was flushed with argon and dry tert-butyl chloride (50 mL) was added into the flask under argon atm, followed by the addition of anhydrous aluminum trichloride (1.0 g). The mixture was then refluxed for 6 h . Additional tert-butyl chloride (30 mL) was added, and the reaction mixture was allowed to reflux overnight. Thereafter, additional 20 mL of tert-butyl chloride and 1.0 g anhydrous aluminum trichloride were added to the mixture and allowed to reflux for additional 24 h . After cooling to room temperature, the mixture was extracted with 100 mL of brine in a separatory funnel. The aqueous layer was further extracted with DCM ($3 \times 50 \mathrm{~mL}$). The combined organic layer including the tert-butyl chloride portion was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo initially at $40^{\circ} \mathrm{C}$ and then at $80^{\circ} \mathrm{C}$. The product obtained (viscous liquid) was further baked in a petridish at $170^{\circ} \mathrm{C}$ for 30 h using a hot plate until smoke evolution stopped. Dark brown solid obtained was dissolved in a mixture of petroleum ether and chloroform (2:1). The mixture was purified by column chromatography (silica, petroleum ether/chloroform). The product was obtained as a yellow crystal $(0.75 \mathrm{~g}, 80 \%)$, Rf : $9.2\left(\mathrm{CHCl}_{3} /\right.$ petroleum ether, $\left.1: 1\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.27(\mathrm{~d}, \mathrm{~J}=1.7$

[^5]$\mathrm{Hz}, 4 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.53(\mathrm{~s}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 148.7,134.9,130.8$, $125.8,123.3,117.7,34.9,31.4$. Spectroscopic data were in good agreement with literature. ${ }^{15,16}$

8. General procedures for urethane synthesis from oxamic acids under red/NIR light conditions

All the reactions were carried out in a re-sealable test tube using LED red/NIR light source, 660 or 780 nm . Oxamic acid ($0.25 \mathrm{mmol}, 1.0 \mathrm{eq}$.), BI-OAc ($0.375 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and the photocatalyst PC were weighed into a dry re-sealable test-tube equipped with a magnetic bar. The tube was sealed with Teflon septum and degassed for 5 min using Schlenk line and then back filled with argon. $\mathrm{Dry}_{\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})}$ and the corresponding alcohol ($0.75 \mathrm{mmol}, 3.0$ eq.) were added into the tube under argon atm using syringe-needle. Note: For solid alcohol, it was added alongside oxamic acid before degassing process. The tube was then place in the NIR LED light at room temperature under constant stirring for 6-24h (Figure S3). Completion of conversion of oxamic acid was monitored by TLC. The reaction mixture was diluted with $\mathrm{DCM}(10 \mathrm{~mL})$ and was washed successively with NaHCO_{3} and brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated using rotavap. The crude mixture was purified by flash column chromatography (silica gel, ethyl acetate/petroleum ether $5 / 95$ to $20 / 80$) to obtain the pure urethane.

Figure S3: Experimental Setup NIR light reactions

9. General procedures for carbamoyl radical addition to heteroarenes under red/NIR light conditions

Oxamic acid ($0.25 \mathrm{mmol}, 2.0$ eq.), heteroarene (1.0 eq.), BI-OAc (2.0 eq.) and $\operatorname{Os}(\mathrm{bptpy})_{2}\left(\mathrm{PF}_{6}\right)_{2}(0.3$ $\mathrm{mol} \%$) were weighed into a dry re-sealable test-tube equipped with a magnetic bar. The tube was sealed with Teflon septum and was degassed and backfilled with argon. Dry DCE (0.1 M) was added into the tube under argon atm. The tube was placed in the NIR light at room temperature under constant stirring
for 6 to 24 h depending on the substrate. The reaction mixture was directly washed successively with sodium bicarbonate (10 mL) and brine, dried using sodium sulfate and then concentrated using rotavap. The crude mixture was purified by flash column chromatography (silica gel, petroleum/ethyl acetate $90 / 10$ to $70 / 30$) to obtain the pure amide.

Figure S4: Emission spectrum of 780 nm LED lamp (NIR). Intensity $=3.7 \mathrm{~mW} / \mathrm{cm}^{2}$ (determined 100 mm from the LED along the emission axis)

10. Spectroscopic data of the urethanes.

Ethyl phenethylcarbamate (3a)

3a

Following the general procedure and the corresponding oxamic acid (0.5 mmol), 3a ($84 \mathrm{mg}, 88 \%$) was obtained as a colorless gel within $24 \mathrm{~h} . \mathrm{Rf}: 0.43$ (EtOAc/petroleum ether 20/90). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.40-7.16(\mathrm{~m}$, $5 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 156.6,138.8,130.0,128.8,128.7$, $128.6,126.5,60.7,42.1,36.2,14.6$. Spectroscopic data were in good agreement with literature. ${ }^{2}$

Ethyl 4-methylbenzylcarbamate (3b)

Following the general procedure and the corresponding oxamic acid (0.25 mmol), $\mathbf{3 b}(38 \mathrm{mg}, 78 \%)$ was obtained as white solid within 6 h , m.p. : 57-59 ${ }^{\circ} \mathrm{C} . \mathrm{Rf}=0.43$ (AcOEt/petroleum ether 20/80). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.18(\mathrm{q}, \mathrm{J}=8.2$ $\mathrm{Hz}, 4 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}$, $3 \mathrm{H}), 1.33-1.22(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 156.7,137.1,135.6,129.3,128.9,127.5,60.9$, 44.8, 21.1, 14.7 .

