Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

# ESI

Light induced dissolution and concomitant crystallization of a Keggin-type polyoxometalate mimicking a Naturally occurring phenomenon

#### S1 Fourier Transform Infrared (FTIR) Spectroscopic Analysis

The infrared spectra for the polycrystalline parent compound is shown in **Figure S2**.



Fig. S1. Comparative IR spectra for a) Compound 1; b) Compound 2; c) Compound 3. The marked peaks represent the carbonyl stretching of the NMF solvent.



Fig. S2. Infrared spectra for compound polycrystalline parent

IR bands for Compound polycrystalline parent compound:  $\bar{\upsilon} = 1435$  (s, v(C=C)), 1104 (s, v<sub>s</sub>(P-C)), 1060 (m, v<sub>as</sub>(PO<sub>4</sub>)), 952 (m, v(Mo=O<sub>t</sub>)), 879 (s), 794 (s), 714 (m), 680 (s, v(C-H)), 522 (s), 408 (s) cm<sup>-1</sup>.

## S2 Powder X-Ray Diffraction (PXRD) Analysis

The powder XRD pattern for the polycrystalline parent compound is shown in **Figure S3** 



Fig. S3. Powder X-ray pattern for parent compound



**Fig. S4**. a) Simulated powder XRD pattern for compound 1; b) Powder XRD pattern for as synthesized compound 1; c) Simulated powder XRD pattern for compound 2; d) Powder XRD pattern for as synthesized 2; e) Simulated powder pattern for compound 3; f) Powder XRD pattern for as synthesized compound 3.

**S3** Single Crystal X-ray Crystallography

## compound1



# $R_1 = 6.80\%$

Crystal Data and Experimental



**Experimental.** Single clear dark green block-shaped crystals of **compound1** recrystallised from N-Methyl Formanilide by slow evaporation. A suitable crystal with dimensions  $0.22 \times 0.20 \times 0.19 \text{ mm}^3$  was selected and mounted on a Bruker APEX-II CCD diffractometer. The crystal was kept at a steady *T* = 292(2) K during data collection. The structure was solved with the ShelXT 2018/2 (Sheldrick, 2018) solution program using iterative methods and by using Olex2 1.5-alpha (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on *F*<sup>2</sup>.

**Crystal Data.**  $C_{120}H_{107}Mo_{12}N_3O_{43}P_5$ ,  $M_r = 3585.21$ , triclinic, *P*-1 (No. 2), a = 14.9244(8) Å, b = 14.9531(9) Å, c = 16.6482(9) Å,  $\alpha = 84.920(3)^\circ$ ,  $\beta = 66.901(2)^\circ$ ,  $\gamma = 67.164(2)^\circ$ , V = 3140.7(3) Å<sup>3</sup>, T = 292(2) K, Z = 1, Z' = 0.5,  $\mu(MoK_{\alpha}) = 1.304$ , 90355 reflections measured, 10960 unique (R<sub>int</sub> = 0.0363) which were used in all calculations. The final  $wR_2$  was 0.1442 (all data) and  $R_1$  was 0.0680 (I $\geq 2 \sigma$ (I)).

#### Compound

Formula 1.896  $D_{calc.}$  / g cm<sup>-3</sup>  $\mu/\text{mm}^{-1}$ 1.304 Formula Weight Colour Shape Size/mm<sup>3</sup> T/K**Crystal System** Space Group P-1 a/Å b/Å c/Å  $\alpha/^{\circ}$  $\beta/^{\circ}$  $\gamma/^{\circ}$ V/Å<sup>3</sup> Ζ 1 Z'0.5 Wavelength/Å Radiation type MoKa 2.457  $\Theta_{min}/^{\circ}$  $\Theta_{max}/^{\circ}$ Measured Refl's. 90355 Indep't Refl's 10960 9992 Refl's I  $\geq 2 \sigma(I)$  $R_{\rm int}$ Parameters 868 Restraints 526 Largest Peak 0.826 **Deepest Hole** -0.985 GooF 1.362  $wR_2$  (all data)  $wR_2$  $R_1$  (all data) 0.0741 0.0680  $R_1$ 

#### compound1

 $C_{120}H_{107}Mo_{12}N_3O_{43}P_5$ 3585.21 clear dark green block-shaped 0.22×0.20×0.19 292(2) triclinic 14.9244(8) 14.9531(9) 16.6482(9) 84.920(3) 66.901(2)67.164(2)3140.7(3)0.71073 24.999 0.0363 0.1442 0.1419

## **Structure Quality Indicators**

| Reflections: | d min (Mo)<br>2©=50.0° | 0.84 I/σ(I)    | 46.9 Rint    | 3.63% Full 50.0° | 99.0  |
|--------------|------------------------|----------------|--------------|------------------|-------|
| Refinement:  | Shift<br>CIF           | 0.001 Max Peak | 0.8 Min Peak | -1.0 GooF        | 1.362 |

A clear dark green block-shaped-shaped crystal with dimensions  $0.22 \times 0.20 \times 0.19 \text{ mm}^3$  was mounted. Data were collected using a Bruker APEX-II CCD diffractometer operating at T = 292(2) K.

Data were measured using  $\phi$  and  $\omega$  scans with MoK<sub> $\alpha$ </sub> radiation. The maximum resolution that was achieved was  $\Theta$  = 24.999° (0.84 Å).

The unit cell was refined using SAINT v8.34A (Bruker, 2013) on 9990 reflections, 11% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using SAINT v8.34A (Bruker, 2013). The final completeness is 99.00 % out to 24.999° in  $\Theta$ . SADABS-2008/1 (Bruker, 2008) was used for absorption correction.  $wR_2$ (int) was 0.0725 before and 0.0497 after correction. The Ratio of minimum to maximum transmission is 0.6868. The  $\lambda/2$  correction factor is 0.0015. The absorption coefficient  $\mu$  of this material is 1.304 mm<sup>-1</sup> at this wavelength ( $\lambda = 0.71073$ Å) and the minimum and maximum transmissions are 0.066 and 0.096.

The structure was solved and the space group *P*-1 (# 2) determined by the ShelXT 2018/2 (Sheldrick, 2018) structure solution program using using iterative methods and refined by full matrix least squares minimisation on  $F^2$  using version 2018/3 of ShelXL 2018/3 (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using model.

*\_exptl\_absorpt\_process\_details*: SADABS-2008/1 (Bruker,2008) was used for absorption correction.*wR*<sub>2</sub>(int) was 0.0725 before and 0.0497 after correction.The Ratio of minimum to maximum transmission is 0.6868.The  $\lambda/2$  correction factor is 0.0015.

The value of Z' is 0.5. This means that only half of the formula unit is present in the asymmetric unit, with the other half consisting of symmetry equivalent atoms. The moiety formula is Mo12 O40 P, 4(C24 H20 P), 3(C8 H9 N O).



### **Data Plots: Diffraction Data**







## **Reflection Statistics**

| Total reflections (after filtering) | 91400                                                              | Unique reflections                      | 10960           |
|-------------------------------------|--------------------------------------------------------------------|-----------------------------------------|-----------------|
| Completeness                        | 0.991                                                              | Mean I/ $\sigma$                        | 32.77           |
| hkl <sub>max</sub> collected        | (19, 19, 21)                                                       | hkl <sub>min</sub> collected            | (-19, -19, -21) |
| hkl <sub>max</sub> used             | (17, 17, 19)                                                       | hkl <sub>min</sub> used                 | (-15, -17, 0)   |
| Lim d <sub>max</sub> collected      | 100.0                                                              | $\operatorname{Lim} d_{\min}$ collected | 0.84            |
| d <sub>max</sub> used               | 8.29                                                               | d <sub>min</sub> used                   | 0.84            |
| Friedel pairs                       | 13846                                                              | Friedel pairs merged                    | 1               |
| Inconsistent equivalents            | 0                                                                  | R <sub>int</sub>                        | 0.0363          |
| R <sub>sigma</sub>                  | 0.0213                                                             | Intensity transformed                   | 0               |
| Omitted reflections                 | 0                                                                  | Omitted by user (OMIT hkl)              | 1045            |
| Multiplicity                        | (934, 6346, 6875, 5192, 3563,<br>2530, 1356, 478, 249, 149,<br>28) | Maximum multiplicity                    | 18              |
| Removed systematic absences         | 50                                                                 | Filtered off (Shel/OMIT)                | 13969           |

There are no images if the crystal on the diffractometer, but the inclusion of these images has been requested from the GUI. Please unitck the relevant box if you don't have these images!

**Table 1**: Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **compound1**.  $U_{eq}$  is defined as 1/3 of the trace of the orthogonalised  $U_{ij}$ .

| Atom | х          | У          | Z          | $U_{eq}$ |  |
|------|------------|------------|------------|----------|--|
| Mo6  | 1305.5(7)  | 7475.8(5)  | 4324.8(5)  | 34.8(2)  |  |
| Mo1  | 1413.0(6)  | 11543.7(6) | 4280.8(5)  | 33.7(2)  |  |
| Mo5  | -591.5(6)  | 9029.1(6)  | 3487.3(5)  | 34.8(2)  |  |
| Mo3  | 1045.9(6)  | 10381.6(6) | 2726.5(5)  | 35.7(2)  |  |
| Mo4  | -1711.5(6) | 11579.5(6) | 4011.9(6)  | 36.8(2)  |  |
| Mo2  | 2775.4(6)  | 8990.1(6)  | 3770.0(5)  | 36.4(2)  |  |
| P1   | 0          | 10000      | 5000       | 29.3(7)  |  |
| Р3   | 6580(2)    | 6818.9(18) | 4728.6(17) | 37.7(6)  |  |
| P2   | 1405(2)    | 5490.5(19) | 675.0(17)  | 40.9(6)  |  |

| <b>A b a a a</b> |                   |                    |                    |                       |
|------------------|-------------------|--------------------|--------------------|-----------------------|
| Atom             | X                 | У                  | Z                  | U <sub>eq</sub>       |
| 020              | -2536(5)          | 12290(5)           | 3557(5)            | 47.6(17)              |
| 018              | 4067(5)           | 8482(5)            | 3176(5)            | 51.1(18)              |
| 013              | -1372(5)          | 8680(6)            | 4546(5)            | 61(2)                 |
| 011              | 635(6)            | 7937(6)            | 3568(5)            | 62(2)                 |
| 022              | 1909(6)           | 6280(5)            | 4036(5)            | 60(2)                 |
| 019              | 1518(6)           | 10602(5)           | 1673(4)            | 53.4(18)              |
| 014              | 2374(7)           | 7908(7)            | 3713(5)            | 69(2)                 |
| 07               | 2226(6)           | 9446(5)            | 2849(5)            | 57.3(19)              |
| 016              | 1621(7)           | 7533(7)            | 5361(5)            | 71(2)                 |
| 012              | -34(6)            | 7557(6)            | 5226(5)            | 64(2)                 |
| 06               | 2563(7)           | 10260(5)           | 3991(6)            | 69(2)                 |
| 021              | -800(6)           | 8517(6)            | 2767(5)            | 53.5(18)              |
| 08               | -415(6)           | 11356(5)           | 3116(7)            | 75(3)                 |
| 05               | 1257(7)           | 11331(5)           | 3266(5)            | 67(2)                 |
| 015              | 2714(7)           | 8655(7)            | 4890(5)            | 67(2)                 |
| 010              | 491(6)            | 9467(5)            | 2703(6)            | 67(2)                 |
| 09               | -1548(6)          | 10293(5)           | 3657(6)            | 72(2)                 |
| 017              | 2094(6)           | 12259(6)           | 3952(6)            | 67(2)                 |
| C43              | 7991(7)           | 6184(7)            | 4338(6)            | 38(2)                 |
| C31              | 6311(8)           | 8014(7)            | 4373(7)            | 41(2)                 |
| C44              | 8634(8)           | 6644(7)            | 3812(6)            | 42(2)                 |
| C37              | 6011(8)           | 6853(7)            | 5906(6)            | 40(2)                 |
| C26              | 4984(8)           | 6689(7)            | 4364(6)            | 42(2)                 |
| C45              | 9724(8)           | 6182(7)            | 3524(7)            | 47(2)                 |
| C30              | 6506(8)           | 5222(7)            | 4037(7)            | 47(2)                 |
| C10              | 2155(9)           | 5235(7)            | 1096(6)            | 42(2)                 |
| C25              | 6016(8)           | 6212(7)            | 1070(0)<br>4316(6) | $\frac{42}{2}$        |
| C27              | 4485(9)           | 6209(8)            | 4125(7)            | 52(3)                 |
| CZ7              | 2210(0)           | 4766(7)            | 220(6)             | 32(3)                 |
| C7               | 2310(0)           | 4700(7)<br>022E(0) | -320(0)            | 44(2)<br>61(2)        |
| L30<br>N1        | 51/5(10)          | 0417(0)            | 3363(6)<br>40E(9)  | $\frac{01(3)}{74(2)}$ |
| N1<br>C12        | 5249(9)           | 041/(0)<br>(F20(7) | 405(8)             | /4(3)                 |
| C13              | 423(9)            | 700((0)            | 4/5(/)<br>1772(0)  | 49(3)                 |
| C23              | 2305(10)          | /086(9)            | 1//2(8)            | 60(3)                 |
| C32              | 03/9(/)<br>700(0) | 8/15(7)            | 4824(8)            | 40(2)                 |
|                  | 799(9)            | 4760(7)            | 1418(6)            | 4/(2)                 |
| C28              | 5009(9)           | 5245(9)            | 3853(7)            | 54(3)                 |
| C33              | 6339(8)           | 9592(8)            | 4485(9)            | 59(3)                 |
| L34              | 6220(10)          | 9788(8)            | 3/10(10)           | 70(4)                 |
| UX<br>CD (       | 2245(9)           | 3924(8)            | -543(7)            | 53(3)                 |
| UZ4              | 1/81(9)           | 6807(8)            | 1451(7)            | 52(3)                 |
| C48              | 8427(9)           | 5259(7)            | 4587(7)            | 50(3)                 |
| C6               | 1447(11)          | 3942(9)            | 1684(8)            | 64(3)                 |
| C14              | -414(9)           | 7161(8)            | 1169(9)            | 62(3)                 |
| C46              | 10158(9)          | 5252(8)            | 3771(8)            | 55(3)                 |
| C4               | -32(15)           | 3519(12)           | 2499(9)            | 88(5)                 |
| C42              | 4915(9)           | 7192(8)            | 6334(7)            | 54(3)                 |
| 023              | 5909(9)           | 7171(8)            | -593(8)            | 105(4)                |
| C22              | 3316(11)          | 6419(9)            | 1757(9)            | 67(3)                 |
| 04               | 1022(10)          | 9084(9)            | 4819(8)            | 39(2)                 |
| C15              | -1127(11)         | 7999(9)            | 993(11)            | 76(4)                 |
| C5               | 1027(14)          | 3337(10)           | 2223(9)            | 80(4)                 |
| C41              | 4445(10)          | 7204(9)            | 7225(8)            | 65(3)                 |
| C20              | 3144(10)          | 5206(9)            | 1042(9)            | 65(3)                 |
| C47              | 9507(9)           | 4791(8)            | 4281(8)            | 57(3)                 |
| C38              | 6615(9)           | 6559(9)            | 6400(8)            | 57(3)                 |
| C2               | -259(9)           | 4930(8)            | 1673(7)            | 56(3)                 |
| C29              | 5999(10)          | 4766(7)            | 3801(7)            | 54(3)                 |
| C40              | 5065(10)          | 6895(9)            | 7699(8)            | 66(3)                 |
| C10              | 3784(11)          | 3629(11)           | -1850(9)           | 78(4)                 |
| C18              | 540(10)           | 6766(8)            | -378(8)            | 59(3)                 |
| C3               | -673(12)          | 4314(11)           | 2249(9)            | 77(4)                 |
| C11              | 3822(12)          | 4496(11)           | -1671(8)           | 79(4)                 |
| C39              | 6124(11)          | 6584(11)           | 7296(8)            | 73(4)                 |
| 007              | 0147(11)          | 0007[11]           | , 2,0(0)           | 73(7)                 |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                       |
| C495347(8)9186(6)748(6)66(3)C544509(7)9758(7)1478(6)88(4)C534595(9)10505(7)1845(6)107(5)C17-198(13)7604(10)-529(11)82(4)C565945(13)7872(10)-283(10)84(4)C512727(12)5405(12)12(1(12))104(6) |
| C544509(7)9758(7)1478(6)88(4)C534595(9)10505(7)1845(6)107(5)C17-198(13)7604(10)-529(11)82(4)C565945(13)7872(10)-283(10)84(4)C212727(12)5405(12)12(1(12))104(6)                             |
| C534595(9)10505(7)1845(6)107(5)C17-198(13)7604(10)-529(11)82(4)C565945(13)7872(10)-283(10)84(4)C212727(12)5405(12)12(1(12))104(6)                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                       |
| C56 5945(13) 7872(10) -283(10) 84(4<br>2727(12) 5405(12) 12(1(12) 104(6)                                                                                                                   |
| (21) $(27)7(12)$ $(40)(12)$ $(2)(12)$ $(10)(12)$                                                                                                                                           |
| 1040                                                                                                                                                                                       |
| C55 4290(18) 8210(20) 841(15) 185(1                                                                                                                                                        |
| 02 -221(9) 10153(8) 4136(8) 36(2)                                                                                                                                                          |
| 03 -118(10) 9120(8) 4766(8) 35(2)                                                                                                                                                          |
| 024 2520(20) 7734(17) 9245(16) 118(8)                                                                                                                                                      |
| C58 -83(15) 10019(17) 10774(12) 88(8)                                                                                                                                                      |
| C57 211(12) 9882(16) 9878(12) 63(4)                                                                                                                                                        |
| C62 -489(16) 10413(16) 9491(9) 75(6                                                                                                                                                        |
| C61 -1483(14) 11082(15) 10000(15) 98(1                                                                                                                                                     |
| C60 -1777(13) 11219(16) 10897(14) 101(1                                                                                                                                                    |
| C59 -1077(17) 10687(17) 11284(9) 90(8                                                                                                                                                      |
| 01 927(10) 10177(9) 4269(8) 38(2                                                                                                                                                           |
| C63 1680(30) 9280(30) 8458(19) 102(1                                                                                                                                                       |
| C64 1680(30) 8420(20) 9640(20) 81(8)                                                                                                                                                       |
| N2 1188(15) 9227(16) 9347(14) 79(6                                                                                                                                                         |

**Table 2**: Anisotropic Displacement Parameters (×10<sup>4</sup>) for **compound1**. The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$ 

| Atom | <i>U</i> <sub>11</sub> | <b>U</b> <sub>22</sub> | <i>U</i> <sub>33</sub> | U <sub>23</sub> | <i>U</i> <sub>13</sub> | U <sub>12</sub> |
|------|------------------------|------------------------|------------------------|-----------------|------------------------|-----------------|
| Mo6  | 43.2(5)                | 19.9(4)                | 39.0(5)                | 1.9(3)          | -17.6(4)               | -8.3(3)         |
| Mo1  | 37.3(4)                | 30.2(4)                | 41.6(5)                | 10.7(3)         | -17.5(4)               | -20.7(3)        |
| Mo5  | 36.6(4)                | 33.1(4)                | 39.3(5)                | -4.3(3)         | -17.2(4)               | -14.0(3)        |
| Mo3  | 38.2(5)                | 32.4(4)                | 26.4(4)                | 7.9(3)          | -6.7(3)                | -10.7(4)        |
| Mo4  | 33.1(4)                | 33.9(4)                | 48.5(5)                | 17.1(4)         | -24.4(4)               | -12.4(3)        |
| Mo2  | 23.2(4)                | 44.9(5)                | 33.7(4)                | 1.5(4)          | -7.6(3)                | -8.9(3)         |
| P1   | 29.3(16)               | 26.9(16)               | 32.2(17)               | 6.0(13)         | -13.5(13)              | -10.7(13)       |
| Р3   | 39.8(13)               | 33.4(13)               | 45.6(14)               | 10.9(11)        | -21.5(12)              | -16.8(11)       |
| P2   | 47.1(15)               | 36.4(13)               | 38.2(14)               | 1.7(11)         | -19.2(12)              | -12.4(11)       |
| 020  | 49(4)                  | 46(4)                  | 59(4)                  | 17(3)           | -36(4)                 | -17(3)          |
| 018  | 32(4)                  | 59(4)                  | 51(4)                  | -6(3)           | -13(3)                 | -8(3)           |
| 013  | 37(4)                  | 86(6)                  | 45(4)                  | 19(4)           | -18(3)                 | -9(4)           |
| 011  | 43(4)                  | 82(5)                  | 40(4)                  | 11(4)           | -17(3)                 | -4(4)           |
| 022  | 80(5)                  | 25(3)                  | 47(4)                  | 5(3)            | -8(4)                  | -9(3)           |
| 019  | 69(5)                  | 47(4)                  | 38(4)                  | 11(3)           | -18(3)                 | -21(4)          |
| 014  | 99(6)                  | 104(6)                 | 41(4)                  | 17(4)           | -31(4)                 | -76(5)          |
| 07   | 71(5)                  | 37(4)                  | 65(4)                  | -6(3)           | -48(4)                 | 2(3)            |
| 016  | 112(7)                 | 112(7)                 | 45(4)                  | 36(4)           | -44(5)                 | -92(6)          |
| 012  | 47(4)                  | 81(5)                  | 46(4)                  | 23(4)           | -18(3)                 | -12(4)          |
| 06   | 88(6)                  | 43(4)                  | 83(6)                  | -3(4)           | -65(5)                 | 0(4)            |
| 021  | 51(4)                  | 70(5)                  | 43(4)                  | -12(4)          | -18(3)                 | -24(4)          |
| 08   | 41(4)                  | 25(4)                  | 129(7)                 | 1(4)            | -2(4)                  | -11(3)          |
| 05   | 100(6)                 | 30(4)                  | 79(5)                  | 0(3)            | -68(5)                 | -1(4)           |
| 015  | 99(6)                  | 106(7)                 | 44(4)                  | 28(4)           | -37(4)                 | -83(6)          |
| 010  | 38(4)                  | 35(4)                  | 100(6)                 | -6(4)           | 2(4)                   | -14(3)          |
| 09   | 39(4)                  | 35(4)                  | 120(7)                 | -1(4)           | -4(4)                  | -17(3)          |
| 017  | 70(5)                  | 68(5)                  | 96(6)                  | 42(5)           | -51(5)                 | -49(5)          |
| C43  | 40(5)                  | 37(5)                  | 42(5)                  | 10(4)           | -23(4)                 | -13(4)          |
| C31  | 42(5)                  | 35(5)                  | 48(6)                  | 11(4)           | -22(5)                 | -14(4)          |

| Atom       | U <sub>11</sub>    | <b>U</b> <sub>22</sub> | <b>U</b> 33        | <b>U</b> 23     | <i>U</i> <sub>13</sub> | <b>U</b> <sub>12</sub> |
|------------|--------------------|------------------------|--------------------|-----------------|------------------------|------------------------|
| C44        | 55(6)              | 42(5)                  | 41(5)              | 8(4)            | -19(5)                 | -29(5)                 |
| C37        | 52(6)              | 36(5)                  | 44(6)              | 6(4)            | -24(5)                 | -24(5)                 |
| C26        | 46(6)              | 46(6)                  | 43(6)              | 10(4)           | -27(5)                 | -19(5)                 |
| C45        | 41(6)              | 45(6)                  | 52(6)              | 2(5)            | -15(5)                 | -16(5)                 |
| C30        | 50(6)              | 40(6)                  | 48(6)              | 10(5)           | -18(5)                 | -17(5)                 |
| C19        | 51(6)              | 41(5)                  | 37(5)              | 2(4)            | -17(5)                 | -20(5)                 |
| C25        | 45(6)              | 39(5)                  | 48(6)              | 11(4)           | -19(5)                 | -27(5)                 |
| C27        | 45(6)              | 55(7)                  | 61(7)              | 6(5)            | -26(5)                 | -19(5)                 |
| C7         | 48(6)              | 42(6)                  | 38(5)              | -2(4)           | -20(5)                 | -10(5)                 |
| C36        | 79(9)              | 59(7)                  | 55(7)              | 23(6)           | -35(6)                 | -32(7)                 |
| NI<br>C12  | 72(6)              | 68(5)<br>26(5)         | 77(6)              | -2(4)           | -30(5)                 | -19(4)                 |
| C13        | 5/(7)              | 36(5)<br>F9(7)         | 61(7)<br>FF(7)     | 4(5)            | -33(6)                 | -16(5)                 |
| C22        | 0/(0)<br>22(E)     | 20(7)<br>22(E)         | 55(7)<br>70(7)     | -0(0)<br>6(E)   | -12(0)                 | -34(6)                 |
| C32        | 55(5)<br>61(7)     | 33(3)<br>43(6)         | 70(7)<br>26(5)     | 0(3)            | -23(5)                 | -10(4)<br>21(5)        |
| C28        | 68(8)              | 43(0)<br>64(7)         | 53(7)              | 13(6)           | -34(6)                 | -21(5)                 |
| C33        | 43(6)              | 38(6)                  | 93(10)             | -4(6)           | -27(6)                 | -11(5)                 |
| C34        | 64(8)              | 34(6)                  | 103(11)            | 24(7)           | -27(8)                 | -20(6)                 |
| C8         | 63(7)              | 48(6)                  | 43(6)              | -10(5)          | -21(5)                 | -13(5)                 |
| C24        | 46(6)              | 51(6)                  | 51(6)              | 0(5)            | -12(5)                 | -15(5)                 |
| C48        | 55(7)              | 41(6)                  | 64(7)              | 26(5)           | -35(6)                 | -21(5)                 |
| C6         | 74(8)              | 53(7)                  | 55(7)              | 8(6)            | -17(6)                 | -24(6)                 |
| C14        | 48(7)              | 55(7)                  | 80(9)              | -17(6)          | -26(6)                 | -9(6)                  |
| C46        | 46(6)              | 53(7)                  | 65(7)              | -1(6)           | -30(6)                 | -9(5)                  |
| C4         | 132(15)            | 76(10)                 | 65(9)              | 7(8)            | -14(10)                | -74(11)                |
| C42        | 49(6)              | 64(7)                  | 44(6)              | -8(5)           | -18(5)                 | -13(6)                 |
| 023        | 117(9)             | 72(6)                  | 121(9)             | -20(5)          | -56(7)                 | -15(6)                 |
| C22        | 89(10)             | 61(8)                  | 81(9)              | 15(7)           | -53(8)                 | -41(8)                 |
| 04         | 41(5)              | 31(5)                  | 45(7)              | 8(5)            | -24(5)                 | -9(4)                  |
| C15        | 73(9)              | 50(8)                  | 100(11)            | -8(7)           | -41(8)                 | -7(7)                  |
| C41        | 115(13)            | 52(8)                  | 59(8)              | 12(6)           | -23(8)                 | -30(8)                 |
| C20        | 54(7)<br>60(7)     | /4(9)                  | 59(8)              | -13(6)          | -14(6)                 | -21(6)                 |
| C20<br>C47 | 63(7)              | 37(6)                  | 79(8)              | -3(0)           | -40(7)                 | -11(0)                 |
| C38        | 55(7)              | 71(8)                  | 54(7)              | 11(6)           | -24(6)                 | -31(6)                 |
| C2         | 57(7)              | 54(7)                  | 53(7)              | -2(5)           | -11(6)                 | -26(6)                 |
| C29        | 71(8)              | 32(5)                  | 62(7)              | -2(5)           | -27(6)                 | -20(5)                 |
| C40        | 68(8)              | 74(9)                  | 53(7)              | -6(6)           | -17(6)                 | -29(7)                 |
| C10        | 64(8)              | 95(11)                 | 54(8)              | -28(7)          | -9(7)                  | -15(8)                 |
| C18        | 72(8)              | 46(6)                  | 71(8)              | 9(6)            | -45(7)                 | -18(6)                 |
| C3         | 87(10)             | 85(10)                 | 61(8)              | -8(7)           | -7(7)                  | -56(9)                 |
| C11        | 88(10)             | 103(11)                | 42(7)              | -6(7)           | -11(7)                 | -45(9)                 |
| C39        | 84(10)             | 95(10)                 | 54(8)              | 19(7)           | -42(7)                 | -35(8)                 |
| C16        | 78(9)              | 43(7)                  | 120(13)            | -9(8)           | -64(10)                | 2(7)                   |
| C12        | 77(9)              | 73(8)                  | 47(7)              | 3(6)            | -18(6)                 | -40(7)                 |
| C9         | 79(9)              | 62(8)                  | 59(8)              | -15(6)          | -27(7)                 | -22(7)                 |
| C55        | 91(11)             | 89(11)                 | 102(12)            | 55(10)          | -60(10)                | -39(9)                 |
| C52        | 168(12)<br>150(12) | /2(9)                  | 115(11)<br>160(12) | 13(7)<br>24(10) | -92(9)                 | -35(8)                 |
| C50        | 90(7)              | 122(12)<br>105(11)     | 109(13)<br>143(12) | -24(10)         | -35(10)                | -07(9)                 |
| C49        | 74(6)              | 60(5)                  | 62(6)              | -32(7)<br>8(4)  | -36(4)                 | -15(4)                 |
| C54        | 110(8)             | 64(7)                  | 66(6)              | 4(5)            | -21(5)                 | -22(6)                 |
| C53        | 156(11)            | 67(8)                  | 90(9)              | 2(6)            | -61(8)                 | -21(8)                 |
| C17        | 112(12)            | 63(9)                  | 104(12)            | 24(8)           | -85(11)                | -26(9)                 |
| C56        | 88(8)              | 67(6)                  | 85(7)              | -9(5)           | -30(5)                 | -17(6)                 |
| C21        | 88(11)             | 107(13)                | 148(17)            | 13(12)          | -77(12)                | -39(10)                |
| C55        | 152(12)            | 250(30)                | 149(17)            | -79(17)         | 22(12)                 | -141(17)               |
| 02         | 34(6)              | 25(5)                  | 42(5)              | 3(4)            | -15(5)                 | -4(5)                  |
| 03         | 42(6)              | 24(5)                  | 44(6)              | 4(4)            | -16(5)                 | -19(5)                 |
| 024        | 110(14)            | 94(13)                 | 104(15)            | 27(11)          | -20(12)                | -19(9)                 |
| C58        | 94(14)             | 110(20)                | 67(9)              | 8(9)            | -33(8)                 | -41(12)                |
| C57        | 73(10)             | 71(10)                 | 66(8)              | 14(8)           | -30(7)                 | -46(7)                 |
| L62        | 75(10)             | 87(15)                 | 75(11)             | 20(11)          | -34(9)                 | -41(9)                 |

| Atom | U <sub>11</sub> | <b>U</b> <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | <i>U</i> <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|------------------------|-----------------|-----------------|------------------------|-----------------|
| C61  | 83(11)          | 110(20)                | 90(12)          | 13(13)          | -28(10)                | -31(11)         |
| C60  | 87(15)          | 120(20)                | 90(12)          | 11(13)          | -25(11)                | -43(14)         |
| C59  | 92(14)          | 101(19)                | 82(12)          | 2(12)           | -28(9)                 | -49(12)         |
| 01   | 37(6)           | 35(6)                  | 37(6)           | 0(4)            | -4(4)                  | -18(5)          |
| C63  | 84(18)          | 120(30)                | 68(10)          | 31(10)          | -23(9)                 | -17(17)         |
| C64  | 93(14)          | 83(12)                 | 67(13)          | 21(10)          | -36(10)                | -32(9)          |
| N2   | 81(10)          | 84(11)                 | 67(9)           | 24(8)           | -26(8)                 | -33(8)          |

 Table 3: Bond Lengths in Å for compound1.

| Atom       | Atom             | Length/Å             | Atom        | Atom | Length/Å               |
|------------|------------------|----------------------|-------------|------|------------------------|
| Mo6        | 011              | 1.834(7)             | - <u>P3</u> | C31  | 1.774(9)               |
| Mo6        | 022              | 1.674(7)             | P3          | C37  | 1.801(10)              |
| Mo6        | 014              | 1.845(8)             | P3          | C25  | 1.777(9)               |
| Mo6        | 016              | 1 975(7)             | P2          | C19  | 1 805(10)              |
| Mo6        | 012              | 1936(7)              | P2          | C7   | 1 780(10)              |
| Mo6        | 04               | 2 435(12)            | P2          | C13  | 1 794(10)              |
| Mo6        | 03               | 2 478(12)            | P2          | C1   | 1 786(11)              |
| Mo1        | 013 <sup>1</sup> | 1932(7)              | C43         | C44  | 1 380(13)              |
| Mo1        | $013^{-0121}$    | 1.952(7)             | C43         | C49  | 1 386(13)              |
| Mo1        | 012              | 1.055(0)             | C43<br>C31  | C36  | 1.300(13)<br>1.400(14) |
| Mo1        | 00               | 1.933(7)<br>1.962(7) | C21         | C22  | 1.400(14)              |
| Mo1        | 03               | 1.605(7)             | C31         | C32  | 1.399(14)              |
| Mo1        | 017              | 1.000(7)             | C44<br>C27  | C43  | 1.309(14)<br>1.206(14) |
| M01<br>M-1 | 031              | 2.458(12)            | C37         | C42  | 1.396(14)              |
| M01        | 01               | 2.424(12)            | L37         | C38  | 1.375(14)              |
| M05        | 013              | 1.853(7)             | C26         | C25  | 1.396(13)              |
| M05        | 011              | 1.967(7)             | C26         | 627  | 1.379(14)              |
| M05        | 021              | 1.663(7)             | C45         | C46  | 1.390(15)              |
| Mo5        | 010              | 1.938(7)             | C30         | C25  | 1.385(14)              |
| Mo5        | 09               | 1.836(7)             | C30         | C29  | 1.380(15)              |
| Mo5        | 02               | 2.409(12)            | C19         | C24  | 1.375(14)              |
| Mo5        | 03               | 2.521(12)            | C19         | C20  | 1.397(15)              |
| Mo3        | 019              | 1.671(7)             | C27         | C28  | 1.367(15)              |
| Mo3        | 07               | 1.849(7)             | C7          | C8   | 1.392(14)              |
| Mo3        | 08               | 1.972(7)             | C7          | C12  | 1.397(15)              |
| Mo3        | 05               | 1.928(7)             | C36         | C35  | 1.362(17)              |
| Mo3        | 010              | 1.864(7)             | N1          | C49  | 1.408(13)              |
| Mo3        | 02               | 2.466(12)            | N1          | C56  | 1.277(17)              |
| Mo3        | 01               | 2.503(13)            | N1          | C55  | 1.47(2)                |
| Mo4        | 020              | 1.671(6)             | C13         | C14  | 1.385(15)              |
| Mo4        | 016 <sup>1</sup> | 1.834(8)             | C13         | C18  | 1.390(15)              |
| Mo4        | 08               | 1.845(8)             | C23         | C24  | 1.381(16)              |
| Mo4        | $015^{1}$        | 1.962(7)             | C23         | C22  | 1.374(17)              |
| Mo4        | 09               | 1.958(8)             | C32         | C33  | 1.369(15)              |
| Mo4        | 041              | 2.504(12)            | C1          | C6   | 1.396(15)              |
| Mo4        | 02               | 2.478(11)            | C1          | C2   | 1.385(15)              |
| Mo2        | 018              | 1.664(7)             | C28         | C29  | 1.338(16)              |
| Mo2        | 014              | 1.953(8)             | C33         | C34  | 1.360(18)              |
| Mo2        | 07               | 1.964(7)             | C34         | C35  | 1.38(2)                |
| Mo2        | 06               | 1.845(8)             | C8          | C9   | 1.387(15)              |
| Mo2        | 015              | 1.863(7)             | C48         | C47  | 1.375(15)              |
| Mo2        | 04               | 2.467(13)            | C6          | C5   | 1.368(17)              |
| Mo2        | 01               | 2.473(12)            | C14         | C15  | 1.390(17)              |
| P1         | 04               | 1.544(12)            | C46         | C47  | 1.381(16)              |
| P1         | 041              | 1.544(12)            | C.4         | C5   | 1.38(2)                |
| P1         | 02               | 1.577(12)            | C4          | C3   | 1.36(2)                |
| P1         | $02^{1}$         | 1.577(12)            | C42         | C41  | 1.368(16)              |
| P1         | 03               | 1 497(11)            | 072         | 056  | 1 236(17)              |
| р1         | 031              | 1 497(11)            | C23         | C21  | 1 38(2)                |
| г 1<br>D1  | 03               | 1,777(11)            | C22<br>C15  | C16  | 1.30(2)                |
| D1         | 011              | 1 520(12)            | C13<br>C11  | C10  | 1.33(2)                |
| г 1<br>D2  | C12              | 1.002(10)            | C20         | C21  | 1.30/(1/)              |
| гэ         | 643              | 1.002(10)            | L2U         | 621  | 1.377(10)              |

| Atom | Atom | Length/Å  |  |
|------|------|-----------|--|
| C38  | C39  | 1.376(16) |  |
| C2   | C3   | 1.405(17) |  |
| C40  | C39  | 1.347(18) |  |
| C10  | C11  | 1.383(19) |  |
| C10  | C9   | 1.352(18) |  |
| C18  | C17  | 1.392(16) |  |
| C11  | C12  | 1.381(17) |  |
| C16  | C17  | 1.37(2)   |  |
| C52  | C51  | 1.3900    |  |
| C52  | C53  | 1.3900    |  |
| C51  | C50  | 1.3900    |  |
| C50  | C49  | 1.3900    |  |
| C49  | C54  | 1.3900    |  |
|      |      |           |  |

| Atom                   | Atom | Length/Å  |
|------------------------|------|-----------|
| C54                    | C53  | 1.3900    |
| 024                    | C64  | 1.24(4)   |
| C58                    | C57  | 1.3900    |
| C58                    | C59  | 1.3900    |
| C57                    | C62  | 1.3900    |
| C57                    | N2   | 1.378(17) |
| C62                    | C61  | 1.3900    |
| C61                    | C60  | 1.3900    |
| C60                    | C59  | 1.3900    |
| C63                    | N2   | 1.38(3)   |
| C64                    | N2   | 1.31(3)   |
|                        |      |           |
| <sup>1</sup> -x,2-y,1- | Z    |           |