5-Hydroxypentyl cyclohexylcarbamate (3h)

Following the general procedure and the corresponding oxamic acid (0.5 $\mathrm{mmol})$, $\mathbf{3 h}$ ($100 \mathrm{mg}, 87 \%$) was obtained as white solid within 24 h , m.p. : $78-79^{\circ} \mathrm{C} . \mathrm{Rf}=0.23$ (AcOEt/petroleum ether 40/60). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{dd}, \mathrm{J}=11.8,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 1 \mathrm{H}), 1.98-1.83$ $(\mathrm{m}, 2 \mathrm{H}), 1.78-1.53(\mathrm{~m}, 8 \mathrm{H}), 1.49-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.22-1.02(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $: 155.9,64.5,62.6,49.7,33.4,32.3,28.9,25.5,24.8,22.2$. IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right): 3319,2939,2862$, 1693, 1533, 1449. HRMS (ESI): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 230.1751$, found 230.1741.

(S)-Methyl 2-(((cyclobutylmethoxy)carbonyl)amino)-3-phenylpropanoate (30)

Following the general procedure and the corresponding oxamic acid (0.25 mmol), $\mathbf{3 o}$ ($54 \mathrm{mg}, 73 \%$) was obtained as colorless gel within 24 h . Rf : 0.52 (AcOEt/petroleum ether 20/80). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.39-7.21$ (m, $3 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.67$ (dd, J = 13.8, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05$ (d, J = $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.74(\mathrm{~s}, 1 \mathrm{H}), 3.23-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.15$ $-1.67(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 172.1,156.1,135.8,134.3,129.3$, $128.6,127.1,69.0,54.7,52.3,38.3,34.3,24.6,18.4$. IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right)=3341,3034,2953,2862$, 1720, 1604, 1521. HRMS (ESI): Calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$292.1543, found 292.1543. [$\left.\alpha\right]_{\mathrm{D}}{ }^{25}$ +49.17 (c $0.53, \mathrm{CHCl}_{3}$).

(2S)-Methyl 2-(((octan-2-yloxy)carbonyl)amino)-3-phenylpropanoate (3p)

Following the general procedure and the corresponding oxamic acid (0.25 mmol), $\mathbf{3 p}$ was obtained as a colorless gel ($61 \mathrm{mg}, 73 \%$) within 24h. Rf : 0.43 (AcOEt/petroleum ether 20/80). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.29(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.06(\mathrm{~m}, 2 \mathrm{H}), 5.08(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.79 (dq, $J=12.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67$ (d, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (d, $J=$ $0.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.13(\mathrm{qd}, J=13.8,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.30$ $(\mathrm{d}, J=3.7 \mathrm{~Hz}, 8 \mathrm{H}), 1.20(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{q}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 172.1, 155.7, 135.9, 129.3, 128.5, 127.1, 72.0, 54.6, 52.2, 38.3, 36.2, 31.8, 29.2, 25.3, 22.6, 20.3, 14.1. IR (neat) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3345,3026,2927,2849,1746,1720,1606,1501$. HRMS (ESI): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+} 358.1988$, found 358.1986. [$\left.\alpha\right]_{\mathrm{D}}{ }^{25}+43.41$ (c $0.49, \mathrm{CHCl}_{3}$).

Isopropyl benzylcarbamate (3k)

3k

Following the general procedure and the corresponding oxamic acid (0.25 mmol), $\mathbf{3 k}$ was obtained as a colorless gel ($36 \mathrm{mg}, 75 \%$) within 24 h . Rf : 0.42 (AcOEt/petroleum ether 20/80). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.46-7.16$ $(\mathrm{m}, 5 \mathrm{H}), 4.97(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 156.3,138.7,128.6,127.5,127.4,68.3,45.0$, 22.2. IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right): 3332,3030,2983,2931,1693,1533,1454$. Spectroscopic data were in good agreement with literature. ${ }^{2}$

2-(2-Methoxyethoxy)ethyl cyclohexylcarbamate (3g)

Following the general procedure and the corresponding oxamic acid (0.5 mmol), $\mathbf{3 g}$ was obtained as a colorless gel ($86 \mathrm{mg}, 70 \%$) within $24 \mathrm{~h} . \mathrm{Rf}$ $: 0.46$ (AcOEt/petroleum ether 40/60). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $4.65(\mathrm{~s}, 1 \mathrm{H}), 4.24-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.60(\mathrm{~m}, 4 \mathrm{H}), 3.55(\mathrm{~m}, \mathrm{~J}=6.8$, $3.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.40-1.00(\mathrm{~m}, 5 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 155.5,71.9,70.4,69.7,63.6,59.1,49.8,33.4,25.5,24.7$. IR (neat) $v_{\max }$ $\left(\mathrm{cm}^{-1}\right): 3328,2935,2858,1699,1536,1452$. HRMS (ESI): Calcd. for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 246.1699$, found 246.1700.