\_\_\_\_

**Table 4**: Bond Angles in ° for compound1.

|                  |      |                         |          | <br>     |      |                  |          |
|------------------|------|-------------------------|----------|----------|------|------------------|----------|
| Atom             | Atom | Atom                    | Angle/°  | <br>Atom | Atom | Atom             | Angle/°  |
| 011              | Mo6  | 014                     | 93.6(4)  | 013      | Mo5  | 03               | 63.4(4)  |
| 011              | Mo6  | 016                     | 155.9(4) | 011      | Mo5  | 02               | 90.9(4)  |
| 011              | Mo6  | 012                     | 88.6(3)  | 011      | Mo5  | 03               | 62.8(4)  |
| 011              | Mo6  | 04                      | 94.3(4)  | 021      | Mo5  | 013              | 102.7(4) |
| 011              | Mo6  | 03                      | 65.2(4)  | 021      | Mo5  | 011              | 99.5(4)  |
| 022              | Mo6  | 011                     | 102.8(4) | 021      | Mo5  | 010              | 100.3(4) |
| 022              | Mo6  | 014                     | 101.9(4) | 021      | Mo5  | 09               | 103.8(4) |
| 022              | Mo6  | 016                     | 100.7(4) | 021      | Mo5  | 02               | 160.1(4) |
| 022              | Mo6  | 012                     | 101.5(4) | 021      | Mo5  | 03               | 156.9(4) |
| 022              | Mo6  | 04                      | 159.0(4) | 010      | Mo5  | 011              | 82.5(3)  |
| 022              | Mo6  | 03                      | 159.7(4) | 010      | Mo5  | 02               | 64.0(4)  |
| 014              | Mo6  | 016                     | 86.8(3)  | 010      | Mo5  | 03               | 92.3(4)  |
| 014              | Mo6  | 012                     | 155.4(4) | 09       | Mo5  | 013              | 93.8(4)  |
| 014              | Mo6  | 04                      | 64.5(4)  | 09       | Mo5  | 011              | 156.2(4) |
| 014              | Mo6  | 03                      | 95.4(4)  | 09       | Mo5  | 010              | 88.5(3)  |
| 016              | Mo6  | 04                      | 64.2(4)  | 09       | Mo5  | 02               | 65.4(4)  |
| 016              | Mo6  | 03                      | 90.8(4)  | 09       | Mo5  | 03               | 95.7(4)  |
| 012              | Mo6  | 016                     | 81.5(3)  | 02       | Mo5  | 03               | 42.2(4)  |
| 012              | Mo6  | 04                      | 91.0(4)  | 019      | Mo3  | 07               | 102.5(4) |
| 012              | Mo6  | 03                      | 63.4(4)  | 019      | Mo3  | 08               | 100.5(4) |
| 04               | Mo6  | 03                      | 40.9(4)  | 019      | Mo3  | 05               | 101.1(4) |
| 013 <sup>1</sup> | Mo1  | 06                      | 83.5(3)  | 019      | Mo3  | 010              | 102.5(4) |
| 013 <sup>1</sup> | Mo1  | 03 <sup>1</sup>         | 63.9(4)  | 019      | Mo3  | 02               | 158.3(4) |
| 013 <sup>1</sup> | Mo1  | 01                      | 90.9(4)  | 019      | Mo3  | 01               | 158.2(4) |
| 012 <sup>1</sup> | Mo1  | 013 <sup>1</sup>        | 88.0(3)  | 07       | Mo3  | 08               | 156.6(4) |
| 012 <sup>1</sup> | Mo1  | 06                      | 156.9(4) | 07       | Mo3  | 05               | 88.2(3)  |
| 012 <sup>1</sup> | Mo1  | 05                      | 92.3(4)  | 07       | Mo3  | 010              | 92.5(3)  |
| 012 <sup>1</sup> | Mo1  | <b>0</b> 3 <sup>1</sup> | 64.8(4)  | 07       | Mo3  | 02               | 95.1(4)  |
| 012 <sup>1</sup> | Mo1  | 01                      | 94.9(4)  | 07       | Mo3  | 01               | 64.9(4)  |
| 06               | Mo1  | 03 <sup>1</sup>         | 92.3(4)  | 08       | Mo3  | 02               | 63.6(4)  |
| 06               | Mo1  | 01                      | 63.9(4)  | 08       | Mo3  | 01               | 91.9(4)  |
| 05               | Mo1  | 013 <sup>1</sup>        | 155.8(4) | 05       | Mo3  | 08               | 83.2(4)  |
| 05               | Mo1  | 06                      | 86.9(3)  | 05       | Mo3  | 02               | 92.0(4)  |
| 05               | Mo1  | <b>0</b> 3 <sup>1</sup> | 94.4(4)  | 05       | Mo3  | 01               | 62.4(4)  |
| 05               | Mo1  | 01                      | 64.9(4)  | 010      | Mo3  | 08               | 86.6(3)  |
| 017              | Mo1  | 013 <sup>1</sup>        | 101.7(4) | 010      | Mo3  | 05               | 155.6(4) |
| 017              | Mo1  | 012 <sup>1</sup>        | 102.1(4) | 010      | Mo3  | 02               | 63.7(4)  |
| 017              | Mo1  | 06                      | 100.6(4) | 010      | Mo3  | 01               | 96.0(4)  |
| 017              | Mo1  | 05                      | 101.9(4) | 02       | Mo3  | 01               | 43.1(4)  |
| 017              | Mo1  | <b>O</b> 3 <sup>1</sup> | 159.6(4) | 020      | Mo4  | 016 <sup>1</sup> | 102.4(4) |
| 017              | Mo1  | 01                      | 159.1(4) | 020      | Mo4  | 08               | 101.6(4) |
| 01               | Mo1  | <b>03</b> <sup>1</sup>  | 41.1(4)  | 020      | Mo4  | 015 <sup>1</sup> | 100.7(4) |
| 013              | Mo5  | 011                     | 85.8(3)  | 020      | Mo4  | 09               | 100.4(4) |
| 013              | Mo5  | 010                     | 155.6(4) | 020      | Mo4  | 041              | 158.5(4) |
| 013              | Mo5  | 02                      | 94.9(4)  | 020      | Mo4  | 02               | 157.4(4) |
|                  |      |                         |          |          |      |                  |          |

\_

| Atom                    | Atom            | Atom             | Angle/°              | Atom             | Atom       | Atom        | Angle/°                  |
|-------------------------|-----------------|------------------|----------------------|------------------|------------|-------------|--------------------------|
| 016 <sup>1</sup>        | Mo4             | 08               | 94.3(4)              | 011              | P1         | 01          | 180.0                    |
| 016 <sup>1</sup>        | Mo4             | 015 <sup>1</sup> | 88.1(3)              | C31              | Р3         | C43         | 108.0(5)                 |
| 016 <sup>1</sup>        | Mo4             | 09               | 156.4(4)             | C31              | РЗ         | C37         | 110.7(5)                 |
| 016 <sup>1</sup>        | Mo4             | 041              | 64.3(4)              | C31              | Р3         | C25         | 110.0(5)                 |
| 016 <sup>1</sup>        | Mo4             | 02               | 96.7(4)              | C37              | Р3         | C43         | 109.6(5)                 |
| 08                      | Mo4             | 015 <sup>1</sup> | 156.5(4)             | C25              | P3         | C43         | 110.8(5)                 |
| 08                      | Mo4             | 09               | 86.8(3)              | C25              | P3         | C37         | 107.7(4)                 |
| 08                      | Mo4             | 041              | 96.4(4)              | C7               | P2         | C19         | 107.2(5)                 |
| 08                      | Mo4             | 02               | 64.8(4)              | C7               | P2         | C13         | 110.3(5)                 |
| $015^{1}$               | M04             | 041              | 63.7(4)              | C7               | PZ<br>D2   |             | 108.3(5)                 |
| 015                     | M04             | 02               | 91.7(4)              | C13              | PZ<br>D2   | C19<br>C10  | 109.7(5)                 |
| 09                      | M04<br>Mo4      | 015              | 81.9(3)              |                  | PZ<br>D2   | C19         | 111.0(5)                 |
| 09                      | M04<br>Mo4      | 04-              | 92.1(4)              |                  | PZ<br>012  | UIS<br>Mo11 | 110.4(5)<br>140.9(4)     |
| 09                      | Mo4<br>Mo4      | 041              | 02.4(4)<br>42.6(4)   | Mo5<br>Mo6       | 013        | Mo1-<br>Mo5 | 140.0(4)<br>140.1(4)     |
| 02                      | Mo <sup>2</sup> | 04               | 43.0(4)<br>99.8(4)   | Mo6              | 011        | Mo2         | 140.1(4)<br>1394(5)      |
| 010                     | Mo2             | 07               | 101 1(3)             | Mo3              | 07         | Mo2<br>Mo2  | 1385(4)                  |
| 018                     | Mo2             | 06               | 103 1(4)             | Mo4 <sup>1</sup> | 016        | Mo6         | 1387(5)                  |
| 018                     | Mo2             | 015              | 101.6(4)             | Mo1 <sup>1</sup> | 012        | Mo6         | 138.8(4)                 |
| 018                     | Mo2             | 04               | 157.5(4)             | Mo2              | 06         | Mo1         | 138.5(5)                 |
| 018                     | Mo2             | 01               | 159.7(4)             | Mo4              | 08         | Mo3         | 138.8(5)                 |
| 014                     | Mo2             | 07               | 82.6(3)              | Mo1              | 05         | Mo3         | 139.6(5)                 |
| 014                     | Mo2             | 04               | 62.5(4)              | Mo2              | 015        | $Mo4^1$     | 138.2(4)                 |
| 014                     | Mo2             | 01               | 92.4(4)              | Mo3              | 010        | Mo5         | 138.2(5)                 |
| 07                      | Mo2             | 04               | 90.9(4)              | Mo5              | 09         | Mo4         | 138.6(5)                 |
| 07                      | Mo2             | 01               | 64.3(4)              | C44              | C43        | Р3          | 119.2(7)                 |
| 06                      | Mo2             | 014              | 156.5(4)             | C44              | C43        | C48         | 120.4(9)                 |
| 06                      | Mo2             | 07               | 87.8(3)              | C48              | C43        | Р3          | 120.4(8)                 |
| 06                      | Mo2             | 015              | 93.2(4)              | C36              | C31        | Р3          | 121.2(8)                 |
| 06                      | Mo2             | 04               | 96.4(4)              | C32              | C31        | P3          | 119.4(8)                 |
| 06                      | Mo2             | 01               | 64.1(4)              | C32              | C31        | C36         | 118.8(9)                 |
| 015                     | Mo2             | 014              | 87.4(3)              | C43              | C44        | C45         | 120.3(9)                 |
| 015                     | Mo2             | 07               | 156.4(4)             | C42              | C37        | P3          | 118.7(8)                 |
| 015                     | Mo2             | 04               | 65.6(4)              | C20              | C37        | P3<br>C42   | 122.6(8)<br>110.7(10)    |
| 015                     | Mo2             | 01               | 95.0(4)<br>42.2(4)   | C38              | C36        | C2E         | 118.7(10)<br>121 $F(10)$ |
| 04<br>041               | M02<br>D1       | 01               | 42.5(4)<br>180.0     | C27<br>C44       | C20<br>C45 | C25<br>C46  | 121.3(10)<br>1101(10)    |
| 04                      | Г 1<br>Р1       | 04               | 107 3(6)             | C79              | C30        | C25         | 119.1(10)<br>121.2(10)   |
| $04^{1}$                | P1              | 02               | 72.7(6)              | C24              | C19        | P2          | 121.2(10)                |
| $04^{1}$                | P1              | $02^{1}$         | 107.3(6)             | C24              | C19        | C20         | 119.8(10)                |
| 04                      | P1              | 021              | 72.7(6)              | C20              | C19        | P2          | 118.7(8)                 |
| 021                     | P1              | 02               | 180.0                | C26              | C25        | Р3          | 120.1(8)                 |
| 03                      | P1              | 04               | 68.8(7)              | C30              | C25        | Р3          | 123.0(8)                 |
| 03                      | P1              | 041              | 111.2(7)             | C30              | C25        | C26         | 116.5(9)                 |
| <b>0</b> 3 <sup>1</sup> | P1              | 04               | 111.2(7)             | C28              | C27        | C26         | 119.5(10)                |
| 03 <sup>1</sup>         | P1              | 041              | 68.8(7)              | C8               | C7         | P2          | 122.1(8)                 |
| 03 <sup>1</sup>         | P1              | 02               | 109.3(6)             | C8               | C7         | C12         | 118.8(10)                |
| 03                      | P1              | 021              | 109.3(6)             | C12              | C7         | P2          | 119.1(8)                 |
| 031                     | P1              | 021              | 70.7(6)              | C35              | C36        | C31         | 119.7(13)                |
| 03                      | P1              | 02               | 70.7(6)              | C49              | N1         | C55         | 119.8(13)                |
| 03                      | P1              | 031              | 180.0                | C56              | N1         | C49         | 124.4(13)                |
| 031                     | P1              | 01               | 68.7(6)              | C56              | N1         | C55         | 115.9(15)                |
| 03                      | PI<br>D1        | 011              | 68./(6)              | C14              | C13        | PZ          | 120.1(9)                 |
| 031                     | P1<br>D1        | 01               | 111.3(6)             | C14              | C13        | U10<br>D2   | 119.0(11)                |
| 03                      | P1<br>D1        | 01               | 111.3(0)<br>100.2(7) | C10<br>C22       | C22        | PZ<br>C24   | 120.1(9)                 |
| 01                      | г 1<br>Р1       | 04               | 109.3(7)<br>70 7(7)  | C22<br>C33       | (32        | C24<br>C31  | 120 3(11)                |
| $01^{1}$                | Р1              | $04^{1}$         | 70 7(7)              | C6               | C1         | P2          | 1178(9)                  |
| 01                      | P1              | $04^{1}$         | 109.3(7)             | C2               | C1         | P2          | 122.3(9)                 |
| 01                      | P1              | 02               | 71.7(7)              | C2               | C1         | C6          | 119.6(11)                |
| 011                     | P1              | 02               | 108.3(7)             | C29              | C28        | C27         | 120.5(10)                |
| 01 <sup>1</sup>         | P1              | 021              | 71.7(7)              | C34              | C33        | C32         | 120.1(11)                |
| 01                      | P1              | 021              | 108.3(7)             | C33              | C34        | C35         | 120.7(11)                |

| Atom       | Atom       | Atom            | Angle/°                | Atom             | Atom | Atom            | Angle/°                |
|------------|------------|-----------------|------------------------|------------------|------|-----------------|------------------------|
|            |            | <u> </u>        | 120 0(12)              | $\frac{1}{C54}$  | C52  | <u>(52</u>      | 120.0                  |
| C10        | C24        | C23             | 120.0(12)<br>120.6(11) | C16              | C17  | C18             | 120.0<br>1106(14)      |
| C19<br>C47 | C48        | C43             | 120.0(11)              | 023              | C56  | N1              | 119.0(14)<br>126.6(17) |
| C5         | C40<br>C6  | C45<br>C1       | 117.3(10)<br>120.0(12) | C22              | C21  | C20             | 120.0(17)<br>1105(17)  |
| C12        | C14        | C15             | 120.0(13)<br>1100(12)  | UZZ<br>Mo5       | 021  | 020<br>Mo2      | 119.3(14)<br>02.6(4)   |
| C13<br>C47 | C14<br>C46 | C45             | 120.9(13)<br>120.0(10) | Mo5              | 02   | Mo4             | 93.0(4)<br>93.1(4)     |
| C3         | C40<br>C4  | C5              | 120.0(10)<br>120.1(13) | Mo3              | 02   | Mo4             | 92.1(4)                |
| C41        | C42        | C37             | 120.1(13)<br>1210(11)  | D1               | 02   | Mo5             | 124.7(6)               |
| C23        | C72        | C21             | 121.0(11)              | Г 1<br>Р1        | 02   | Mo3             | 124.7(0)               |
| 023<br>Mo6 | 04         | $M_0 4^1$       | 924(4)                 | Г 1<br>Р1        | 02   | Mo4             | 122.7(0)               |
| Mo6        | 04         | Mo <sup>2</sup> | 92.4(4)                | Mo6              | 02   | Mo5             | 913(4)                 |
| Mo2        | 04         | Mo41            | 93.2(4)                | Mo1 <sup>1</sup> | 03   | Mo6             | 92.0(4)                |
| D1         | 04         | Mo4<br>Mo6      | 125 1(7)               | Mo1 <sup>1</sup> | 03   | Mo5             | 92.0(4)                |
| D1         | 04         | $Mo4^1$         | 123.1(7)               | P1               | 03   | Mo6             | 1250(7)                |
| D1         | 04         | Mo <sup>2</sup> | 121.7(7)<br>123 $A(7)$ | D1               | 03   | Mo11            | 125.0(7)<br>125.2(7)   |
| C16        | C15        | C1A             | 123.4(7)               | D1               | 03   | Mo5             | 122.2(7)               |
| C10<br>C6  | C5         |                 | 121.2(13)<br>1206(14)  | C57              | C58  | C59             | 122.2(0)               |
| C40        | C41        | C42             | 110 0(12)              | C58              | C57  | C62             | 120.0                  |
| C10        | C20        | C71             | 119.0(12)<br>119.3(12) | N2               | C57  | C58             | 120.0                  |
| C19<br>C48 | C47        | C46             | 117.3(12)<br>120.9(10) | N2               | C57  | C62             | 122.0(10)<br>1180(18)  |
| C37        | C38        | C30             | 1191(11)               | C61              | C62  | C57             | 120.0(10)              |
| C1         | C2         | C3              | 1189(12)               | C60              | C61  | C62             | 120.0                  |
| C28        | C29        | C30             | 120.7(12)              | C61              | C60  | C59             | 120.0                  |
| C20        | $C_{40}$   | C41             | 120.7(10)              | C60              | C59  | C58             | 120.0                  |
| C9         | C10        | C11             | 120.0(12)              | Mo1              | 01   | Mo3             | 92 5(4)                |
| C13        | C18        | C17             | 1198(13)               | Mo1              | 01   | Mo2             | 93 1(4)                |
| C4         | C3         | C2              | 1206(14)               | Mo2              | 01   | Mo2             | 91 6(4)                |
| C12        | C11        | C10             | 120.0(13)              | P1               | 01   | Mo1             | 124 9(7)               |
| C40        | C39        | C38             | 121 5(12)              | P1               | 01   | Mo3             | 122 4(7)               |
| C15        | C16        | C17             | 120.8(12)              | P1               | 01   | Mo2             | 123.4(7)               |
| C11        | C12        | C7              | 120.0(12)              | P1               | 01   | 03 <sup>1</sup> | 54 5(5)                |
| C10        | C9         | C8              | 120.6(12)              | $03^{1}$         | 01   | Mo1             | 70 5(6)                |
| C36        | C35        | C34             | 120.5(12)              | 03 <sup>1</sup>  | 01   | Mo3             | 133 6(8)               |
| C51        | C52        | C53             | 120.0                  | 03 <sup>1</sup>  | 01   | Mo2             | 130.8(8)               |
| C52        | C51        | C50             | 120.0                  | 024              | C64  | N2              | 129(3)                 |
| C49        | C50        | C51             | 120.0                  | C57              | N2   | C63             | 125(2)                 |
| C50        | C49        | N1              | 121 2(8)               | C64              | N2   | C57             | 121(2)                 |
| C54        | C49        | N1              | 118 8(8)               | C64              | N2   | C63             | 114(3)                 |
| C54        | C49        | C50             | 120.0                  |                  | 112  | 000             | 11(0)                  |
| JU 1       |            | 000             |                        |                  |      |                 |                        |

**Table 5**: Torsion Angles in ° for compound1.

| Atom             | Atom | Atom | Atom    | Angle/°    |
|------------------|------|------|---------|------------|
| P3               | C43  | C44  | C45     | 178.0(8)   |
| Р3               | C43  | C48  | C47     | -179.8(9)  |
| Р3               | C31  | C36  | C35     | -170.4(11) |
| Р3               | C31  | C32  | C33     | 169.7(8)   |
| Р3               | C37  | C42  | C41     | 177.9(9)   |
| Р3               | C37  | C38  | C39     | -178.5(10) |
| P2               | C19  | C24  | C23     | 179.9(9)   |
| P2               | C19  | C20  | C21     | 179.6(12)  |
| P2               | C7   | C8   | C9      | -178.2(9)  |
| P2               | C7   | C12  | C11     | 179.1(10)  |
| P2               | C13  | C14  | C15     | 176.0(9)   |
| P2               | C13  | C18  | C17     | -177.0(10) |
| P2               | C1   | C6   | C5      | -177.2(10) |
| P2               | C1   | C2   | C3      | 179.0(9)   |
| 020              | Mo4  | 08   | Mo3     | -156.2(8)  |
| 018              | Mo2  | 06   | Mo1     | 156.2(7)   |
| 018              | Mo2  | 015  | $Mo4^1$ | -152.2(7)  |
| 013 <sup>1</sup> | Mo1  | 05   | Mo3     | -12.5(14)  |

| Atom                    | Atom       | Atom     | Atom                                 | Angle/°             |
|-------------------------|------------|----------|--------------------------------------|---------------------|
| 013                     | Mo5        | 09       | Mo4                                  | 101.6(8)            |
| 011                     | Mo6        | 014      | Mo2                                  | 100.1(7)            |
| 011                     | Mo5        | 013      | $Mo1^1$                              | 54.4(7)             |
| 011                     | Mo5        | 09       | Mo4                                  | 13.5(14)            |
| 022                     | Mo6        | 011      | Mo5                                  | 154.3(7)            |
| 022                     | Mo6        | 014      | Mo2                                  | -156.0(7)           |
| 019                     | Mo3        | 07       | Mo2                                  | 152.2(7)            |
| 019                     | Mo3        | 010      | Mo5                                  | -154.2(7)           |
| 014                     | Mo6        | 011      | Mo5                                  | -102.6(8)           |
| 014                     | Mo2        | 06       | Mo1                                  | -10.3(14)           |
| 014                     | Mo2        | 015      | $Mo4^1$                              | -52.7(8)            |
| 07                      | Mo3        | 010      | Mo5                                  | 102.5(7)            |
| 07                      | Mo2        | 06       | Mo1                                  | 55.3(7)             |
| 07                      | Mo2        | 015      | Mo4 <sup>1</sup>                     | 11.9(14)            |
| 016                     | Mo6        | 011      | Mo5                                  | -12.4(14)           |
| 016                     | Mo6        | 014      | Mo2                                  | -55.8(7)            |
| 0161                    | Mo4        | 08       | Mo3                                  | 100.1(8)            |
| 012                     | Mo6        | 011      | Mo5                                  | 52.9(8)             |
| 012<br>012 <sup>1</sup> | Mob<br>Mo1 | 014      | Mo2                                  | 5.6(14)             |
| 0121                    | Mo1        | 05<br>05 | Mo2                                  | -102.0(8)           |
| 06                      | Mo1<br>Mo2 | 05       | M03                                  | 54.3(8)<br>102.0(0) |
| 00                      | MoE        | 015      | M04 <sup>1</sup><br>Mo1 <sup>1</sup> | 103.8(8)            |
| 021                     | Mo5        | 013      | Mo1-                                 | 153.3(7)            |
| 021                     | Mo3        | 07       | Mo4<br>Mo2                           | -134.3(7)           |
| 08                      | Mo3        | 010      | Mo2<br>Mo5                           | -17.0(13)           |
| 05                      | Mo3        | 010      | Mo2                                  | 54.2(7)             |
| 05                      | Mo3        | 010      | Mo5                                  | 112(13)             |
| $015^{1}$               | Mo4        | 010      | Mo3                                  | 50(15)              |
| 015                     | Mo2        | 06       | Mo1                                  | -1011(7)            |
| 010                     | Mo5        | 013      | Mo1 <sup>1</sup>                     | -6.9(13)            |
| 010                     | Mo5        | 09       | Mo4                                  | -54.1(8)            |
| 010                     | Mo3        | 07       | Mo2                                  | -104.3(7)           |
| 09                      | Mo5        | 013      | $Mo1^1$                              | -101.7(7)           |
| 09                      | Mo4        | 08       | Mo3                                  | -56.2(8)            |
| 017                     | Mo1        | 05       | Mo3                                  | 154.5(7)            |
| C43                     | Р3         | C31      | C36                                  | 92.2(10)            |
| C43                     | Р3         | C31      | C32                                  | -78.9(9)            |
| C43                     | P3         | C37      | C42                                  | -171.2(8)           |
| C43                     | P3         | C37      | C38                                  | 8.9(10)             |
| C43                     | P3         | C25      | C26                                  | -164.9(8)           |
| C43                     | P3         | C25      | C30                                  | 23.1(10)            |
| C43                     | C44        | C45      | C46                                  | 0.1(15)             |
| C43                     | C48        | C47      | C46                                  | 3.6(17)             |
| C31                     | P3         | C43      | C44                                  | -3.6(9)             |
| C31                     | P3         | C43      | C48                                  | 174.1(8)            |
| C31                     | P3         | C37      | C42                                  | 69.8(9)             |
| C21                     | P3<br>D2   | C37      | C38                                  | -110.1(9)           |
| C21                     | P3<br>D2   | C25      | C20                                  | -45.5(9)            |
| C21                     | P3<br>C26  | C25      | C34                                  | 142.4(0)            |
| C21                     | C30        | C33      | C34                                  | 1(2)                |
| C44                     | C42        | C48      | C47                                  | -2 1(16)            |
| C44<br>C44              | C45        | C46      | C47                                  | -2.1(10)<br>1 4(16) |
| C37                     | D7         | C43      | C44                                  | -124 3(R)           |
| C37                     | P3         | C43      | C48                                  | 53 5(10)            |
| C37                     | P3         | (31      | (36                                  | -147 8(9)           |
| C37                     | P3         | C31      | C32                                  | 41 1(9)             |
| C37                     | P3         | C25      | C26                                  | 75 2(9)             |
| C37                     | P3         | C25      | C30                                  | -96.8(9)            |
| C37                     | C42        | C41      | C40                                  | 1.3(19)             |
| C37                     | C38        | C39      | C40                                  | 0(2)                |
| C26                     | C27        | C28      | C29                                  | 0.2(17)             |
|                         |            |          |                                      |                     |

| Atom       | Atom       | Atom       | Atom             | Angle/°              |
|------------|------------|------------|------------------|----------------------|
| C45        | C46        | C47        | C48              | -3.2(18)             |
| C19        | P2         | C7         | C8               | 139.7(9)             |
| C19        | P2         | C7         | C12              | -41.0(10)            |
| C19        | P2         | C13        | C14              | -67.7(10)            |
| C19        | P2         | C13        | C18              | 107.7(9)             |
| C19        | P2         | C1         | C6               | -54.6(10)            |
| C19        | P2         | C1         | C2               | 131.1(9)             |
| C19        | C20        | C21        | C22              | 3(2)                 |
| C25        | P3         | C43        | C44              | 117.0(8)             |
| C25        | P3         | C43        | C48              | -65.3(10)            |
| C25        | P3         | C31        | C36              | -28.9(11)            |
| C25        | P3         | C31        | C32              | 160.1(8)             |
| C25        | P3         | C37        | C42              | -50.5(9)             |
| C25        | P3         | C37        | C38              | 129.6(9)             |
| C25        | C26        | C27        | C28              | -0.2(16)             |
| C25        | C30        | C29        | C28              | -1.4(17)             |
| C27        | C26        | C25        | Р3               | -173.1(8)            |
| C27        | C26        | C25        | C30              | -0.6(15)             |
| C27        | C28        | C29        | C30              | 0.6(18)              |
| C7         | P2         | C19        | C24              | 138.1(9)             |
| C7         | P2         | C19        | C20              | -40.6(10)            |
| C7         | P2         | C13        | C14              | 174.5(9)             |
| C7         | P2         | C13        | C18              | -10.1(11)            |
| C7         | P2         | C1         | C6               | 62.7(10)             |
| C7         | P2         | C1         | C2               | -111.6(9)            |
| C7         | C8         | С9         | C10              | 0.9(19)              |
| C36        | C31        | C32        | C33              | -1.6(15)             |
| N1         | C49        | C54        | C53              | 178.2(9)             |
| C13        | P2         | C19        | C24              | 18.4(10)             |
| C13        | P2         | C19        | C20              | -160.4(9)            |
| C13        | P2         | C7         | C8               | -101.0(9)            |
| C13        | P2         | C7         | C12              | 78.4(10)             |
| C13        | P2         | C1         | C6               | -176.4(9)            |
| C13        | P2         | C1         | C2               | 9.3(11)              |
| C13        | C14        | C15        | C16              | 0(2)                 |
| C13        | C18        | C17        | C16              | 2(2)                 |
| C23        | C22        | C21        | C20              | -6(2)                |
| C32        | C31        | C36        | C35              | 0.7(18)              |
| C32        | C33        | C34        | C35              | 1.0(19)              |
| C1         | P2         | C19        | C24              | -103.8(9)            |
| C1         | P2         | C19        | C20              | 77.4(10)             |
| C1         | P2         | C7         | C8               | 19.9(10)             |
| C1         | P2         | C7         | C12              | -160.8(9)            |
| C1         | P2         | C13        | C14              | 54.9(10)             |
| C1         | P2         | C13        | C18              | -129.7(9)            |
| C1         | C6         | C5         | C4               | 1(2)                 |
| C1         | C2         | C3         | C4               | -5.2(19)             |
| C33        | C34        | C35        | C36              | -2(2)                |
| C8         | L/         | C12        |                  | -1.5(18)             |
| C24        | C19        | C20        | C21              | 0.9(19)              |
| C24        | C23        | C22        | C21              | 5(2)                 |
| C48        | C43        | C44        | C45              | 0.3(15)              |
|            |            | C10        | C17              | 4.9(16)              |
| 014<br>C14 | 013<br>C1E | C16        | U17              | -1.0(1/)             |
| 014<br>C42 | C27        | C20        | C20              | 1(2)<br>1 ((17)      |
| U42<br>C42 | Ա3/<br>C41 | C40        | C20              | 1.6(1/)              |
| 642<br>622 | 641<br>622 | C24        | 537<br>C10       | 0[2]                 |
| 04         | 623<br>Mac | U24<br>011 | 019<br>Mar       | -1./(18)             |
| 04         | Moe        | 011        | Mo2              | -30.U(8)<br>7 1 (7)  |
| 04         | Mod        | 014        | Mo2              | 25 6(0)              |
| 04         | Mo?        | 00         | Mo1              | -32 3(0)             |
| 04         | Mo2        |            | Mo <sup>11</sup> | נטן גני-<br>רדי בי ס |
| 04         | MUZ        | 013        | 14104-           | 0.3(7)               |

| Atom       | Atom       | Atom       | Atom             | Angle/°              |
|------------|------------|------------|------------------|----------------------|
| 04         | P1         | 02         | Mo5              | 63.4(9)              |
| 041        | P1         | 02         | Mo5              | -116.6(9)            |
| 04         | P1         | 02         | Mo3              | -58.9(8)             |
| 041        | P1         | 02         | Mo3              | 121.1(8)             |
| 041        | P1         | 02         | Mo4              | 3.8(7)               |
| 04         | P1         | 02         | Mo4              | -176.2(7)            |
| 04         | P1         | 03         | Mo6              | -3.9(7)              |
| 041        | P1         | 03         | Mo6              | 176.1(7)             |
| 041        | P1         | 03         | Mo1 <sup>1</sup> | -60.9(9)             |
| 04         | P1         | 03         | Mo1 <sup>1</sup> | 119.1(9)             |
| $04^{1}$   | P1         | 03         | Mo5              | 57 9(9)              |
| 04         | P1         | 03         | Mo5              | -122.1(9)            |
| 04         | P1         | 01         | Mo1              | -1262(10)            |
| $04^{1}$   | P1         | 01         | Mo1              | 538(10)              |
| $04^{1}$   | P1         | 01         | Mo3              | -66 6(9)             |
| 04         | P1         | 01         | Mo3              | 113 4(9)             |
| 041        | D1         | 01         | Mo2              | 176.3(7)             |
| 04         | D1         | 01         | Mo2              | 170.3(7)             |
| 04         | F I<br>D1  | 01         | 021              | 122 2(0)             |
| 041        | т 1<br>D1  | 01         | 03               | -123.2(0)<br>56 Q(0) |
| C15        | г 1<br>С16 | 01<br>C17  | 03-<br>C10       | 20.0(0)              |
| CE<br>010  | C10        | C2         | C2               | -4(4)                |
| 60<br>671  | U4<br>C40  | 63<br>620  | 62<br>620        | 3(2)<br>1(2)         |
| U41<br>C20 | C10        | C34        | 638<br>633       | -1(2)                |
| C20        | C19        | C24        | C23              | -1.4(17)             |
| C38        | C37        | C42        | C41              | -2.2(17)             |
| C2         |            | 6          | L5<br>D2         | -2.8(18)             |
| 629        | C30        | 625        | P3               | 173.6(8)             |
| 629        | C30        | 625        | C26              | 1.3(15)              |
| C10        | C11        | C12        | C7               | -3(2)                |
| C18        | C13        | C14        | C15              | 0.6(17)              |
| C3         | C4         | C5         | C6               | -1(2)                |
| C11        | C10        | <u>C</u> 9 | C8               | -5(2)                |
| C12        | C7         | C8         | C9               | 2.5(17)              |
| C9         | C10        | C11        | C12              | 6(2)                 |
| C52        | C51        | C50        | C49              | 0.0                  |
| C51        | C52        | C53        | C54              | 0.0                  |
| C51        | C50        | C49        | N1               | -178.2(10)           |
| C51        | C50        | C49        | C54              | 0.0                  |
| C50        | C49        | C54        | C53              | 0.0                  |
| C49        | N1         | C56        | 023              | 177.5(13)            |
| C49        | C54        | C53        | C52              | 0.0                  |
| C53        | C52        | C51        | C50              | 0.0                  |
| C56        | N1         | C49        | C50              | -5.1(17)             |
| C56        | N1         | C49        | C54              | 176.7(12)            |
| C55        | N1         | C49        | C50              | 175.8(16)            |
| C55        | N1         | C49        | C54              | -2.5(19)             |
| C55        | N1         | C56        | 023              | -3(3)                |
| 02         | Mo5        | 013        | $Mo1^1$          | -36.1(8)             |
| 02         | Mo5        | 09         | Mo4              | 7.9(7)               |
| 02         | Mo3        | 07         | Mo2              | -40.6(7)             |
| 02         | Mo3        | 010        | Mo5              | 8.0(6)               |
| 02         | Mo4        | 08         | Mo3              | 4.7(7)               |
| 02         | P1         | 04         | Mo6              | -56.5(9)             |
| 021        | P1         | 04         | Mo6              | 123.5(9)             |
| 02         | P1         | 04         | $Mo4^1$          | -176.3(7)            |
| 021        | P1         | 04         | Mo4 <sup>1</sup> | 3.7(7)               |
| 021        | P1         | 04         | Mo2              | -113.5(9)            |
| 02         | P1         | 04         | Mo2              | 66 5(9)              |
| 02         | Р1         | 03         | Moh              | 114 4(9)             |
| $02^{1}$   | Р1         | 03         | Mn6              | -65 6(9)             |
| $02^{1}$   | Р1         | 03         | Mo1 <sup>1</sup> | 57 4(9)              |
| 02         | р1         | 03         | Mo1 <sup>1</sup> | -122 6(0)            |
| 02         | р1         | 03         | Mos              | -2 8(6)              |
| 02         | 1 1        | 05         | MUJ              | -3.0(0)              |

| Atom                    | Atom       | Atom      | Atom                   | Angle/°              |
|-------------------------|------------|-----------|------------------------|----------------------|
| 021                     | P1         | 03        | Mo5                    | 176.2(6)             |
| 02                      | P1         | 01        | Mo1                    | 117.1(9)             |
| 021                     | P1         | 01        | Mo1                    | -62.9(9)             |
| 02                      | P1         | 01        | Mo3                    | -3.2(6)              |
| 021                     | P1         | 01        | Mo3                    | 176.8(6)             |
| 02                      | P1         | 01        | Mo2                    | -120.3(9)            |
| 021                     | P1         | 01        | Mo2                    | 59.7(9)              |
| 02                      | P1         | 01        | 031                    | 120.2(7)             |
| 021                     | PI<br>Mac  | 01        | 031<br>Mol             | -59.8(7)             |
| 03                      | MOO        | 011       | M05<br>Mo2             | -0.3(7)<br>247(9)    |
| 03 <sup>1</sup>         | Mo1        | 014       | Mo2                    | -37.8(8)             |
| 03                      | Mo1<br>Mo5 | 013       | Mo1 <sup>1</sup>       | -72(7)               |
| 03                      | Mo5        | 09        | Mo4                    | 38.1(8)              |
| 031                     | P1         | 04        | Mo6                    | -176.0(7)            |
| 03                      | P1         | 04        | Mo6                    | 4.0(7)               |
| 03                      | P1         | 04        | Mo4 <sup>1</sup>       | -115.8(9)            |
| <b>0</b> 3 <sup>1</sup> | P1         | 04        | $Mo4^1$                | 64.2(9)              |
| 031                     | P1         | 04        | Mo2                    | -53.0(9)             |
| 03                      | P1         | 04        | Mo2                    | 127.0(9)             |
| 031                     | P1         | 02        | Mo5                    | -175.9(7)            |
| 03                      | P1         | 02        | Mo5                    | 4.1(7)               |
| 03                      | P1         | 02        | M03                    | -118.2(8)            |
| 021                     | PI<br>D1   | 02        | M03<br>Mo4             | 61.8(8)              |
| 03-                     | P1<br>D1   | 02        | M04<br>Mo4             | -55.5(9)             |
| 03<br>03 <sup>1</sup>   | P1         | 02        | Mo4<br>Mo1             | -30(7)               |
| 03                      | P1         | 01        | Mo1                    | 177.0(7)             |
| 03 <sup>1</sup>         | P1         | 01        | Mo3                    | -123.4(9)            |
| 03                      | P1         | 01        | Mo3                    | 56.6(9)              |
| 03                      | P1         | 01        | Mo2                    | -60.5(9)             |
| <b>03</b> <sup>1</sup>  | P1         | 01        | Mo2                    | 119.5(9)             |
| 03                      | P1         | 01        | <b>03</b> <sup>1</sup> | 180.002(3)           |
| 024                     | C64        | N2        | C57                    | 175(4)               |
| 024                     | C64        | N2        | C63                    | 1(6)                 |
| C58                     | C57        | C62       | C61                    | 0.0                  |
| C58                     | C57        | NZ<br>N2  | C63                    | -156(3)              |
| C57                     | C58        | NZ<br>C59 | C60                    | 52(4)<br>0.0         |
| C57                     | C62        | C61       | C60                    | 0.0                  |
| C62                     | C57        | N2        | C63                    | 24(4)                |
| C62                     | C57        | N2        | C64                    | -148(3)              |
| C62                     | C61        | C60       | C59                    | 0.0                  |
| C61                     | C60        | C59       | C58                    | 0.0                  |
| C59                     | C58        | C57       | C62                    | 0.0                  |
| C59                     | C58        | C57       | N2                     | -180(3)              |
| 01                      | Mo1        | 05        | Mo3                    | -8.3(7)              |
| 01                      | Mo3        | 07        | Mo2                    | -8.9(6)              |
| 01                      | Mo3<br>Mo2 | 010       | M05<br>Mo1             | 37.4(8)              |
| 01                      | Mo2        |           | Mo11                   | -7.0(6)<br>20 E(9)   |
| 01                      | M02<br>D1  | 015       | M04*<br>Mo6            | 39.5(8)<br>-119.3(9) |
| 01 <sup>1</sup>         | P1         | 04        | Moo                    | 607(9)               |
| 01                      | P1         | 04        | Mo4 <sup>1</sup>       | 121.0(9)             |
| 01 <sup>1</sup>         | P1         | 04        | Mo4 <sup>1</sup>       | -59.0(9)             |
| 01                      | P1         | 04        | Mo2                    | 3.7(7)               |
| 011                     | P1         | 04        | Mo2                    | -176.3(7)            |
| 01                      | P1         | 02        | Mo5                    | 125.5(9)             |
| 011                     | P1         | 02        | Mo5                    | -54.5(9)             |
| 011                     | P1         | 02        | Mo3                    | -176.8(6)            |
| 01                      | P1         | 02        | Mo3                    | 3.2(6)               |
| 011<br>011              | Р1<br>D1   | 02        | M04<br>Mo4             | -114.1(8)            |
| 011                     | Υ1         | 02        | M04                    | 62.9(8)              |

| Atom            | Atom | Atom | Atom    | Angle/°    |
|-----------------|------|------|---------|------------|
| 011             | P1   | 03   | Mo6     | -126.0(10) |
| 01              | P1   | 03   | Mo6     | 54.0(10)   |
| 011             | P1   | 03   | $Mo1^1$ | -3.0(7)    |
| 01              | P1   | 03   | $Mo1^1$ | 177.0(7)   |
| 01 <sup>1</sup> | P1   | 03   | Mo5     | 115.8(9)   |
| 01              | P1   | 03   | Mo5     | -64.2(9)   |
| N2              | C57  | C62  | C61     | 180(3)     |
|                 |      |      |         |            |

<sup>1</sup>-x,2-y,1-z

**Table 6**: Hydrogen Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **compound1**.  $U_{eq}$  is defined as 1/3 of the trace of the orthogonalised  $U_{ij}$ .