3,4-dimethoxyphenethyl phenethylcarbamate (3f)

Following the general procedure and the corresponding oxamic acid (0.5 mmol), 3f was obtained as white solid ($65 \mathrm{mg}, 40 \%$) within

24h, m.p. : 87-89 ${ }^{\circ} \mathrm{C}$. Rf : 0.37 (AcOEt/cyclohexane $40 / 60$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.35-7.12$ $(\mathrm{m}, 5 \mathrm{H}), 6.84-6.68(\mathrm{~m}, 3 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, \mathrm{~Hz}, 6 \mathrm{H}), 3.44(\mathrm{~d}, \mathrm{~J}=6.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.83 (dt, J = 11.2, $6.9 \mathrm{~Hz}, 4 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.4,148.9,147.7,130.5,128.8$, $128.6,126.5,120.8,112.1,111.3,65.4,55.9,55.8,42.1,36.1,35.1$. IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right): 3323.2935$, 2836, 1688, 1591. HRMS (ESI): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 330.1699$, found 330.1701.

Ethyl (thiophen-2-ylmethyl)carbamate (3c)

3c

Following the general procedure and the corresponding oxamic acid (0.3 mmol), 3c was obtained as light brown gel ($30 \mathrm{mg}, 54 \%$) within 24 h . Rf: 0.43 ($\mathrm{AcOEt} / \mathrm{petroleum}$ ether 20/80). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.24(\mathrm{dd}, \mathrm{J}=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}$, $\mathrm{J}=4.8,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.27(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 156.3,141.5,126.9,125.7,125.1,61.1,39.8$, 14.6. IR (neat) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3319,3103,3069,2978,2927,1693,1527$. Spectroscopic data were in good agreement with literature. ${ }^{2}$

Ethyl (furan-2-ylmethyl)carbamate (3d)

Following the general procedure and the corresponding oxamic acid (0.3 mmol), 3d was obtained as light brown gel ($21 \mathrm{mg}, 41 \%$) within $24 \mathrm{~h} . \mathrm{Rf}: 0.39$ (AcOEt/petroleum ether 20/80). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.37$ (dd, J = 1.8, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, \mathrm{J}=3.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H})$, $4.36(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 156.4,151.7,142.1,110.4,107.1,61.1,38.0,14.6$. IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right): 3328,3121,2989,2935$, 1703, 1527.

(R)-methyl 2-(((3-chloropropoxy)carbonyl)amino)-3-phenylpropanoate (3q)

Following the general procedure and the corresponding oxamic acid (0.25 mmol), $\mathbf{3 q}$ was obtained as light brown gel ($60 \mathrm{mg}, 80 \%$) within $24 \mathrm{~h} . \mathrm{Rf}$: $0.36(\mathrm{AcOEt} /$ petroleum ether $20 / 80) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.36$ $-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{dd}, \mathrm{J}=14.1,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.13$ (qd, J = 13.9, $6.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.14-1.99(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.0,155.5,135.7$, $129.2,128.6,127.2,61.9,54.7,52.4,41.2,38.2,31.9$. IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right): 3336.3025,2956,1722$, 1604, 1520. HRMS (ESI): Calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{NClNa}[\mathrm{M}+\mathrm{Na}]^{+} 322.08167$, found 322.0809. [$\left.\alpha\right]_{\mathrm{D}}{ }^{25}$ +47.22 (c 0.73, CHCl_{3}).

2,2,2-Trifluoroethyl phenethylcarbamate (3i)

$3 i$

Following the general procedure and the corresponding oxamic acid (0.25 mmol), $\mathbf{3 i}$ was obtained as light brown gel ($38 \mathrm{mg}, 61 \%$) within 24 h . Rf : 0.74 (AcOEt/petroleum ether 20/80). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.44-7.05$ $(\mathrm{m}, 5 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{q}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{dd}, \mathrm{J}=13.1,6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.86(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 154.5,138.4,123.3\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=277.5 \mathrm{~Hz}\right), 60.9$ $\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=36.4 \mathrm{~Hz}\right), 42.6,36.0$. IR (neat) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3345,3064,3030,2945,1730,1604,1604,1526$. Spectroscopic data were in good agreement with literature. ${ }^{1,2}$