| Atom | x        | у        | Z        | U <sub>ea</sub> |
|------|----------|----------|----------|-----------------|
| H44  | 8334.85  | 7265.73  | 3650.26  | 51              |
| H26  | 4625.38  | 7345.22  | 4554.01  | 51              |
| H45  | 10158.53 | 6490.97  | 3169.84  | 57              |
| H30  | 7187.97  | 4883.54  | 4006.91  | 56              |
| H27  | 3796.45  | 6538.73  | 4172.88  | 62              |
| H36  | 6119.69  | 7782.01  | 3276.27  | 73              |
| H23  | 2116.23  | 7723.17  | 1997.19  | 72              |
| H32  | 6451.31  | 8586.23  | 5357.28  | 55              |
| H28  | 4676.08  | 4918.74  | 3696.95  | 65              |
| H33  | 6392.68  | 10052.92 | 4783.28  | 71              |
| H34  | 6204.73  | 10380.18 | 3478.42  | 84              |
| H8   | 1704.54  | 3734.54  | -175.5   | 63              |
| H24  | 1129.32  | 7254.13  | 1475.05  | 63              |
| H48  | 7993.76  | 4957.6   | 4957.02  | 60              |
| H6   | 2164.04  | 3808.65  | 1494.3   | 77              |
| H14  | -498.63  | 7020.23  | 1743.4   | 75              |
| H46  | 10886.09 | 4939.71  | 3592.75  | 66              |
| H4   | -307.98  | 3096.87  | 2856.1   | 106             |
| H42  | 4496 92  | 7414 04  | 6009.07  | 65              |
| H22  | 3680.51  | 6592.07  | 2016.97  | 81              |
| H15  | -1692.48 | 8419.53  | 1455.84  | 92              |
| H5   | 1460 16  | 2797 53  | 2404 6   | 96              |
| H41  | 3714.72  | 7419.21  | 7504.81  | 78              |
| H20  | 3406.02  | 4576.06  | 795.47   | 78              |
| H47  | 9803.33  | 4156.43  | 4419.65  | 69              |
| H38  | 7346.63  | 6344.74  | 6131.4   | 69              |
| H2   | -687.79  | 5444.32  | 1464.81  | 67              |
| H29  | 6349.71  | 4110.86  | 3602.84  | 65              |
| H40  | 4754.14  | 6899.8   | 8305.05  | 79              |
| H10  | 4308.79  | 3222.83  | -2339.9  | 94              |
| H18  | 1110.49  | 6360.13  | -847.57  | 71              |
| H3   | -1392.76 | 4451.92  | 2462.51  | 92              |
| H11  | 4332.33  | 4702.7   | -2069.22 | 95              |
| H39  | 6531.58  | 6382.81  | 7630.05  | 88              |
| H16  | -1493.6  | 8782.98  | 62.89    | 95              |
| H12  | 3149.28  | 5623.33  | -769.27  | 77              |
| H9   | 2933.6   | 2811.95  | -1465.45 | 81              |
| H35  | 6022.77  | 9269.27  | 2745.75  | 106             |
| H52  | 5575.11  | 11181.19 | 1727.96  | 132             |
| H51  | 6973.12  | 10226.82 | 510.16   | 171             |
| H50  | 6830.28  | 8979.16  | -102.42  | 141             |
| H54  | 3891.41  | 9640.22  | 1720.59  | 106             |
| H53  | 4034.23  | 10887.89 | 2333.18  | 128             |
| H17  | -137.55  | 7748.8   | -1098.11 | 99              |
| H56  | 6538.53  | 8018.05  | -582.78  | 101             |
| H21  | 4408.69  | 5066.88  | 1307.06  | 125             |
| H55A | 4104.59  | 8227.11  | 1462.65  | 277             |
| H55B | 4418.28  | 7574.78  | 632.43   | 277             |

| Atom | Х        | У        | Z        | $U_{eq}$ |
|------|----------|----------|----------|----------|
| H55C | 3721.67  | 8688.34  | 713.75   | 277      |
| H58  | 385.91   | 9663.13  | 11033.1  | 106      |
| H62  | -292.42  | 10321.58 | 8891.18  | 90       |
| H61  | -1952    | 11437.57 | 9741.44  | 118      |
| H60  | -2442.65 | 11666.36 | 11237.54 | 121      |
| H59  | -1273.71 | 10779.15 | 11883.38 | 108      |
| H63A | 1520.89  | 8897.06  | 8142.24  | 153      |
| H63B | 2430.46  | 9038.13  | 8296.12  | 153      |
| H63C | 1433.55  | 9946.49  | 8317.94  | 153      |
| H64  | 1358.79  | 8365.57  | 10239.03 | 97       |

**Table 7**: Atomic Occupancies for all atoms that are not fully occupied in **compound1**.

| Atom | Occupancy |
|------|-----------|
| 04   | 0.5       |
| 02   | 0.5       |
| 03   | 0.5       |
| 024  | 0.5       |
| C58  | 0.5       |
| H58  | 0.5       |
| C57  | 0.5       |
| C62  | 0.5       |
| H62  | 0.5       |
| C61  | 0.5       |
| H61  | 0.5       |
| C60  | 0.5       |
| H60  | 0.5       |
| C59  | 0.5       |
| H59  | 0.5       |
| 01   | 0.5       |
| C63  | 0.5       |
| H63A | 0.5       |
| H63B | 0.5       |
| H63C | 0.5       |
| C64  | 0.5       |
| H64  | 0.5       |
| N2   | 0.5       |

### Citations

O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, (2009), **42**, 339-341.

SADABS, Bruker axs, Madison, WI (?).

SAINT - Software for the Integration of CCD Detector System Bruker Analytical X-ray Systems, Bruker axs, Madison, WI (?).

Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., (2015), C71, 3-8.

Sheldrick, G.M., ShelXT-Integrated space-group and crystal-structure determination, *Acta Cryst.*, (2015), **A71**, 3-8.

## **Compound 2**

## Crystal Data and Experimental



**Experimental.** Single clear yellow plate-shaped crystals of **comp-2\_sg** recrystallised from a mixture of water and methanol by slow evaporation. A suitable crystal with dimensions  $0.20 \times 0.18 \times 0.17$  mm<sup>3</sup> was selected and mounted on a Bruker APEX-II CCD diffractometer. The crystal was kept at a steady T = 100(2) K during data collection. The structure was solved with the Superflip (Palatinus & Chapuis, 2007;Palatinus & van der Lee, 2008;Palatinus et al., 2012) solution program using ? and by using Olex2 1.5-dev (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on  $F^2$ .

**Crystal Data.**  $C_{86}H_{75.75}Mo_{12}N_{1.75}O_{41.75}P_4$ ,  $M_r = 3076.89$ , monoclinic,  $P2_1/n$  (No. 14), a = 14.219(3) Å, b = 25.074(6) Å, c = 27.423(7) Å,  $\mathbb{Z} = 97.437(11)^{\circ}$ ,  $\mathbb{Z} = \mathbb{Z} = 90^{\circ}$ , V = 9695(4) Å<sup>3</sup>, T = 100(2) K, Z = 4, Z' = 1,  $\mathbb{Z}$  (MoK<sub> $\alpha$ </sub>) = 1.653, 317477 reflections measured, 17041 unique (Rint = 0.1447) which were used in all calculations. The final *wR*<sub>2</sub> was 0.1104 (all data) and *R*<sub>1</sub> was 0.0530 (I≥2 $\sigma$ (I)).

# $R_1 = 5.30\%$

| Compound                | comp-2_sg                                                               |
|-------------------------|-------------------------------------------------------------------------|
| Formula                 | C <sub>86</sub> H <sub>75.75</sub> Mo <sub>12</sub> N <sub>1.75</sub> O |
|                         | 41.75P4                                                                 |
| Dcalc./gcm-3            | 2.108                                                                   |
| $\mu/\text{mm}^{-1}$    | 1.653                                                                   |
| Formula Weight          | 3076.89                                                                 |
| Colour                  | clear yellow                                                            |
| Shape                   | plate-shaped                                                            |
| Size/mm3                | 0.20.0.18.0.17                                                          |
| T/K                     | 100(2)                                                                  |
| Crystal System          | monoclinic                                                              |
| Space Group             | P21/n                                                                   |
| a/Å                     | 14.219(3)                                                               |
| b/Å                     | 25.074(6)                                                               |
| c/Å                     | 27.423(7)                                                               |
| $\alpha/^{\circ}$       | 90                                                                      |
| $\beta/^{\circ}$        | 97.437(11)                                                              |
| $\gamma I^{\circ}$      | 90                                                                      |
| V/Å <sup>3</sup>        | 9695(4)                                                                 |
| Ζ                       | 4                                                                       |
| Ζ'                      | 1                                                                       |
| Wavelength/Å            | 0.71073                                                                 |
| Radiation type          | MoK2                                                                    |
| $\Theta_{min}/^{\circ}$ | 2.105                                                                   |
| $\Theta_{max}/^{\circ}$ | 24.999                                                                  |
| Measured Refl's.        | 317477                                                                  |
| Indep't Refl's          | 17041                                                                   |
| Refl's I≥2 ⊠(I)         | 12616                                                                   |
| Rint                    | 0.1447                                                                  |
| Parameters              | 1190                                                                    |
| Restraints              | 360                                                                     |
| Largest Peak            | 1.107                                                                   |
| Deepest Hole            | -1.129                                                                  |
| GooF                    | 1.034                                                                   |
| wR2 (all data)          | 0.1104                                                                  |
| wR2                     | 0.0996                                                                  |
| R1 (all data)           | 0.0795                                                                  |
| R1                      | 0.0530                                                                  |
|                         |                                                                         |

Structure Quality Indicators

| Reflections: | d min (Mo)<br>20=50.0* | 0.84  | I/∂(I)   | 19.0 | Rint<br>m=18.91 | 14.47% | Full 50.0* | 99.9  |
|--------------|------------------------|-------|----------|------|-----------------|--------|------------|-------|
| Refinement:  | Shift                  | 0.002 | Max Peak | 1.1  | Min Peak        | -1.1   | GooF       | 1.034 |

A clear yellow plate-shaped-shaped crystal with dimensions  $0.20 \times 0.18 \times 0.17 \text{ mm}^3$  was mounted. Data were collected using a Bruker APEX-II CCD diffractometer equipped with an Oxford Cryosystems low-temperature device operating at T = 100(2) K.

Data were measured using  $\phi$  and  $\omega$  scans with MoK<sub>a</sub> radiation. The maximum resolution that was achieved was  $\Theta$  = 24.999° (0.84 Å).

The unit cell was refined using SAINT v8.37A (Bruker, 2015) on 9634 reflections, 3% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using SAINT v8.37A (Bruker, 2015). The final completeness is 99.90 % out to 24.999° in  $\alpha$  No absorption correction was performed. The absorption coefficient  $\mu$  of this material is 1.653 mm<sup>-1</sup> at this wavelength ( $\lambda$  = 0.71073Å) and the minimum and maximum transmissions are 0.064 and 0.096.

The structure was solved and the space group  $P_{2_1/n}$  (# 14) determined by the Superflip (Palatinus & Chapuis, 2007;Palatinus & van der Lee, 2008;Palatinus et al., 2012) structure solution program using using ? and refined by full matrix least squares minimisation on  $F^2$  using version 2018/3 of ShelXL 2018/3 (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model.

\_exptl\_absorpt\_process\_details: SADABS-2008/1 (Bruker,2008) was used for absorption correction. $wR_2$ (int) was 0.1105 before and 0.0997 after correction.The Ratio of minimum to maximum transmission is 0.6632.The  $\lambda/2$  correction factor is 0.0015.

\_smtbx\_masks\_special\_details: A solvent mask was calculated and 506 electrons were found in a volume of 1558Å<sup>3</sup> in 2 voids per unit cell. This is consistent with the presence of 1.75[C8H9NO] per Formula Unit (7\*N-Methyl Formanilide per unit cell) which account for 504 electrons per unit cell.



#### Data Plots: Diffraction Data



**Data Plots: Refinement and Data** 



 Table 8: Bond Lengths in Å for compound2.

| Atom | Atom | Length/Å | Atom | Atom | Length/Å |
|------|------|----------|------|------|----------|
| Mo5  | 09   | 1.839(5) | Mo6  | 09   | 2.008(5) |
| Mo5  | 012  | 1.807(5) | Mo6  | 018  | 1.993(5) |
| Mo5  | 011  | 2.030(6) | Mo6  | 010  | 1.838(6) |
| Mo5  | 014  | 2.011(5) | Mo6  | 01   | 2.458(6) |
| Mo5  | 01   | 2.437(5) | Mo6  | 04   | 2.55(2)  |
| Mo5  | 037  | 1.657(5) | Mo2  | 016  | 1.843(5) |
| Mo5  | 02   | 2.51(2)  | Mo2  | 024  | 2.006(5) |
| Mo1  | 033  | 1.671(6) | Mo2  | 017  | 2.018(6) |
| Mo1  | 013  | 1.825(5) | Mo2  | 03   | 2.456(6) |
| Mo1  | 012  | 1.995(5) | Mo2  | 026  | 1.798(6) |
| Mo1  | 015  | 2.008(5) | Mo2  | 034  | 1.657(5) |
| Mo1  | 017  | 1.823(5) | Mo2  | 06   | 2.38(3)  |
| Mo1  | 03   | 2.429(6) | Mo10 | 042  | 1.671(5) |
| Mo1  | 02   | 2.42(2)  | Mo10 | 020  | 1.988(5) |
| Mo3  | 016  | 1.997(5) | Mo10 | 021  | 1.839(6) |
| Mo3  | 015  | 1.844(6) | Mo10 | 023  | 2.009(6) |
| Mo3  | 019  | 1.995(6) | Mo10 | 019  | 1.798(6) |
| Mo3  | 03   | 2.480(6) | Mo10 | 05   | 2.441(6) |
| Mo3  | 018  | 1.812(5) | Mo10 | 04   | 2.41(2)  |
| Mo3  | 035  | 1.666(5) | Mo9  | 041  | 1.671(6) |
| Mo3  | 04   | 2.49(3)  | Mo9  | 030  | 1.997(5) |
| Mo6  | 038  | 1.673(5) | Mo9  | 029  | 1.834(6) |
| Mo6  | 020  | 1.825(5) | Mo9  | 028  | 2.016(6) |

| Atom | Atom | Length/Å |  |
|------|------|----------|--|
| Mo9  | 032  | 1.801(6) |  |
| Mo9  | 07   | 2.446(5) |  |
| Mo9  | 08   | 2.55(3)  |  |
| Mo4  | 036  | 1.649(5) |  |
| Mo4  | 011  | 1.840(6) |  |
| Mo4  | 030  | 1.819(6) |  |
| Mo4  | 031  | 1.989(5) |  |
| Mo4  | 010  | 2.038(6) |  |
| Mo4  | 01   | 2.434(5) |  |
| Mo4  | 08   | 2.57(3)  |  |
| Mo8  | 040  | 1.677(5) |  |
| Mo8  | 013  | 1.978(5) |  |
| Mo8  | 014  | 1.807(5) |  |
| Mo8  | 027  | 2.028(6) |  |
| Mo8  | 028  | 1.843(6) |  |
| Mo8  | 07   | 2.436(6) |  |
| Mo8  | 02   | 2.58(2)  |  |
| Mo11 | 043  | 1.677(5) |  |
| Mo11 | 021  | 2.002(6) |  |

| Atom | Atom | Length/Å |
|------|------|----------|
| Mo11 | 026  | 1.990(6) |
| Mo11 | 022  | 1.835(6) |
| Mo11 | 025  | 1.794(6) |
| Mo11 | 05   | 2.464(6) |
| Mo11 | 06   | 2.47(3)  |
| Mo12 | 023  | 1.850(6) |
| Mo12 | 022  | 2.002(6) |
| Mo12 | 031  | 1.818(6) |
| Mo12 | 044  | 1.678(6) |
| Mo12 | 032  | 2.011(6) |
| Mo12 | 05   | 2.441(6) |
| Mo12 | 08   | 2.49(3)  |
| Mo7  | 024  | 1.803(6) |
| Mo7  | 029  | 2.005(6) |
| Mo7  | 027  | 1.829(6) |
| Mo7  | 039  | 1.669(5) |
| Mo7  | 025  | 2.010(6) |
| Mo7  | 07   | 2.445(6) |
| Mo7  | 06   | 2.52(3)  |

|      | 10 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Atom | Atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Angle/°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m Atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Mo5  | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 86.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo5  | 014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 154.7(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo5  | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72.7(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo5  | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 103.3(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo5  | 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo5  | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 155.1(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo5  | 014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 86.0(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo5  | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 88.5(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo5  | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55.7(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo5  | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 69.5(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo5  | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 99.4(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo5  | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79.8(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo5  | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82.5(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo5  | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58.5(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo5  | 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 102.5(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo5  | 012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 104.4(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo5  | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98.4(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo5  | 014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100.7(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo5  | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 166.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo5  | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 149.3(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo1  | 013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 103.6(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo1  | 012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 101.9(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo1  | 015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.7(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo1  | 017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 102.5(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo1  | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 168.3(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo1  | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 150.3(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo1  | 012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo1  | 015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 154.8(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo1  | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 87.5(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo1  | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59.2(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo1  | 015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo1  | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82.3(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo1  | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56.0(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mo6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo1  | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70.1(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mo6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo1  | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95.6(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo1  | 013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 96.9(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo1  | 012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 154.0(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo1  | 015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87.3(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mo1  | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72.0(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mo6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | Atom           Mo5           Mo1           Mo1 | AtomAtomMo5011Mo5014Mo501Mo502Mo509Mo5011Mo5014Mo501Mo501Mo501Mo502Mo501Mo502Mo5011Mo502Mo5011Mo502Mo5012Mo5012Mo5014Mo501Mo502Mo1013Mo1012Mo1015Mo1015Mo103Mo102Mo103Mo102Mo103Mo102Mo103Mo102Mo103Mo102Mo103Mo102Mo1013Mo1012Mo1013Mo1012Mo1013Mo1012Mo1013Mo1012Mo1013Mo1012Mo1015Mo1013Mo1012Mo1015Mo1015Mo1015Mo1015Mo1015Mo1015Mo1015Mo1015Mo1015Mo1015Mo1 <td>Atom         Angle/°           Mo5         011         86.9(2)           Mo5         014         154.7(2)           Mo5         01         72.7(2)           Mo5         02         103.3(6)           Mo5         02         103.3(6)           Mo5         02         103.3(6)           Mo5         01         72.7(2)           Mo5         01         155.1(3)           Mo5         011         155.1(3)           Mo5         014         86.0(2)           Mo5         01         88.5(2)           Mo5         01         88.5(2)           Mo5         01         69.5(2)           Mo5         01         82.5(2)           Mo5         01         102.5(3)           Mo5         01         166.9(2)</td> <td>AtomAtomAngle/°AtonMo5011<math>86.9(2)</math>017Mo5014<math>154.7(2)</math>016Mo502<math>103.3(6)</math>015Mo502<math>103.3(6)</math>015Mo509<math>97.9(2)</math>015Mo5011<math>155.1(3)</math>015Mo5014<math>86.0(2)</math>015Mo501<math>88.5(2)</math>019Mo502<math>55.7(6)</math>019Mo501<math>69.5(2)</math>018Mo501<math>82.5(2)</math>018Mo501<math>82.5(2)</math>018Mo501<math>82.5(2)</math>018Mo5012<math>104.4(3)</math>035Mo5011<math>98.4(3)</math>035Mo5011<math>166.9(2)</math>035Mo5011<math>10.7(3)</math>035Mo5011<math>10.6(3)</math>038Mo5012<math>104.4(3)</math>035Mo5011<math>166.9(2)</math>035Mo5011<math>103.6(3)</math>038Mo1012<math>101.9(3)</math>038Mo1013<math>103.6(3)</math>038Mo1015<math>99.7(3)</math>038Mo1015<math>154.8(3)</math>020Mo103<math>75.(2)</math>020Mo103<math>75.(2)</math>020Mo102<math>56.0(6)</math>018Mo1015<math>79.9(2)</math>020Mo1015<math>87.3(2)</math>010Mo1015<math>87.3(2)</math>010Mo101</td> | Atom         Angle/°           Mo5         011         86.9(2)           Mo5         014         154.7(2)           Mo5         01         72.7(2)           Mo5         02         103.3(6)           Mo5         02         103.3(6)           Mo5         02         103.3(6)           Mo5         01         72.7(2)           Mo5         01         155.1(3)           Mo5         011         155.1(3)           Mo5         014         86.0(2)           Mo5         01         88.5(2)           Mo5         01         88.5(2)           Mo5         01         69.5(2)           Mo5         01         82.5(2)           Mo5         01         102.5(3)           Mo5         01         166.9(2) | AtomAtomAngle/°AtonMo5011 $86.9(2)$ 017Mo5014 $154.7(2)$ 016Mo502 $103.3(6)$ 015Mo502 $103.3(6)$ 015Mo509 $97.9(2)$ 015Mo5011 $155.1(3)$ 015Mo5014 $86.0(2)$ 015Mo501 $88.5(2)$ 019Mo502 $55.7(6)$ 019Mo501 $69.5(2)$ 018Mo501 $82.5(2)$ 018Mo501 $82.5(2)$ 018Mo501 $82.5(2)$ 018Mo5012 $104.4(3)$ 035Mo5011 $98.4(3)$ 035Mo5011 $166.9(2)$ 035Mo5011 $10.7(3)$ 035Mo5011 $10.6(3)$ 038Mo5012 $104.4(3)$ 035Mo5011 $166.9(2)$ 035Mo5011 $103.6(3)$ 038Mo1012 $101.9(3)$ 038Mo1013 $103.6(3)$ 038Mo1015 $99.7(3)$ 038Mo1015 $154.8(3)$ 020Mo103 $75.(2)$ 020Mo103 $75.(2)$ 020Mo102 $56.0(6)$ 018Mo1015 $79.9(2)$ 020Mo1015 $87.3(2)$ 010Mo1015 $87.3(2)$ 010Mo101 |

Atom

02

03

04

016

019

03

04

016

03

04

016

015

019

03

04

016

015

019

03

018

04

020

09

018

010

01

04

09

018

010

01

04

01

04

09 01

04

09

018

Angle/°

103.5(6)

69.0(2)

95.1(6)

86.7(2)

152.9(2)

71.2(2)

105.0(6)

79.1(2)

82.1(2)

54.1(6)

154.0(3)

97.6(3)

86.0(2)

88.0(2)

59.0(6)

99.1(2)

101.9(3)

103.1(3)

166.2(2)

105.0(3)

150.1(6)

104.1(3)

99.1(2)

102.0(3)

101.5(3)

166.9(2)

148.6(6)

155.1(2)