Following the general procedure and the corresponding oxamic acid (0.25

3j mmol), $\mathbf{3 j}$ was obtained as white solid ($30 \mathrm{mg}, 50 \%$) within 24 h , m.p. : 58$60^{\circ} \mathrm{C}$. Rf : 0.48 (AcOEt/petroleum ether 20/80). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.28(\mathrm{dd}, \mathrm{J}=8.7,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-6.94(\mathrm{~m}, 2 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H})$, 4.35 (d, J = $5.4 \mathrm{~Hz}, 2 \mathrm{H}$), 4.08 (d, J = $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.71-2.44$ (m, 1H), 2.06 (ddd, $\mathrm{J}=13.7,8.7,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.71(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 162.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=\right.$ $245.6 \mathrm{~Hz}), 156.8,134.4\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=3.2 \mathrm{~Hz}\right), 129.2,115.5\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=21.5 \mathrm{~Hz}\right), 68.9,44.4,34.4,24.6,18.4$. IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right): 3336,3065,2969,2931,1699,1607,1512$. Spectroscopic data were in good agreement with literature. ${ }^{2}$

Ethyl 4-chlorobenzylcarbamate (3e)

3e

Following the general procedure and the corresponding oxamic acid (0.25 mmol), 3e was obtained as white solid ($38 \mathrm{mg}, 72 \%$) within 24 h , m.p. : $60-61^{\circ} \mathrm{C}$. Rf : 0.31 (AcOEt/petroleum ether 20/80). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.29$ (ddd, $\mathrm{J}=$ $22.0,12.3,5.2 \mathrm{~Hz}, 4 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 156.6,137.2,133.2$, $128.8,61.1,44.3,14.6$. IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right): 3310,3051,2982,2870,2784,1696,1544,1407$. Spectroscopic data were in good agreement with literature. ${ }^{1}$

2-Phenoxyethyl (1-phenylethyl)carbamate (31)

Following the general procedure and the corresponding oxamic acid (0.5 mmol), 31 was obtained as white solid ($110 \mathrm{mg}, 78 \%$) within $24 \mathrm{~h}, \mathrm{~m} . \mathrm{p} .: 88-$ $90^{\circ} \mathrm{C}$. Rf : 0.43 ($\mathrm{AcOEt} /$ petroleum ether $20 / 80$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 7.31(\mathrm{dd}, \mathrm{J}=8.6,7.5 \mathrm{~Hz}, 7 \mathrm{H}), 7.07-6.85(\mathrm{~m}, 3 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.98-$ $4.78(\mathrm{~m}, 1 \mathrm{H}), 4.53-4.32(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{t}, \mathrm{J}=10.9$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 158.5,155.4,143.4,129.5,128.7,127.4,125.9,121.1,114.6$, $66.4,63.3,50.8,22.5$. IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right): 3332,3060,3030,2978,2922,2871,1690,1583,1596$, 1533, 1497, 1452. HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}$308.1257, found 308.1249.

Hexyl benzylcarbamate (3m)

Following the general procedure and the corresponding oxamic acid (0.25 mmol), $\mathbf{3 m}$ was obtained as colorless gel ($41 \mathrm{mg}, 71 \%$) within 24 h . Rf : 0.7 (AcOEt/petroleum ether 20/80). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.42-7.20$ $(\mathrm{m}, 5 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.70$ $-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~d}, \mathrm{~J}=28.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.92(\mathrm{dd}, \mathrm{J}=8.8,4.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $: 156.8,138.7,128.6,127.5,127.4,65.2,45.0,31.5,29.0,25.5,22.6,14.0$. IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right): 3332$, $3030,2961,2927,2858,1697,1533$. Spectroscopic data were in good agreement with literature ${ }^{2}$

Pent-4-en-1-yl phenethylcarbamate (3n)

Following the general procedure and the corresponding oxamic acid (0.25 mmol), 3 n was obtained as colorless gel ($33 \mathrm{mg}, 30 \%$) within $24 \mathrm{~h} . \mathrm{Rf}$: $0.46(\mathrm{AcOEt} /$ petroleum ether $20 / 80) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.49$ $-6.99(\mathrm{~m}, 5 \mathrm{H}), 5.83(\mathrm{~m}, \mathrm{~J}=16.9,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{dd}, \mathrm{J}=13.0,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.13$ (dd, J = 13.9, $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $1.81-1.62(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 156.6,138.8,137.6$, $128.8,128.6,126.5,115.1,64.3,42.1,36.2,30.0,28.3$. IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right)=3335,3065,3028,2940$, 1703, 1641, 1531. Spectroscopic data were in good agreement with literature. ${ }^{1}$

Diethyl hexane-1,6-diyldicarbamate (3s)

Following the general procedure and the corresponding oxamic acid (0.25 mmol), 3 s was obtained as white solid ($54 \mathrm{mg}, 82 \%$) after 24 h , m.p. : $71-73^{\circ} \mathrm{C}$. Rf : 0.46 (AcOEt/petroleum ether 20/80). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 4.70(\mathrm{bs}, 2 \mathrm{H}), 4.12(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.17(\mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.67-1.43(\mathrm{~m}$, $4 \mathrm{H}), 1.40-1.31(\mathrm{~m}, 4 \mathrm{H}), 1.09(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 156.72,60.64,40.72,29.93$, 26.26, 14.66. IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right): 3314,2984,2936,1685$. Spectroscopic data were in good agreement with literature. ${ }^{1,2}$

Bis(2-methoxyethyl) (cyclohexane-1,4-diylbis(methylene))dicarbamate (3r)

Following the general procedure with the corresponding oxamic acid (0.25 mmol), $\mathbf{3 r}$ was obtained as white solid ($60.6 \mathrm{mg}, 70 \%$) after $24 \mathrm{~h}, \mathrm{~m} . \mathrm{p} .: 114-117^{\circ} \mathrm{C}$. Rf : 0.5 (AcOEt/petroleum ether 50/50). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 4.84(\mathrm{~s}, 2 \mathrm{H}), 4.31-4.15(\mathrm{~m}, 4 \mathrm{H}), 3.63-3.54(\mathrm{~m}, 4 \mathrm{H}), 3.40(\mathrm{~s}, 6 \mathrm{H}), 3.14(\mathrm{dd}, \mathrm{J}=13.2,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.04(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.79(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.57-1.27(\mathrm{~m}, 4 \mathrm{H}), 1.03-0.82(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 156.5,71.0,63.8,58.9,47.1,38.2,29.9,26.1$. IR (neat) $\mathrm{v}_{\text {max }}\left(\mathrm{cm}^{-1}\right)$: 3315, 2905, 2841, 1688, 1538, 1449. HRMS (ESI): Calcd. for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+} 347.2177$, found 347.2177.

11. Spectroscopic data of the amides

4-Methyl- N -phenethylquinoline-2-carboxamide (5a)

Following the general procedure and the corresponding heteroarene (0.125 mmol), $\mathbf{5 a}$ was obtained as milky solid ($27.0 \mathrm{mg}, 75 \%$) within $6 \mathrm{~h}, \mathrm{mp}$. : 98$101^{\circ} \mathrm{C} . \mathrm{Rf}: 0.53$ (AcOEt/petroleum ether $20 / 80$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 8.36(\mathrm{~d}, \mathrm{~J}=23.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{dd}, \mathrm{J}=7.7,4.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.76(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.18(\mathrm{~m}, 5 \mathrm{H})$, $3.81(\mathrm{dd}, \mathrm{J}=13.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:$ $164.8,149.5,146.5,146.2,139.2,130.4,129.8,129.3,129.0,128.7,127.7,126.6,124.0,119.5,41.0$, $36.2,19.0$. Spectroscopic data were in good agreement with literature. ${ }^{3}$

(S)-Methyl 2-(4-methylquinoline-2-carboxamido)-3-phenylpropanoate (5b)

Following the general procedure and the corresponding heteroarene (0.125 mmol), $\mathbf{5 b}$ was obtained as white solid ($38 \mathrm{mg}, 86 \%$) within $12 \mathrm{~h}, \mathrm{mp}^{\circ} \mathrm{C} .116-$ $118{ }^{\circ} \mathrm{C}, \mathrm{Rf}: 0.4(\mathrm{AcOEt} /$ petroleum ether $30 / 70) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.73(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.16-8.02(\mathrm{~m}, 3 \mathrm{H}), 7.77(\mathrm{ddd}, \mathrm{J}=8.4,6.9,1.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.65 (ddd, J = 8.2, 6.9, $1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.37-7.21$ (m, 5H), 5.14 (dt, J $=8.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 171.9,164.4,148.6,146.4,146.0,136.1,130.6,129.7,129.4,129.3,128.6$, 127.7, 127.1, 123.8, 119.3, 53.5, 52.3, 38.4, 18.9. IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right): 3379,3064,2952,1744,1675$. HRMS (ESI): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+} 349.1547$, found 349.1538. $[\alpha]_{\mathrm{D}}{ }^{25}+22.32\left(\mathrm{c} 0.48, \mathrm{CHCl}_{3}\right)$.