85.9(2)

97.4(3)

88.1(2)

56.3(6)

69.7(2)

98.9(6) 80.5(2)

83.3(2)

56.3(6)

86.6(2)

154.7(3)

**Table 9**: Bond Angles in ° for compound 2.

| Atom | Atom | Atom | Angle/°              |
|------|------|------|----------------------|
| 10   | Mo6  | 01   | 71.8(2)              |
| )    | Mo6  | 04   | 105.1(6)             |
| 5    | Mo2  | 024  | 153.4(2)             |
| 16   | Mo2  | 017  | 86.9(2)              |
| 16   | Mo2  | 03   | 71.7(2)              |
| 6    | Mo2  | 06   | 103.9(7)             |
| 4    | Mo2  | 017  | 79.5(2)              |
| 4    | Mo2  | 03   | 82.0(2)              |
| 4    | Mo2  | 06   | 56.1(7)              |
| 7    | Mo2  | 03   | 68.6(2)              |
| 7    | Mo2  | 06   | 97.3(7)              |
| 6    | Mo2  | 016  | 97.8(3)              |
|      | Mo2  | 024  | 85.4(2)              |
| 6    | Mo2  | 017  | 154.0(3)             |
| 6    | Mo2  | 03   | 88.5(2)              |
| 6    | Mo2  | 06   | 56.7(7)              |
| 4    | Mo2  | 016  | 101.9(3)             |
| 4    | Mo2  | 024  | 102.7(3)             |
| 4    | Mo2  | 017  | 98.9(3)              |
| 4    | Mo2  | 03   | 165.9(3)             |
| 4    | Mo2  | 026  | 105.0(3)             |
| l    | Mo2  | 06   | 150.0(0)             |
|      | Mo10 | 020  | 101 1(3)             |
| -    | Mo10 | 021  | 101.1(3)<br>102.5(3) |
| 2    | Mo10 | 022  | 102.3(3)             |
| 12   | Mo10 | 010  | 104 2(2)             |
| 2    | Mo10 | 019  | 104.2(3)<br>166.7(2) |
| 2    | Mo10 | 03   | 140.0(6)             |
| 2    | Mo10 | 022  | 149.9(0)             |
| 0    | Mo10 | 023  | /9./(2)              |
| .0   | Mo10 | 05   | 82.8(2)<br>E7.9(6)   |
| .0   | Mo10 | 04   | 57.8(6)              |
| 1    | Mo10 | 020  | 154.1(3)             |
| 1    | Mo10 | 023  | 86.6(2)              |
| 1    | Mo10 | 05   | 71.8(2)              |
| 1    | Mo10 | 04   | 103.3(6)             |
| 3    | Mo10 | 05   | 69.5(2)              |
| 3    | Mo10 | 04   | 98.2(6)              |
| 9    | Mo10 | 020  | 86.7(2)              |
| 19   | Mo10 | 021  | 97.6(3)              |
| .9   | Mo10 | 023  | 155.4(3)             |
| 9    | Mo10 | 05   | 88.6(2)              |
| 9    | Mo10 | 04   | 57.2(6)              |
| 1    | Mo9  | 030  | 101.4(3)             |
| 1    | Mo9  | 029  | 102.6(3)             |
| 1    | Mo9  | 028  | 100.3(3)             |
| 1    | Mo9  | 032  | 102.9(3)             |
| 1    | Mo9  | 07   | 168.1(3)             |
| 1    | Mo9  | 08   | 150.4(7)             |
| 0    | Mo9  | 028  | 80.2(2)              |
| 0    | Mo9  | 07   | 83.1(2)              |
| 0    | Mo9  | 08   | 58.9(6)              |
| 9    | Mo9  | 030  | 154 2(3)             |
| 9    | Mo9  | 028  | 86.3(2)              |
| 9    | Mo9  | 07   | 71.6(2)              |
| 9    | Mo9  | 08   | 1019(6)              |
| 8    | Mog  | 07   | 693(2)               |
| 8    | Mag  | 08   | 97.7(6)              |
| 2    | Mag  | 020  | 961(2)               |
| 2    | M-0  | 030  | 07.6(2)              |
| 2    | MO9  | 029  | 97.0(3)              |
| 2    | M09  | 028  | 154.9(3)             |
| 4    | Mo9  | 07   | 88.3(2)              |
|      | MOY  | 08   | 5/.3(6)              |
|      | 1.   | 011  | 102 0(2)             |

| Atom | Atom | Atom | Angle/°  |         | Atom | Atom | Atom | Angle/°  | 100 |
|------|------|------|----------|---------|------|------|------|----------|-----|
| 022  | Mo12 | 032  | 80.6(3)  | • • • • | 024  | Mo7  | 025  | 85.5(2)  |     |
| 022  | Mo12 | 05   | 69.6(2)  |         | 024  | Mo7  | 07   | 88.5(2)  |     |
| 022  | Mo12 | 08   | 95.3(6)  |         | 024  | Mo7  | 06   | 54.9(6)  |     |
| 031  | Mo12 | 023  | 96.9(3)  |         | 029  | Mo7  | 025  | 79.9(2)  |     |
| 031  | Mo12 | 022  | 154.1(3) |         | 029  | Mo7  | 07   | 69.2(2)  |     |
| 031  | Mo12 | 032  | 85.3(2)  |         | 029  | Mo7  | 06   | 99.7(6)  |     |
| 031  | Mo12 | 05   | 87.2(2)  |         | 027  | Mo7  | 029  | 86.8(3)  |     |
| 031  | Mo12 | 08   | 58.8(6)  |         | 027  | Mo7  | 025  | 155.1(3) |     |
| 044  | Mo12 | 023  | 102.6(3) |         | 027  | Mo7  | 07   | 72.8(2)  |     |
| 044  | Mo12 | 022  | 99.3(3)  |         | 027  | Mo7  | 06   | 106.4(7) |     |
| 044  | Mo12 | 031  | 104.8(3) |         | 039  | Mo7  | 024  | 104.2(3) |     |
| 044  | Mo12 | 032  | 101.5(3) |         | 039  | Mo7  | 029  | 98.9(3)  |     |
| 044  | Mo12 | 05   | 167.5(3) |         | 039  | Mo7  | 027  | 102.3(3) |     |
| 044  | Mo12 | 08   | 151.4(6) |         | 039  | Mo7  | 025  | 100.5(3) |     |
| 032  | Mo12 | 05   | 82.9(2)  |         | 039  | Mo7  | 07   | 167.0(2) |     |
| 032  | Mo12 | 08   | 56.9(6)  |         | 039  | Mo7  | 06   | 146.4(7) |     |
| 024  | Mo7  | 029  | 154.6(3) |         | 025  | Mo7  | 07   | 82.8(2)  |     |
| 024  | Mo7  | 027  | 98.4(3)  |         | 025  | Mo7  | 06   | 56.0(6)  |     |

#### Citations

L. Palatinus and G. Chapuis, Superflip - a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions, *J. Appl. Cryst.*, (2007), **40**, 786-790.

O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, (2009), **42**, 339-341.

SADABS, Bruker axs, Madison, WI (?).

SAINT - Software for the Integration of CCD Detector System Bruker Analytical X-ray Systems, Bruker axs, Madison, WI (?).

Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., (2015), C71, 3-8.

## compound3

## $R_1 = 4.76$

## **Crystal Data and Experimental**



Experimental. Single clear light orange plate-shaped crystals of **compound3** recrystallised from N-Methyl Formanilide by slow evaporation. A suitable crystal with dimensions  $0.20 \times 0.18 \times 0.17 \text{ mm}^3$  was selected and mounted on a Bruker APEX-II CMOS detector diffractometer. The crystal was kept at a steady T =292(2) K during data collection. The structure was solved with the ShelXT 2014/4 (Sheldrick, 2014) solution program using iterative methods and by using Olex2 1.5alpha (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on  $F^2$ .

**Crystal Data.** C<sub>88</sub>H<sub>78</sub>Mo<sub>12</sub>N<sub>2</sub>O<sub>42</sub>P<sub>4</sub>, *M<sub>r</sub>* = 3110.68, triclinic, *P*-1 (No. 2), a = 14.6105(11) Å, b = 15.5593(11) Å, c = 22.6072(16) Å,  $\alpha = 89.026(3)^{\circ}$ ,  $\beta = 88.285(4)^{\circ}$ ,  $\gamma =$  $82.439(3)^{\circ}$ ,  $V = 5091.9(6) \text{ Å}^3$ , T = 292(2) K, Z = 2, Z' = 1,  $\mu$ (MoK<sub> $\alpha$ </sub>) = 1.575, 215632 reflections measured, 25302 unique ( $R_{int} = 0.0504$ ) which were used in all calculations. The final  $wR_2$  was 0.1080 (all data) and  $R_1$  was 0.0476 (I $\ge$ 2 *σ*(I)).

#### Compound

Formula

Ζ

Z'

## compound3 $C_{88}H_{78}Mo_{12}N_2O_{42}P_4$

 $D_{calc.}$  / g cm<sup>-3</sup> 2.029  $\mu/\text{mm}^{-1}$ 1.575 Formula Weight 3110.68 Colour clear light orange Shape plate-shaped Size/mm<sup>3</sup> 0.20×0.18×0.17 T/K292(2) **Crystal System** triclinic Space Group P-1 a/Å 14.6105(11) b/Å 15.5593(11) c/Å 22.6072(16)  $\alpha/^{\circ}$ 89.026(3) 88.285(4)  $\beta/^{\circ}$ 82.439(3) γſ° V/Å<sup>3</sup> 5091.9(6) 2 1 Wavelength/Å 0.71073 Radiation type MoK<sub>α</sub> 2.221  $\Theta_{min}/^{\circ}$ 28.332  $\Theta_{max}/^{\circ}$ Measured Refl's. 215632 Indep't Refl's 25302 Refl's I  $\geq 2 \sigma(I)$ 18691 0.0504  $R_{\rm int}$ Parameters 1504 Restraints 971 Largest Peak 2.002 **Deepest Hole** -1.696 GooF 1.020 0.1080  $wR_2$  (all data) 0.0964  $wR_2$  $R_1$  (all data) 0.0720  $R_1$ 0.0476

## **Structure Quality Indicators**

| Reflections: | d min (Mo)<br>2Θ=56.7° | 0.75 <sup>Ι/σ(Ι)</sup> | 32.5 Rint                        | 5.04%             | Full 50.5° | 99.9  |
|--------------|------------------------|------------------------|----------------------------------|-------------------|------------|-------|
| Refinement:  | Shift                  | -0.001 Max Pe          | ak <b>2.0</b> <sup>Min Pea</sup> | <sup>k</sup> -1.7 | GooF       | 1.020 |

A clear light orange plate-shaped-shaped crystal with dimensions  $0.20 \times 0.18 \times 0.17$  mm<sup>3</sup> was mounted. Data were collected using a Bruker APEX-II CMOS detector diffractometer operating at *T* = 292(2) K.

Data were measured using phi and omega scans with  $MoK_{\alpha}$  radiation. The maximum resolution that was achieved was  $\Theta$  = 28.332° (0.75 Å).

The unit cell was refined on 9580 reflections, 4% of the observed reflections.

Data reduction, scaling and absorption corrections were performed. The final completeness is 99.90 % out to 28.332° in  $\Theta$ . SADABS-2008/1 (Bruker, 2008) was used for absorption correction. The absorption coefficient  $\mu$  of this material is 1.575 mm<sup>-1</sup> at this wavelength ( $\lambda$  = 0.71073Å) and the minimum and maximum transmissions are 0.065 and 0.096.

The structure was solved and the space group *P*-1 (# 2) determined by the ShelXT 2014/4 (Sheldrick, 2014) structure solution program using using iterative methods and refined by full matrix least squares minimisation on  $F^2$  using version 2018/3 of ShelXL 2018/3 (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using model.

\_*exptl\_absorpt\_process\_details*: SADABS-2008/1 (Bruker,2008) was used for absorption correction.

There is a single formula unit in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 2 and Z' is 1. The moiety formula is Mo12 O40 P, 3(C24 H20 P), 2(C8 H9 N O).



## **Data Plots: Diffraction Data**

#### **Data Plots: Refinement and Data**



## **Reflection Statistics**

| Total reflections (after filtering) | 215666                                                           | Unique reflections             | 25302           |
|-------------------------------------|------------------------------------------------------------------|--------------------------------|-----------------|
| Completeness                        | 0.996                                                            | Mean I/ $\sigma$               | 18.38           |
| hkl <sub>max</sub> collected        | (19, 20, 30)                                                     | hkl <sub>min</sub> collected   | (-19, -20, -30) |
| hkl <sub>max</sub> used             | (19, 20, 30)                                                     | hkl <sub>min</sub> used        | (-19, -20, 0)   |
| Lim d <sub>max</sub> collected      | 100.0                                                            | Lim d <sub>min</sub> collected | 0.36            |
| d <sub>max</sub> used               | 9.17                                                             | d <sub>min</sub> used          | 0.75            |
| Friedel pairs                       | 25199                                                            | Friedel pairs merged           | 1               |
| Inconsistent equivalents            | 0                                                                | R <sub>int</sub>               | 0.0504          |
| R <sub>sigma</sub>                  | 0.0308                                                           | Intensity transformed          | 0               |
| Omitted reflections                 | 0                                                                | Omitted by user (OMIT hkl)     | 34              |
| Multiplicity                        | (1501, 6780, 12325, 9715,<br>6904, 6286, 3987, 2449, 537,<br>20) | Maximum multiplicity           | 18              |
| Removed systematic absences         | s 0                                                              | Filtered off (Shel/OMIT)       | 0               |

There are no images if the crystal on the diffractometer, but the inclusion of these images has been requested from the GUI. Please unitck the relevant box if you don't have these images!

**Table 10**: Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **compound3**.  $U_{eq}$  is defined as 1/3 of the trace of the orthogonalised  $U_{ij}$ .

| Atom | x         | У         | Z          | U <sub>eq</sub> |
|------|-----------|-----------|------------|-----------------|
| Mo11 | 2668.8(3) | 4368.5(3) | 1618.5(2)  | 31.94(9)        |
| Mo8  | 2549.4(3) | 2634.3(3) | 4086.8(2)  | 33.48(10)       |
| Mo7  | 410.3(3)  | 2331.6(3) | 3361.8(2)  | 31.95(9)        |
| Mo10 | 4501.7(3) | 2707.4(3) | 1637.5(2)  | 34.19(10)       |
| Mo5  | 336.9(3)  | 2469.3(3) | 1834.3(2)  | 34.62(10)       |
| Mo12 | 2972.4(3) | 4393.4(3) | 3216.6(2)  | 34.92(10)       |
| Mo1  | 2336.1(3) | 574.7(3)  | 3369.5(2)  | 32.64(9)        |
| Mo4  | 2480.3(3) | 2412.0(3) | 946.4(2)   | 33.36(10)       |
| Mo6  | 685.4(3)  | 4250.0(3) | 2639.7(2)  | 36.04(10)       |
| Mo2  | 4200.2(3) | 664.4(3)  | 2407.9(2)  | 38.49(11)       |
| Mo3  | 2041.1(4) | 527.6(3)  | 1859.0(2)  | 41.09(11)       |
| Mo9  | 4582.9(3) | 2561.1(3) | 3257.4(2)  | 39.69(11)       |
| P1   | 2485.4(8) | 2492.1(7) | 2517.1(5)  | 21.45(19)       |
| 026  | 2401(2)   | 3691(2)   | 993.5(15)  | 39.8(8)         |
| 018  | 1106(2)   | 1264(2)   | 3361.2(16) | 40.0(8)         |
| 020  | 1335(2)   | 2688(2)   | 3887.8(15) | 39.5(7)         |
| 032  | 2629(3)   | 3799(2)   | 3972.6(17) | 45.1(8)         |
| 027  | 3101(2)   | 4543(3)   | 2421.7(15) | 44.3(8)         |
| 024  | 3746(3)   | 2372(2)   | 978.6(16)  | 43.6(8)         |
| 025  | 3975(2)   | 3835(2)   | 1497.8(16) | 40.4(8)         |

| Atom       | X                  | У                  | Z                        | $U_{eq}$            |
|------------|--------------------|--------------------|--------------------------|---------------------|
| 030        | 4156(2)            | 3823(2)            | 3317.6(18)               | 47.1(9)             |
| 022        | 4543(3)            | 1458(2)            | 3010.1(15)               | 48.3(9)             |
| 029        | 1513(2)            | 4439(3)            | 1958.6(15)               | 45.2(8)             |
| 035        | 1799(3)            | -293(2)            | 1457.1(16)               | 49.9(9)             |
| 019        | 2654(2)            | 1405(2)            | 3862.7(16)               | 40.6(8)             |
| 028        | 1643(2)            | 4455(3)            | 3093.2(15)               | 44.9(8)             |
| 014        | 1212(3)            | 2652(2)            | 1278.5(17)               | 44.1(8)             |
| 016        | 75(3)              | 3621(2)            | 2048.9(15)               | 45.3(8)             |
| 08         | 2944(2)            | 2850(2)            | 3046.7(15)               | 24.1(7)             |
| 017        | 138(3)             | 3596(2)            | 3213.3(15)               | 44.4(8)             |
| 011        | 1915(3)            | 95(3)              | 2630.8(16)               | 48.2(9)             |
| 09         | 3533(3)            | 193(3)             | 31007(16)                | 49 7(9)             |
| 021        | 4476(3)            | 1473(2)            | 1869 1(16)               | 46 8(9)             |
| 038        | -35(2)             | 5177(2)            | 2636 2(16)               | 41 6(8)             |
| 023        | 4740(3)            | 2865(2)            | 2000.2(10)<br>2415 3(16) | 48 0(9)             |
| 023        | 2124(2)            | _233(2)            | 2413.3(10)<br>3832.8(17) | 40.0(5)             |
| 06         | 2137(3)            | 2822(2)            | 1946 2(15)               | 24 2(7)             |
| 012        | 2004(2)<br>062(2)  | 2033(2)<br>1274(2) | 1002 2(17)               | 47.4(1)             |
| 012        | 2010(2)            | 12/4(2)<br>2426(2) | 1072.3[1/]<br>2066 4(10) | 47.4(7)             |
| 031        | 2212(2)            | 2430(2)            | 3700.4(18)               | 47.3[7]<br>E4.0(10) |
| 03/        | -282(2)            | 2348(3)            | 1444.4(1/)               | 54.U(1U)            |
| 010        | 2682(3)            | 1496(2)            | 2539.7(15)               | 25.3(7)             |
| 010        | 3389(3)            | 165(3)             | 1941.6(16)               | 51.5(9)             |
| 015        | -130(3)            | 2192(2)            | 2645.0(15)               | 44.8(8)             |
| 013        | 2465(3)            | 1309(2)            | 1250.3(17)               | 49.8(9)             |
| 040        | 2497(3)            | 2558(3)            | 4825.8(15)               | 54.1(10)            |
| 03         | 1440(2)            | 2755(2)            | 2575.9(15)               | 22.7(6)             |
| 042        | 5523(3)            | 2662(3)            | 1289.7(19)               | 56.0(10)            |
| 044        | 3059(3)            | 5357(2)            | 3498.2(16)               | 48.6(9)             |
| 039        | -459(3)            | 2201(3)            | 3837.4(18)               | 54.8(10)            |
| 034        | 5113(3)            | -95(2)             | 2379.4(18)               | 54.0(10)            |
| 036        | 2316(3)            | 2329(3)            | 227.6(15)                | 51.4(10)            |
| 043        | 2721(3)            | 5325(2)            | 1291.9(18)               | 52.2(10)            |
| 041        | 5653(3)            | 2551(3)            | 3493.9(18)               | 51.0(9)             |
| P4         | 936.1(10)          | 7423.1(9)          | 4012.4(6)                | 38.1(3)             |
| C51        | 145(4)             | 8369(3)            | 4209(2)                  | 42.0(12)            |
| C57        | 1233(4)            | 7426(3)            | 3236(2)                  | 39.5(11)            |
| C56        | 88(4)              | 9113(4)            | 3866(3)                  | 54.4(15)            |
| C63        | 378(4)             | 6481(3)            | 4165(2)                  | 41.0(12)            |
| C45        | 1966(4)            | 7399(3)            | 4429(2)                  | 44.1(12)            |
| C58        | 1755(5)            | 8040(4)            | 2993(3)                  | 55.7(16)            |
| C65        | 477(5)             | 4944(4)            | 4297(3)                  | 57.1(17)            |
| C64        | 903(4)             | 5697(4)            | 4270(2)                  | 46.7(13)            |
| C52        | -354(4)            | 8359(4)            | 4743(3)                  | 58.6(16)            |
| C68        | -571(5)            | 6526(4)            | 4093(3)                  | 62.1(17)            |
| C62        | 956(4)             | 6802(4)            | 2876(2)                  | 50.9(14)            |
| C66        | -452(6)            | 4992(4)            | 4233(3)                  | 65 0(19)            |
| C61        | 1172(5)            | 6803(5)            | 2278(2)                  | 67 6(19)            |
| C59        | 1967(5)            | 8033(3)            | 2270(3)                  | 69(2)               |
| C50        | 2820(1)            | 7120(1)            | 4171(2)                  | 58 2(16)            |
| C67        | 2027(4)<br>_QQ1(5) | 5775(5)            | 122(2)                   | 70 0(10)            |
| C46        | -701(3)<br>1006(5) | 3773[3]<br>7625(5) | 4132(3)<br>E010(2)       | /U.U(19)            |
| CF2        | 1200(2)            | /025(5)            | 5018(3)                  | 00.4(19)<br>72(2)   |
| L33<br>CFF | -902(5)            | 9096(5)            | 4926(4)                  | /3(2)<br>72(2)      |
| L55        | -4/1(5)            | 9856(4)            | 4060(4)                  | /2(2)               |
| L54        | -958(5)            | 9840(5)            | 4587(4)                  | 83(3)               |
| C48        | 3542(6)            | 7356(6)            | 5074(4)                  | 84(2)               |
| C49        | 3614(5)            | 7119(5)            | 4502(4)                  | 72(2)               |
| C60        | 1659(6)            | 7421(5)            | 2040(3)                  | 75(2)               |
| C47        | 2705(6)            | 7597(6)            | 5339(3)                  | 88(3)               |
| P2         | 7618.5(10)         | 5831.4(10)         | 1512.5(7)                | 47.6(3)             |
| C19        | 7517(4)            | 4940(4)            | 2013(3)                  | 48.9(13)            |
| C6         | 9252(4)            | 4857(4)            | 1144(2)                  | 48.6(14)            |
| C13        | 6668(4)            | 5909(4)            | 1027(3)                  | 50.8(14)            |
| C7         | 7640(4)            | 6827(4)            | 1903(3)                  | 51.6(14)            |

| <b>A I I I I</b> |                      |                     |                         |                      |
|------------------|----------------------|---------------------|-------------------------|----------------------|
| Atom             | X                    | У                   | Z                       | U <sub>eq</sub>      |
| C5               | 10113(4)             | 4754(5)             | 878(3)                  | 59.2(17)             |
| C24              | 7873(4)              | 4930(4)             | 2577(3)                 | 55.8(15)             |
| C15              | 6017(5)              | 6032(5)             | 70(3)                   | 67.8(19)             |
| C1               | 8701(4)              | 5642(4)             | 1109(2)                 | 45.9(13)             |
| C4               | 10433(5)             | 5412(5)             | 570(3)                  | 66.2(18)             |
| C14              | 6777(4)              | 5971(4)             | 421(3)                  | 56.9(16)             |
| C16              | 5156(5)              | 6026(5)             | 313(3)                  | 71(2)                |
| C8               | 6889(5)              | 7471(4)             | 1918(3)                 | 62.5(17)             |
| C12              | 8440(5)              | 6964(4)             | 2187(3)                 | 71(2)                |
| C20              | 7145(6)              | 4216(5)             | 1826(3)                 | 76(2)                |
| C23              | 7869(5)              | 4196(5)             | 2935(3)                 | 71(2)                |
| C2               | 9008(5)              | 6321(4)             | 774(3)                  | 68.0(19)             |
| С9               | 6943(6)              | 8221(5)             | 2220(4)                 | 80(2)                |
| C3               | 9878(5)              | 6190(5)             | 513(4)                  | 78(2)                |
| C18              | 5784(5)              | 5904(6)             | 1267(3)                 | 86(3)                |
| C10              | 7717(6)              | 8345(5)             | 2505(4)                 | 82(2)                |
| C22              | 7486(6)              | 3503(5)             | 2744(4)                 | 81(2)                |
| C11              | 8473(6)              | 7713(5)             | 2487(4)                 | 81(2)                |
| C17              | 5034(5)              | 5965(7)             | 907(3)                  | 89(3)                |
| 221              | 7122(7)              | 3508(5)             | 2194(4)                 | 89(3)                |
| 23               | 7575 1(9)            | 401 4(9)            | 820.8(6)                | 36 2 (3)             |
| 37               | 6529(4)              | -65(4)              | 724(2)                  | 40 3(12)             |
| -30<br>-20       | 7722(1)              | 582(3)              | 1501(2)                 | 38 5(11)             |
| `31              | 7498(2)              | 1418(A)             | 428(2)                  | 30.3(11)             |
| 25               | 8533(1)              | -338(7)             | 528(2)                  | 43 1(12)             |
| 323<br>7102      | 5555(4)              | -330(4)             | $\frac{330(2)}{766(2)}$ | 43.1(12)             |
| 2102<br>240      | 5079(4)              | 402(4)              | 1067(2)                 | 47.7(13)             |
| C40              | 0937(4)<br>7025(5)   | 722(4)<br>200(5)    | 190/(2)                 | 52.4(14)             |
| 242<br>220       | /935(5)              | 890(5)              | 2776(3)                 | 04.0(18)<br>54.1(15) |
| L38<br>Caa       | 6561(4)              | -947(4)             | 684(3)                  | 54.1(15)             |
| U3Z              | //41(4)              | 214/(4)             | 697(3)                  | 46.9(13)             |
|                  | 8/66(4)              | -324(4)             | -61(3)                  | 55.1(15)             |
| 2101             | 4872(4)              | 90(5)               | 787(3)                  | 59.4(17)             |
| 243              | 8705(5)              | 740(4)              | 2408(3)                 | 61.2(18)             |
| 344              | 8605(4)              | 598(4)              | 1813(2)                 | 52.3(15)             |
| .41              | 7068(5)              | 880(5)              | 2561(3)                 | 66.0(18)             |
| C33              | 7708(5)              | 2916(4)             | 375(3)                  | 61.2(17)             |
| C34              | 7424(5)              | 2961(5)             | -195(3)                 | 73(2)                |
| C35              | 7173(5)              | 2248(6)             | -461(3)                 | 79(2)                |
| C27              | 9480(5)              | -916(5)             | -278(4)                 | 71(2)                |
| C100             | 4915(5)              | -794(6)             | 764(3)                  | 71(2)                |
| C28              | 9956(5)              | -1495(5)            | 84(4)                   | 82(3)                |
| 299              | 5733(5)              | -1302(5)            | 699(3)                  | 72(2)                |
| C36              | 7208(4)              | 1474(5)             | -155(3)                 | 59.9(17)             |
| C30              | 9010(5)              | -949(4)             | 902(3)                  | 63.6(17)             |
| 229              | 9736(6)              | -1522(5)            | 678(4)                  | 86(2)                |
| 047              | 3971(5)              | 7688(5)             | 1630(3)                 | 113(2)               |
| N3               | 4493(5)              | 7222(4)             | 2525(3)                 | 80.0(18)             |
| 297              | 4371(5)              | 7795(5)             | 2078(4)                 | 75(2)                |
| 285              | 5035(15)             | 7368(12)            | 3002(8)                 | 68(5)                |
| 298              | 4123(7)              | 6405(6)             | 2501(4)                 | 105(3)               |
| 290              | 4959(15)             | 8157(13)            | 3257(8)                 | 77(5)                |
| 286              | 5625(18)             | 6590(14)            | 3201(10)                | 108(7)               |
| 288              | 6170(20)             | 7583(16)            | 3886(11)                | 108(7)               |
| 289              | 5565(19)             | 8287(13)            | 3697(9)                 | 96(6)                |
| 287              | 6269(18)             | 6796(16)            | 3595(11)                | 122(7)               |
| 045              | 6623(12)             | 623(11)             | 3937(6)                 | 137(6)               |
| N1               | 5824(10)             | 273(10)             | 4751(6)                 | 90(4)                |
| C69              | 4980(20)             | 128(12)             | 5046(11)                | 55(4)                |
| C71              | 2257(12)             | 497(12)             | 5161(2)                 | 81(5)                |
| C75              | 5557(12)             | 420(20)             | 1170(20)                | 82(12)               |
| C74              | <u>1000(17)</u>      | - <u>116(10)</u>    | 71/0(20)<br>5515(7)     | 02(13)<br>77(4)      |
| C70              | 4770(14)             | -440(10)<br>606(11) | 3313[7]<br>4000(7)      | //(4)<br>00(5)       |
| 670<br>C72       | 4107(12)<br>2211(12) | 07(12)              | 400U[/]<br>5620(10)     | 07(3)<br>100(4)      |
| u/ Z             | JJ44(13)             | -97(13)             | 5020(10)                | 100(0)               |
|                  |                      |                     |                         |                      |

| Atom | x        | у        | Z        | U <sub>eq</sub> |
|------|----------|----------|----------|-----------------|
| C76  | 6636(14) | 185(17)  | 5098(10) | 122(7)          |
| C73  | 4140(40) | -590(40) | 5760(30) | 110(18)         |
| 046  | 2625(8)  | 5227(9)  | 5432(6)  | 109(4)          |
| N2   | 4191(7)  | 5145(7)  | 5359(5)  | 57(2)           |
| C84  | 4250(30) | 5300(50) | 5981(18) | 79(8)           |
| C78  | 5741(10) | 5452(10) | 5179(6)  | 68(4)           |
| C79  | 6535(15) | 5382(14) | 4824(10) | 91(7)           |
| C82  | 5060(10) | 4612(9)  | 4478(6)  | 64(3)           |
| C80  | 6593(14) | 4912(13) | 4304(8)  | 99(6)           |
| C81  | 5860(40) | 4560(40) | 4116(19) | 90(14)          |
| C83  | 3348(13) | 5132(12) | 5141(10) | 73(5)           |
| C77  | 5000(50) | 5060(40) | 5000(40) | 50(4)           |
| C91  | 4934(13) | 7461(11) | 3049(8)  | 84(6)           |
| C96  | 4570(16) | 8219(10) | 3335(9)  | 101(7)          |
| C95  | 4990(20) | 8477(11) | 3834(8)  | 124(8)          |
| C94  | 5771(18) | 7977(16) | 4048(8)  | 134(8)          |
| C93  | 6135(12) | 7219(17) | 3762(9)  | 133(9)          |
| C92  | 5717(12) | 6961(13) | 3262(8)  | 106(7)          |
| 07   | 2315(10) | 3521(9)  | 2457(7)  | 29(3)           |
| 02   | 2025(12) | 2173(10) | 1949(6)  | 32(4)           |
| 05   | 3531(10) | 2245(10) | 2418(7)  | 34(4)           |
| 04   | 2106(11) | 2192(10) | 3057(7)  | 33(4)           |

**Table 11**: Anisotropic Displacement Parameters (×10<sup>4</sup>) for **compound3**. The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$ 