(S)-Methyl 2-(phenanthridine-6-carboxamido)-3-phenylpropanoate (5c)

Following the general procedure and the corresponding heteroarene (0.25 mmol), $\mathbf{5 c}$ was obtained as white solid ($80 \mathrm{mg}, 83 \%$) within $12 \mathrm{~h}, \mathrm{mp}$. 107$110^{\circ} \mathrm{C}$. Rf : 0.51 (AcOEt/petroleum ether 30/70). ${ }^{1} \mathrm{H}$ NMR (300 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta: 9.57(\mathrm{~d}, \mathrm{~J}=8.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.75-8.57(\mathrm{~m}, 3 \mathrm{H}), 8.21-8.13(\mathrm{~m}, 1 \mathrm{H}), 7.89(\mathrm{ddd}, \mathrm{J}=8.3$, $7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.19(\mathrm{dt}, \mathrm{J}=8.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $3.46-3.28(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (76 MHz, CDCl_{3}) $\delta: 172.0,165.6,148.5,141.9,136.1,133.8,130.9$, $130.7,129.5,128.8,128.8,128.6,128.6,128.0,127.2,125.5,124.3,122.1,121.8,53.6,53.4,52.4,38.3$. IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right): 3370,3064,3034,2948,1744,1673$. HRMS (ESI): Calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 385.1547, found 385.1534. [$\alpha]_{\mathrm{D}}{ }^{25}+41.52$ (c $0.53, \mathrm{CHCl}_{3}$).

N -(3-Chloroquinoxalin-2-yl)adamantane-1-carboxamide (5d)

Following the general procedure and the corresponding heteroarene (0.25 $\mathbf{m m o l}$), 5d was obtained as white solid ($58 \mathrm{mg}, 68 \%$) within 12 h , mp.: 197-200 ${ }^{\circ} \mathrm{C} . \mathrm{Rf}: 0.4$ ($\mathrm{AcOEt} /$ petroleum ether $30 / 70$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.16-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.94-7.79(\mathrm{~m}$, $2 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 2.22(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.86-1.71(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 161.7$, $145.1,144.1,142.3,138,132.3,130.8,129.1,128.2,52.8,41.4,36.3,29.7,29.5$. IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right)$: $3288,3064,2909,2849,1662$. Spectroscopic data were in good agreement with literature. ${ }^{3}$

N-cyclohexylquinoline-2-carboxamide (5e)

Following the general procedure and the corresponding heteroarene (0.25 mmol), 5e was obtained as white solid ($48 \mathrm{mg}, 76 \%$) within $12 \mathrm{~h}, \mathrm{mp} .: 92-95^{\circ} \mathrm{C} . \mathrm{Rf}: 0.38$ ($\mathrm{AcOEt} /$ petroleum ether $20 / 80$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.38-8.28(\mathrm{~m}, 2 \mathrm{H}), 8.17(\mathrm{~m}, 2 \mathrm{H})$, 7.89 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.78 (ddd, J = 8.4, 6.9, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.63 (ddd, J = 8.1, $6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.06 (qd, J = 10.2, $4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.15-2.03 (m, 2H), $1.89-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.21(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (76 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 163.4,150.1,137.4,130.0,129.7,129.2,127.7,118.9,48.4,33.1,25.6,25.0$. IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right): 3375,3056,2935,2835,2849,1674$. Spectroscopic data were in good agreement with literature. ${ }^{3}$

5-Cyano-N-(4-fluorobenzyl)isoquinoline-1-carboxamide (5f)

Following the general procedure and the corresponding heteroarene (0.125 mmol), $\mathbf{5 f}$ was obtained as white solid ($30.5 \mathrm{mg}, 80 \%$) within $12 \mathrm{~h}, \mathrm{mp} .159-$ $162^{\circ} \mathrm{C}$. Rf : 0.28 (AcOEt/petroleum ether $20 / 80$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 10.04(\mathrm{dd}, \mathrm{J}=8.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{ddd}$, $\mathrm{J}=8.3,6.4,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{dd}, \mathrm{J}=8.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.33(\mathrm{~m}, 2 \mathrm{H})$, $7.18-6.98(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $: 165.0,162.3\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=245.8 \mathrm{~Hz}\right), 148.5,142.6,136.8,136.6,133.8,133.5,129.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=8.1 \mathrm{~Hz}\right)$, $127.8,126.6,121.4,116.6,115.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=21.5 \mathrm{~Hz}\right), 109.8,42.9$. IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right): 3362,3051$, $2922,2225,16668$. Spectroscopic data were in good agreement with literature ${ }^{-3}$

N-(tert-butyl)-3-chloroquinoxaline-2-carboxamide (5g)

Following the general procedure and the corresponding heteroarene (0.125 $\mathrm{mmol}), \mathbf{5 g}$ was obtained as light-yellow solid ($20.9 \mathrm{mg}, 61 \%$) within $12 \mathrm{~h}, \mathrm{mp} .: 145-149^{\circ} \mathrm{C} . \mathrm{Rf}: 0.57$ (AcOEt/petroleum ether 30/70). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.19-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.95-7.77(\mathrm{~m}$, 2H), $7.28(\mathrm{~s}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.0,145.0,144.1,142.4,138.9,132.4$, 130.8, 129.1, 128.3, 52.0, 28.7. IR (neat) $v_{\max }\left(\mathrm{cm}^{-1}\right): 3267,3077,2969,2926,1647$. HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}$286.0717, found 286.0714.

4-Bromo-N-(1-phenylethyl)-1-naphthamide (5i)

Following the general procedure, $\mathbf{7 5 i}$ was obtained as pale yellow gel (24 mg , 56%). Rf : 0.32 (AcOEt/petroleum ether 10/90) within $12 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.74-9.63(\mathrm{~m}, 1 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.29-8.19(\mathrm{~m}, 1 \mathrm{H}), 7.80$ (dddd, $\mathrm{J}=30.9,8.3,6.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.25(\mathrm{~m}$, $5 \mathrm{H}), 5.46-5.27(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 164.3,147.3,143.3$, 141.7, 136.0, 132.0, 129.5, 128.7, 128.5, 128.2, 127.4, 126.2, 126.1, 123.5, 49.2, 22.2. IR (neat) $v_{\max }$ $\left(\mathrm{cm}^{-1}\right): 3379,3064,3064,3021,2974,2926,1664,1559$. Spectroscopic data were in good agreement with literature. ${ }^{3}$

$\mathbf{N}^{1}, \mathbf{N}^{4}$-Di-tert-butylphthalazine-1,4-dicarboxamide (5h)

Following the general procedure and the corresponding heteroarene (0.125 mmol), $\mathbf{5} \mathbf{h}$ was obtained as pale yellow solid ($31 \mathrm{mg}, 76 \%$) within $24 \mathrm{~h}, \mathrm{mp}: 126-131^{\circ} \mathrm{C} . \mathrm{Rf}: 0.6$ (AcOEt/DCM 20/80). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.50(\mathrm{dd}, \mathrm{J}=6.5,3.4 \mathrm{~Hz}, 2 \mathrm{H}$), $8.10-7.88(\mathrm{~m}, 4 \mathrm{H}), 1.58(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 163.3,151.3,133.5$, 127.0, 126.3, 51.9, 28.7. IR (neat) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3262,3051,2951,2969,1668$. HRMS (ESI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 351.1792$, found 351.1787.
12. Chiral HPLC of the chiral urethane and amide

Figure 5: HPLC Data for (S)-methyl 2-(((cyclobutylmethoxy)carbonyl)amino)-3-phenylpropanoate (pure 30). UltiMate-3000 (Water: $\mathrm{CH}_{3} \mathrm{CN}: T \mathrm{TFA}$ (65:35:0.1).

Figure 6: HPLC Data for (S)-methyl 2-(((cyclobutylmethoxy)carbonyl)amino)-3-phenylpropanoate (racemic 3o). UltiMate-3000 (Water: $\mathrm{CH}_{3} \mathrm{CN}$:TFA (65:35:0.1).

Figure 7: HPLC Data for (S)-methyl 2-(phenanthridine-6-carboxamido)-3-phenylpropanoate (pure $\mathbf{5 c}$). UltiMate-3000 (Water: $\mathrm{CH}_{3} \mathrm{CN}$:TFA (85:15:0.1).

Figure 8: HPLC Data for (S)-methyl 2-(phenanthridine-6-carboxamido)-3-phenylpropanoate (racemic 5c). UltiMate-3000 (Water: $\mathrm{CH}_{3} \mathrm{CN}: T F A ~(85: 15: 0.1)$.

13. Comparing the penetration depth of the NIR light and blue LED light

The penetration depth of the optimal NIR light photocatalytic procedure was compared with that of the visible light process developed earlier. ${ }^{2}$ The light source was placed 13 cm behind the barrier (Figure 9) and the reaction was performed using the optimized conditions.

Figure 9: Paraffin barricade (1.5 cm) used for the reaction (A); reaction using red light (B); reaction using blue light (C). Reaction setup using hemoglobin solution as barricade (D); reaction under red light irradiation, indicating penetration of the red light into the solution (E), reaction using blue light which was completely blocked by the hemoglobin solution (F).

Figure S10: Disappearance of ter-pyridine 6,6" protons of the $\operatorname{Os}(\mathrm{bptpy})_{2}\left(\mathrm{PF}_{6}\right)_{2}$ in the presence of $\mathrm{BI}-\mathrm{OAc}$. MS (MALDI) of the mixture after the irridiation indicated that the molecular wieght of the photocatalyst was still not altered, suggesting that the observed change in th ${ }^{1} \mathrm{H}-\mathrm{NMR}$ could probably be due to a weak interaction between the photocatalyst and BI-OAc.

Figure S11: UV-visible absorption showed that the absorption profile of $\operatorname{Os}(\mathrm{bptpy})_{2}\left(\mathrm{PF}_{6}\right)_{2}$ was not altered by BI-OAc after the irradiation for 24 h .

Figure 12: In the presence of oxamic acid and ethanol, BI-OAc did not affect the ter-pyridine 6,6" protons in the $\mathrm{Os}(\text { bptpy })_{2}\left(\mathrm{PF}_{6}\right)_{2}$.
14. NMR Spectra

	,	1	1	1		1		,	T	1	1	1	1	1	,	1	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

(
(

トゥ

200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

		,	1		1		1	,		1	1	1	,			1		1	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

「	,			1	T	,	T	T	1				+	+	1	1	1	,		
200	190	180	170	160	150	140	130	120	110		90	80	70	60	50	40	30	20	10	0

$\begin{array}{r}\circ \\ \stackrel{0}{0} \\ \stackrel{1}{1} \\ \stackrel{0}{1} \\ \hline\end{array}$
$\stackrel{? ~ N}{\circ}$

\circ
$\stackrel{\circ}{i}$
1

$\stackrel{8}{+}$

	1		1	1	1	1		1	1	1									1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

			1		1	,						1	1		1				1	
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{nnm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

				¢0.	$\stackrel{\sim}{\text { ¢ }}$	$\stackrel{\text { m }}{\text { ¢ }}$	$\stackrel{6}{\square}$
<1	Y I	V		I	\|	,	\|

「	1	1	1	1	1	1	T	1	1	1	1	1	1	1	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (ppm)										

\ulcorner	1	1	1	1	1	1	,	1	1	1	1	1	1	1	1	1	1	,	1	1
200	190	180	170	160	150	140	130	120	110	100 f1 (ppm)	90	80	70	60	50	40	30	20	10	0

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

		1	1						1		1	1	1	1		1	1	1		
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	

Non

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
										f1 (ppm)									

	1	1	1	T			1	1	1	1	1	1	1	1			1	1		
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

		1	1			1	1		1	10,	1		70	1	5	1	1	1		
200	190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	90	80	70	60	50	40	30	20	10	0

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	,	,	,	1	1	,
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (ppm)										

 1

Γ	1	1	1	1	1	1	1	1	1	,	1	1	1	1	,	1	1	,	1	1
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

\qquad d \qquad 1

			$\begin{aligned} & 1 \\ & \infty \\ & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$						\bigcirc											
\ulcorner	1	1	1	1	1	1	1	1	1	1 ,	1	1	1	1	1	1			1	\square
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\stackrel{5.0}{\text { f1 }(\mathrm{ppm})}$	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

Γ	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

[^0]: 1 I. M. Ogbu, J. Lusseau, G. Kurtay, F. Robert, Y. Landais, Chem. Commun., 2020, 56, 12226-12229.
 2 G. G. Pawar, F. Robert, E. Grau, H. Cramail, Y. Landais, Chem. Commun., 2018, 54, 9337-9340.
 3 A. H. Jatoi, G. G. Pawar, F. Robert, Y. Landais, Chem. Commun., 2019, 55, 466-469.
 4 a) S. D. Linton et. al. J. Med. Chem. 2005, 48, 6779-6782. b) H. Hanchu, J. Kunfang, C. Yiyun, Angew. Chem. Int. Ed. 2015, 54, 1881-1884.
 5 J. Bálint, G. Egri, M. Czugler, J. Schindler, V. Kiss, Z. Juvancz, E. Fogassy, Tetrahedron: Asymmetry 2001, 12, $1511-1518$.
 6 N. S. Vujicic, Z. Glasovac, N. Zweep, J. H. van Esch, M. Vinkovic, J. Popovic, M. Zinic, Chem. Eur. J. 2013, 19, 8558-8572

[^1]: 7 S. D. Linton et. al. J. Med. Chem. 2005, 48, 6779-6782; (b) H. Hanchu, J. Kunfang, C. Yiyun Angew. Chem. Int. Ed. 2015, 54, 18811884.

[^2]: 8 J. Bálint, G. Egri, M. Czugler, J. Schindler, V. Kiss, Z. Juvancz, E. Fogassy, Tetrahedron: Asymmetry 2001, 12, $1511-1518$.
 9 N. S. Vujicic, Z. Glasovac, N. Zweep, J. H. van Esch, M. Vinkovic, J. Popovic, M. Zinic, Chem. Eur. J. 2013, 19, 8558-8572.
 10 H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234-238.

[^3]: 11 Fernández González, D.; Brand, J. P.; Waser, J. Chem. Eur. J. 2010, 16, 9457-9461.

[^4]: 12 P. Eisenberger, S. Gischig, A. Togni, Chem. Eur. J. 2006, 12, 2579-2586.
 13 Y. Sasaki, S. Amemori, H. Kouno, N. Yanai, N. Kimizuka, J. Mater. Chem. C, 2017, 5, 5063-5067.
 14 B.D. Ravetz, N.E.S. Tay, C.L. Joe, M. Sezen-Edmonds, M.A. Schmidt, Y. Tan, J.M. Janey, M.D. Eastgate, T. Rovis, ACS Cent. Sci. 2020, 6, 2053-2059.

[^5]: 15 S. H. C. Askes, W. Pomp, S. L. Hopkins, A. Kros, S. Wu, T. Schmidt, S. Bonnet, small 2016, 12, 40, 5579-5590.