| Atom | <i>U</i> <sub>11</sub> | <b>U</b> <sub>22</sub> | <b>U</b> 33 | <i>U</i> <sub>23</sub> | <i>U</i> <sub>13</sub> | <i>U</i> <sub>12</sub> |
|------|------------------------|------------------------|-------------|------------------------|------------------------|------------------------|
| Mo11 | 39.7(2)                | 27.8(2)                | 28.33(19)   | 5.90(15)               | 1.81(16)               | -6.11(16)              |
| Mo8  | 46.5(2)                | 33.1(2)                | 22.18(18)   | 0.91(15)               | -2.92(16)              | -9.97(18)              |
| Mo7  | 32.8(2)                | 34.6(2)                | 27.99(19)   | 3.90(16)               | 5.04(16)               | -4.85(17)              |
| Mo10 | 30.3(2)                | 38.4(2)                | 33.2(2)     | 4.60(17)               | 4.40(16)               | -4.28(17)              |
| Mo5  | 30.0(2)                | 35.6(2)                | 40.0(2)     | -3.59(17)              | -11.16(17)             | -8.16(17)              |
| Mo12 | 37.6(2)                | 26.4(2)                | 42.4(2)     | -9.90(17)              | -6.67(18)              | -7.73(17)              |
| Mo1  | 43.2(2)                | 27.7(2)                | 27.69(19)   | 5.22(15)               | 0.05(17)               | -7.75(17)              |
| Mo4  | 43.5(2)                | 35.5(2)                | 21.42(18)   | 0.57(15)               | 1.42(16)               | -6.92(18)              |
| Mo6  | 35.2(2)                | 30.3(2)                | 39.8(2)     | -3.78(17)              | -5.77(18)              | 7.78(17)               |
| Mo2  | 37.5(2)                | 30.0(2)                | 44.3(2)     | -2.96(18)              | 0.43(19)               | 8.97(17)               |
| Mo3  | 57.6(3)                | 27.9(2)                | 39.5(2)     | -11.29(17)             | -2.6(2)                | -10.43(19)             |
| Mo9  | 30.7(2)                | 42.7(2)                | 45.9(3)     | 0.90(19)               | -15.03(19)             | -2.88(18)              |
| P1   | 24.3(5)                | 19.4(4)                | 20.8(4)     | -1.7(4)                | -2.6(4)                | -3.0(4)                |
| 026  | 41.0(19)               | 35.7(17)               | 42.3(18)    | -1.5(14)               | -7.8(15)               | -1.3(14)               |
| 018  | 42.8(18)               | 32.4(17)               | 46(2)       | -2.3(14)               | -10.8(14)              | -4.4(14)               |
| 020  | 42.9(18)               | 31.2(17)               | 44.3(18)    | -5.7(14)               | -7.2(14)               | -2.3(14)               |
| 032  | 46(2)                  | 33.3(17)               | 55(2)       | 2.6(15)                | 6.0(16)                | -3.6(14)               |
| 027  | 35.4(18)               | 61(2)                  | 37.7(17)    | -6.0(15)               | -3.7(13)               | -7.7(17)               |
| 024  | 47(2)                  | 39.5(19)               | 43.7(19)    | -7.5(15)               | -3.1(15)               | -1.5(15)               |
| 025  | 35.7(18)               | 38.7(18)               | 47(2)       | -1.5(14)               | -7.2(14)               | -4.1(14)               |
| 030  | 37.3(19)               | 38.6(18)               | 66(2)       | 8.4(16)                | 2.6(16)                | -8.0(14)               |
| 022  | 67(2)                  | 43.2(19)               | 34.7(17)    | 5.6(14)                | -12.2(17)              | -7.4(16)               |
| 029  | 36.0(18)               | 65(2)                  | 34.1(17)    | -4.0(16)               | -4.6(14)               | -4.2(16)               |
| 035  | 80(3)                  | 30.4(18)               | 41.3(19)    | -8.2(15)               | -8.9(19)               | -12.9(17)              |
| 019  | 44.1(19)               | 31.3(16)               | 46.0(19)    | -1.5(14)               | -13.8(16)              | -0.7(14)               |
| 028  | 37.6(18)               | 63(2)                  | 33.9(17)    | -10.0(16)              | -0.7(14)               | -5.0(15)               |
| 014  | 42.9(19)               | 34.1(18)               | 54(2)       | 4.8(15)                | 6.8(16)                | -2.7(14)               |
| 016  | 68(2)                  | 33.2(17)               | 34.3(17)    | 4.7(13)                | -15.2(16)              | -5.2(16)               |
| 08   | 28.9(17)               | 22.6(16)               | 21.5(14)    | -1.0(12)               | -4.6(12)               | -4.9(13)               |
| 017  | 64(2)                  | 33.3(17)               | 35.3(17)    | -3.9(13)               | -7.6(16)               | -4.5(15)               |
| 011  | 52(2)                  | 56(2)                  | 38.7(18)    | -6.6(16)               | -2.8(15)               | -13.6(18)              |
| 09   | 48(2)                  | 61(2)                  | 39.6(19)    | -0.2(17)               | -0.2(15)               | -3.2(17)               |
| 021  | 68(2)                  | 35.1(18)               | 37.3(18)    | -0.1(14)               | -6.3(16)               | -6.6(16)               |
| 038  | 37.0(18)               | 30.0(17)               | 56(2)       | 1.5(15)                | -1.3(16)               | 3.4(14)                |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Atom       | <i>U</i> <sub>11</sub> | <b>U</b> <sub>22</sub> | <b>U</b> 33       | <b>U</b> 23        | <b>U</b> <sub>13</sub> | <b>U</b> <sub>12</sub> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------|------------------------|-------------------|--------------------|------------------------|------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 023        | 64(2)                  | 40.9(19)               | 40.6(18)          | 3.4(14)            | -9.6(15)               | -12.1(18)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 033        | 60(2)                  | 33.1(18)               | 54(2)             | 12.6(16)           | -6.9(18)               | -12.8(16)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 06         | 28.6(17)               | 23.6(16)               | 20.3(14)          | 2.2(12)            | -0.8(12)               | -3.2(13)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 012        | 51(2)                  | 32.2(17)               | 60(2)             | 4.7(15)            | 9.0(16)                | -9.8(15)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 031        | 46(2)                  | 42(2)                  | 57(2)             | 9.5(17)            | 2.9(16)                | 0.3(16)                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 037        | 43(2)                  | 78(3)                  | 46(2)             | 5.5(19)            | -17.2(17)              | -24.9(19)              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01         | 32.2(18)               | 18.3(12)               | 25.2(16)          | -1.3(12)           | -1.2(14)               | -2.1(12)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 010        | 56(2)                  | 61(2)                  | 37.9(19)          | -11.9(17)          | 4.6(16)                | -7.1(18)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 015        | 63(2)                  | 36.6(18)               | 36.4(17)          | 1.0(14)            | -8.4(15)               | -11.7(17)              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 013        | 57(2)                  | 32.4(18)               | 57(2)             | 4.3(16)            | 15.2(18)               | 0.6(15)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 040        | 70(3)                  | 63(3)                  | 28.3(18)          | -4.9(16)           | -9.3(16)               | -4(2)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 03         | 24.4(13)               | 21.2(16)               | 22.6(16)          | -0.1(13)           | -2.0(12)               | -3.1(12)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 042        | 40(2)                  | 62(3)                  | 66(3)             | -7(2)              | 17.8(18)               | -9.2(17)               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 044        | /5(3)                  | 32.8(18)               | 41(2)             | -7.8(15)           | -0.8(18)               | -19.9(17)              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 039        | 46(2)                  | 65(3)                  | 54(2)             | -5.2(19)           | 18.7(18)               | -13.2(19)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 034        | 53(2)<br>69(2)         | 41(2)                  | 01(2)<br>27 2(17) | 0.7(17)<br>7.4(15) | 9.9(16)                | 2(2)                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 030        | 61(2)                  | 22 9(19)               | 27.2(17)<br>65(2) | -7.4(13)           | -0.1(10)               | -3(2)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 043        | 364(10)                | 52.0(10)<br>60(2)      | 57(2)             | 10.0(17)           | -10(2)                 | -13.9(10)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P4         | 44 8(8)                | 35 3(7)                | 34.8(6)           | -31(5)             | 5 5 (5)                | -91(6)                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C51        | 40(3)                  | 39(3)                  | 46(3)             | -4(2)              | 2(2)                   | -5(2)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C57        | 50(3)                  | 34(3)                  | 35(3)             | -3(2)              | 4(2)                   | -10(2)                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C56        | 44(3)                  | 51(3)                  | 67(4)             | 6(3)               | 0(3)                   | -4(3)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C63        | 50(3)                  | 42(3)                  | 33(2)             | -1(2)              | 9(2)                   | -16(2)                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C45        | 48(3)                  | 38(3)                  | 46(3)             | -6(2)              | 1(2)                   | -6(2)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C58        | 75(4)                  | 37(3)                  | 57(4)             | -8(3)              | 22(3)                  | -20(3)                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C65        | 84(5)                  | 40(3)                  | 46(3)             | -4(2)              | 21(3)                  | -9(3)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C64        | 53(3)                  | 44(3)                  | 42(3)             | -2(2)              | 15(2)                  | -8(3)                  |
| C68 $58(4)$ $54(4)$ $76(4)$ $10(3)$ $2(3)$ $-15(3)$ $C62$ $68(4)$ $50(3)$ $40(3)$ $-5(2)$ $6(3)$ $-26(3)$ $C66$ $95(6)$ $57(4)$ $50(4)$ $-10(3)$ $22(3)$ $-42(4)$ $C61$ $90(5)$ $77(5)$ $41(3)$ $-15(3)$ $8(3)$ $-31(4)$ $C59$ $103(6)$ $40(3)$ $62(4)$ $7(3)$ $33(4)$ $-12(3)$ $C50$ $55(4)$ $62(4)$ $56(4)$ $-14(3)$ $-1(3)$ $-1(3)$ $C67$ $63(4)$ $73(5)$ $80(5)$ $7(4)$ $3(4)$ $-33(4)$ $C46$ $65(4)$ $98(6)$ $41(3)$ $-13(3)$ $4(3)$ $-5(4)$ $C53$ $61(4)$ $74(5)$ $81(5)$ $-16(4)$ $23(4)$ $1(4)$ $C55$ $55(4)$ $46(4)$ $114(6)$ $9(4)$ $0(4)$ $-1(3)$ $C54$ $56(4)$ $56(4)$ $134(8)$ $-24(5)$ $12(5)$ $8(3)$ $C48$ $74(5)$ $90(6)$ $88(6)$ $-8(5)$ $-29(5)$ $-2(4)$ $C49$ $50(4)$ $85(5)$ $81(5)$ $-16(4)$ $-4(4)$ $-3(4)$ $C60$ $117(7)$ $64(4)$ $41(3)$ $1(3)$ $21(4)$ $-14(4)$ $C47$ $87(6)$ $125(7)$ $50(4)$ $-18(4)$ $-20(4)$ $-4(5)$ $P2$ $39.3(8)$ $52.8(9)$ $47.9(8)$ $2.2(7)$ $4.3(6)$ $2.8(6)$ $C19$ $46(3)$ $53(3)$ $47(3)$ $4(3)$ $4(2)$ $-3(3)$ <td>C52</td> <td>57(4)</td> <td>64(4)</td> <td>52(4)</td> <td>-9(3)</td> <td>13(3)</td> <td>-3(3)</td> | C52        | 57(4)                  | 64(4)                  | 52(4)             | -9(3)              | 13(3)                  | -3(3)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C68        | 58(4)                  | 54(4)                  | 76(4)             | 10(3)              | 2(3)                   | -15(3)                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C62        | 68(4)                  | 50(3)                  | 40(3)             | -5(2)              | 6(3)                   | -26(3)                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C66        | 95(6)                  | 57(4)                  | 50(4)             | -10(3)             | 22(3)                  | -42(4)                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C61        | 90(5)                  | 77(5)                  | 41(3)             | -15(3)             | 8(3)                   | -31(4)                 |
| C50 $55(4)$ $62(4)$ $56(4)$ $-14(3)$ $-1(3)$ $-1(3)$ C67 $63(4)$ $73(5)$ $80(5)$ $7(4)$ $3(4)$ $-33(4)$ C46 $65(4)$ $98(6)$ $41(3)$ $-13(3)$ $4(3)$ $-5(4)$ C53 $61(4)$ $74(5)$ $81(5)$ $-16(4)$ $23(4)$ $1(4)$ C55 $55(4)$ $46(4)$ $114(6)$ $9(4)$ $0(4)$ $-1(3)$ C54 $56(4)$ $56(4)$ $134(8)$ $-24(5)$ $12(5)$ $8(3)$ C48 $74(5)$ $90(6)$ $88(6)$ $-8(5)$ $-29(5)$ $-2(4)$ C49 $50(4)$ $85(5)$ $81(5)$ $-16(4)$ $-4(4)$ $-3(4)$ C60 $117(7)$ $64(4)$ $41(3)$ $1(3)$ $21(4)$ $-14(4)$ C47 $87(6)$ $125(7)$ $50(4)$ $-18(4)$ $-20(4)$ $-4(5)$ P2 $39.3(8)$ $52.8(9)$ $47.9(8)$ $2.2(7)$ $4.3(6)$ $2.8(6)$ C19 $46(3)$ $53(3)$ $47(3)$ $4(3)$ $4(2)$ $-3(3)$ C6 $46(3)$ $54(3)$ $42(3)$ $14(3)$ $0(2)$ $4(3)$ C13 $35(3)$ $63(4)$ $52(3)$ $0(3)$ $3(2)$ $0(3)$ C7 $48(3)$ $50(3)$ $53(3)$ $3(3)$ $2(3)$ $5(3)$ C5 $50(4)$ $74(4)$ $45(3)$ $13(3)$ $-1(3)$ $-13(4)$ C13 $36(3)$ $51(3)$ $48(3)$ $2(2)$ $3(2)$ $1(2)$ C4 $45(4)$ $93(5)$ <t< td=""><td>C59</td><td>103(6)</td><td>40(3)</td><td>62(4)</td><td>7(3)</td><td>33(4)</td><td>-12(3)</td></t<>                     | C59        | 103(6)                 | 40(3)                  | 62(4)             | 7(3)               | 33(4)                  | -12(3)                 |
| 167 $63(4)$ $73(5)$ $80(5)$ $7(4)$ $3(4)$ $-33(4)$ $126$ $65(4)$ $98(6)$ $41(3)$ $-13(3)$ $4(3)$ $-5(4)$ $1253$ $61(4)$ $74(5)$ $81(5)$ $-16(4)$ $23(4)$ $1(4)$ $1255$ $55(4)$ $46(4)$ $114(6)$ $9(4)$ $0(4)$ $-1(3)$ $1254$ $56(4)$ $56(4)$ $134(8)$ $-24(5)$ $12(5)$ $8(3)$ $1248$ $74(5)$ $90(6)$ $88(6)$ $-8(5)$ $-29(5)$ $-2(4)$ $1249$ $50(4)$ $85(5)$ $81(5)$ $-16(4)$ $-4(4)$ $-3(4)$ $1260$ $117(7)$ $64(4)$ $41(3)$ $1(3)$ $21(4)$ $-14(4)$ $1277$ $87(6)$ $125(7)$ $50(4)$ $-18(4)$ $-20(4)$ $-4(5)$ $122$ $39.3(8)$ $52.8(9)$ $47.9(8)$ $2.2(7)$ $4.3(6)$ $2.8(6)$ $129$ $46(3)$ $53(3)$ $47(3)$ $4(3)$ $4(2)$ $-3(3)$ $129$ $46(3)$ $54(3)$ $42(3)$ $14(3)$ $0(2)$ $4(3)$ $133$ $35(3)$ $63(4)$ $52(3)$ $0(3)$ $3(2)$ $0(3)$ $133$ $51(3)$ $53(3)$ $53(3)$ $3(3)$ $2(3)$ $5(3)$ $133$ $50(3)$ $53(3)$ $53(3)$ $3(3)$ $2(3)$ $5(3)$ $129$ $46(3)$ $50(3)$ $53(3)$ $3(3)$ $2(3)$ $5(3)$ $133$ $53(3)$ $53(3)$ $53(3)$ $3(3)$ $2(3)$ $5(3)$ $133$                                                                                                                | C50        | 55(4)                  | 62(4)<br>72(5)         | 56(4)             | -14(3)             | -1(3)                  | -1(3)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 63(4)<br>65(4)         | /3(5)                  | 80(5)             | 7(4)<br>12(2)      | 3(4)                   | -33(4)                 |
| C55 $55(4)$ $46(4)$ $114(6)$ $9(4)$ $0(4)$ $-1(3)$ C54 $56(4)$ $56(4)$ $134(8)$ $-24(5)$ $12(5)$ $8(3)$ C48 $74(5)$ $90(6)$ $88(6)$ $-8(5)$ $-29(5)$ $-2(4)$ C49 $50(4)$ $85(5)$ $81(5)$ $-16(4)$ $-4(4)$ $-3(4)$ C60 $117(7)$ $64(4)$ $41(3)$ $1(3)$ $21(4)$ $-14(4)$ C47 $87(6)$ $125(7)$ $50(4)$ $-18(4)$ $-20(4)$ $-4(5)$ P2 $39.3(8)$ $52.8(9)$ $47.9(8)$ $2.2(7)$ $4.3(6)$ $2.8(6)$ C19 $46(3)$ $53(3)$ $47(3)$ $4(3)$ $0(2)$ $4(3)$ C13 $35(3)$ $63(4)$ $52(3)$ $0(3)$ $3(2)$ $0(3)$ C7 $48(3)$ $50(3)$ $53(3)$ $3(3)$ $2(3)$ $5(3)$ C5 $50(4)$ $74(4)$ $45(3)$ $13(3)$ $-1(3)$ $22(3)$ C24 $43(3)$ $66(4)$ $60(4)$ $5(3)$ $-8(3)$ $-10(3)$ C15 $64(4)$ $91(5)$ $48(4)$ $19(3)$ $-1(3)$ $-13(4)$ C1 $36(3)$ $51(3)$ $48(3)$ $2(2)$ $3(2)$ $1(2)$ C4 $45(4)$ $93(5)$ $59(4)$ $-8(4)$ $8(3)$ $-3(3)$ C14 $49(3)$ $70(4)$ $50(3)$ $19(3)$ $8(3)$ $-9(3)$ C16 $51(4)$ $97(6)$ $65(4)$ $-1(4)$ $-11(3)$ $-5(4)$                                                                                                                                                          | C52        | 61(4)                  | 98(0)<br>74(5)         | 41(5)<br>91(5)    | -13(3)<br>16(4)    | 4(3)                   | -5(4)                  |
| C53 $53(4)$ $40(4)$ $114(0)$ $5(4)$ $0(4)$ $11(3)$ $C54$ $56(4)$ $56(4)$ $134(8)$ $-24(5)$ $12(5)$ $8(3)$ $C48$ $74(5)$ $90(6)$ $88(6)$ $-8(5)$ $-29(5)$ $-2(4)$ $C49$ $50(4)$ $85(5)$ $81(5)$ $-16(4)$ $-4(4)$ $-3(4)$ $C60$ $117(7)$ $64(4)$ $41(3)$ $1(3)$ $21(4)$ $-14(4)$ $C47$ $87(6)$ $125(7)$ $50(4)$ $-18(4)$ $-20(4)$ $-4(5)$ $P2$ $39.3(8)$ $52.8(9)$ $47.9(8)$ $2.2(7)$ $4.3(6)$ $2.8(6)$ $C19$ $46(3)$ $53(3)$ $47(3)$ $4(3)$ $4(2)$ $-3(3)$ $C6$ $46(3)$ $54(3)$ $42(3)$ $14(3)$ $0(2)$ $4(3)$ $C13$ $35(3)$ $63(4)$ $52(3)$ $0(3)$ $3(2)$ $0(3)$ $C7$ $48(3)$ $50(3)$ $53(3)$ $3(3)$ $2(3)$ $5(3)$ $C5$ $50(4)$ $74(4)$ $45(3)$ $13(3)$ $-1(3)$ $22(3)$ $C24$ $43(3)$ $66(4)$ $60(4)$ $5(3)$ $-8(3)$ $-10(3)$ $C5$ $50(4)$ $74(4)$ $45(3)$ $13(3)$ $-1(3)$ $-13(4)$ $C1$ $36(3)$ $51(3)$ $48(3)$ $2(2)$ $3(2)$ $1(2)$ $C4$ $45(4)$ $93(5)$ $59(4)$ $-8(4)$ $8(3)$ $-3(3)$ $C1$ $36(3)$ $51(3)$ $48(3)$ $2(2)$ $3(2)$ $1(2)$ $C4$ $4$                                                                                                                        | C55        | 55(4)                  | 74(5)                  | 114(6)            | -10(4)             | 23(4)                  | -1(3)                  |
| C34 $30(4)$ $30(4)$ $134(3)$ $124(3)$ $112(3)$ $30(3)$ C48 $74(5)$ $90(6)$ $88(6)$ $-8(5)$ $-29(5)$ $-2(4)$ C49 $50(4)$ $85(5)$ $81(5)$ $-16(4)$ $-4(4)$ $-3(4)$ C60 $117(7)$ $64(4)$ $41(3)$ $1(3)$ $21(4)$ $-14(4)$ C47 $87(6)$ $125(7)$ $50(4)$ $-18(4)$ $-20(4)$ $-4(5)$ P2 $39.3(8)$ $52.8(9)$ $47.9(8)$ $2.2(7)$ $4.3(6)$ $2.8(6)$ C19 $46(3)$ $53(3)$ $47(3)$ $4(3)$ $4(2)$ $-3(3)$ C6 $46(3)$ $54(3)$ $42(3)$ $14(3)$ $0(2)$ $4(3)$ C13 $35(3)$ $63(4)$ $52(3)$ $0(3)$ $3(2)$ $0(3)$ C7 $48(3)$ $50(3)$ $53(3)$ $3(3)$ $2(3)$ $5(3)$ C5 $50(4)$ $74(4)$ $45(3)$ $13(3)$ $-1(3)$ $22(3)$ C24 $43(3)$ $66(4)$ $60(4)$ $5(3)$ $-8(3)$ $-10(3)$ C15 $64(4)$ $91(5)$ $48(4)$ $19(3)$ $-1(3)$ $-13(4)$ C1 $36(3)$ $51(3)$ $48(3)$ $2(2)$ $3(2)$ $1(2)$ C4 $45(4)$ $93(5)$ $59(4)$ $-8(4)$ $8(3)$ $-3(3)$ C14 $49(3)$ $70(4)$ $50(3)$ $19(3)$ $8(3)$ $-9(3)$                                                                                                                                                                                                              | C54        | 56(4)                  | 56(4)                  | 134(8)            | -24(5)             | 12(5)                  | 8(3)                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C48        | 74(5)                  | 90(6)                  | 88(6)             | -8(5)              | -29(5)                 | -2(4)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C49        | 50(4)                  | 85(5)                  | 81(5)             | -16(4)             | -4(4)                  | -3(4)                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C60        | 117(7)                 | 64(4)                  | 41(3)             | 1(3)               | 21(4)                  | -14(4)                 |
| P2 $39.3(8)$ $52.8(9)$ $47.9(8)$ $2.2(7)$ $4.3(6)$ $2.8(6)$ C19 $46(3)$ $53(3)$ $47(3)$ $4(3)$ $4(2)$ $-3(3)$ C6 $46(3)$ $54(3)$ $42(3)$ $14(3)$ $0(2)$ $4(3)$ C13 $35(3)$ $63(4)$ $52(3)$ $0(3)$ $3(2)$ $0(3)$ C7 $48(3)$ $50(3)$ $53(3)$ $3(3)$ $2(3)$ $5(3)$ C5 $50(4)$ $74(4)$ $45(3)$ $13(3)$ $-1(3)$ $22(3)$ C24 $43(3)$ $66(4)$ $60(4)$ $5(3)$ $-8(3)$ $-10(3)$ C15 $64(4)$ $91(5)$ $48(4)$ $19(3)$ $-1(3)$ $-13(4)$ C1 $36(3)$ $51(3)$ $48(3)$ $2(2)$ $3(2)$ $1(2)$ C4 $45(4)$ $93(5)$ $59(4)$ $-8(4)$ $8(3)$ $-3(3)$ C14 $49(3)$ $70(4)$ $50(3)$ $19(3)$ $8(3)$ $-9(3)$ C16 $51(4)$ $97(6)$ $65(4)$ $-1(4)$ $-11(3)$ $-5(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                      | C47        | 87(6)                  | 125(7)                 | 50(4)             | -18(4)             | -20(4)                 | -4(5)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P2         | 39.3(8)                | 52.8(9)                | 47.9(8)           | 2.2(7)             | 4.3(6)                 | 2.8(6)                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C19        | 46(3)                  | 53(3)                  | 47(3)             | 4(3)               | 4(2)                   | -3(3)                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C6         | 46(3)                  | 54(3)                  | 42(3)             | 14(3)              | 0(2)                   | 4(3)                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C13        | 35(3)                  | 63(4)                  | 52(3)             | 0(3)               | 3(2)                   | 0(3)                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C7         | 48(3)                  | 50(3)                  | 53(3)             | 3(3)               | 2(3)                   | 5(3)                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C5         | 50(4)                  | 74(4)                  | 45(3)             | 13(3)              | -1(3)                  | 22(3)                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C24        | 43(3)                  | 66(4)                  | 60(4)             | 5(3)               | -8(3)                  | -10(3)                 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C15        | 64(4)                  | 91(5)                  | 48(4)             | 19(3)              | -1(3)                  | -13(4)                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C1         | 36(3)                  | 51(3)                  | 48(3)             | 2(2)               | 3(2)                   | 1(2)                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C4         | 45(4)                  | 93(5)                  | 59(4)             | -8(4)              | 8(3)                   | -3(3)                  |
| 510 $51(4)$ $9/(0)$ $05(4)$ $-1(4)$ $-11(3)$ $-5(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U14<br>C16 | 49(3)<br>F1(4)         | /0(4)                  | 50(3)             | 19(3)              | 8(3)<br>11(2)          | -9(3)                  |
| (9  19(4)  57(4)  74(4)  5(2)  2(2)  12(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C0<br>C0   | 51(4)<br>49(4)         | 97(0)<br>57(4)         | 05(4)<br>76(4)    | -1(4)<br>E(2)      | -11(3)                 | -5(4)<br>12(2)         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO<br>C12  | 40(4)<br>65(1)         | 57(4)                  | 70(4)<br>02(5)    | 3(3)<br>_⊑(4)      | ગ(ગ)<br>₋19(4)         | 12(3)<br>12(2)         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C14<br>C20 | 102(4)                 | 78(5)                  | 53(3)             | -3(4)<br>2(1)      | -10(4)<br>_8(1)        | -30(5)                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C23        | 59(4)                  | 93(6)                  | 54(4)<br>60(4)    | 2(4)<br>20(4)      | -0(4)                  | -30(3)                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C2         | 66(4)                  | 46(4)                  | 88(5)             | 4(3)               | 20(4)                  | 1(3)                   |
| (9) 72(5) 55(4) 103(6) -2(4) 17(5) 21(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C9         | 72(5)                  | 55(4)                  | 103(6)            | -2(4)              | 17(5)                  | 21(4)                  |
| C3 $76(5)$ $61(4)$ $99(6)$ $-4(4)$ $36(4)$ $-22(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C3         | 76(5)                  | 61(4)                  | 99(6)             | -4(4)              | 36(4)                  | -22(4)                 |

| Atom       | U <sub>11</sub>    | <b>U</b> <sub>22</sub> | U <sub>33</sub>    | <b>U</b> <sub>23</sub> | <i>U</i> <sub>13</sub> | <b>U</b> <sub>12</sub> |
|------------|--------------------|------------------------|--------------------|------------------------|------------------------|------------------------|
| C18        | 48(4)              | 164(9)                 | 46(4)              | -5(4)                  | 8(3)                   | -15(5)                 |
| C10        | 97(6)              | 54(4)                  | 95(6)              | -10(4)                 | 1(5)                   | -4(4)                  |
| C22        | 84(6)              | 81(5)                  | 81(5)              | 27(4)                  | -2(4)                  | -23(4)                 |
| C11        | 82(5)              | 56(4)                  | 106(6)             | -7(4)                  | -31(5)                 | -3(4)                  |
| C17        | 42(4)              | 161(9)                 | 65(5)              | -6(5)                  | 4(3)                   | -17(5)                 |
| C21        | 121(7)             | 73(5)                  | 81(6)              | 5(4)                   | 3(5)                   | -47(5)                 |
| P3         | 32.6(6)            | 47.2(7)                | 30.6(6)            | -4.4(5)                | 2.2(5)                 | -11.9(6)               |
| C37        | 39(3)              | 55(3)                  | 30(2)              | -9(2)                  | 4(2)                   | -18(2)                 |
| C39        | 41(3)              | 45(3)                  | 31(2)              | 0(2)                   | -4(2)                  | -11(2)                 |
| C31        | 29(2)              | 52(3)                  | 38(3)              | 3(2)                   | -1(2)                  | -10(2)                 |
| C25        | 33(3)              | 49(3)                  | 49(3)              | -8(2)                  | 5(2)                   | -12(2)                 |
| C102       | 39(3)              | 63(4)                  | 42(3)              | -12(3)                 | 4(2)                   | -10(3)                 |
| C40        | 50(3)              | 73(4)                  | 34(3)              | -7(3)                  | 1(2)                   | -7(3)                  |
| C42        | 89(5)              | 74(5)                  | 34(3)              | -3(3)                  | -12(3)                 | -30(4)                 |
| C38        | 54(4)              | 54(4)                  | 58(4)              | -3(3)                  | -10(3)                 | -15(3)                 |
| C32        | 39(3)              | 55(3)                  | 48(3)              | 1(3)<br>17(2)          | -4(Z)                  | -8(2)                  |
| C101       | 53(4)<br>2((2)     | 04(4)<br>104(C)        | 50(3)              | -1/(3)                 | 12(3)                  | -13(3)                 |
| C101       | 30(3)<br>75(5)     | 104(6)                 | 41(3)              | -4(3)                  | -2(2)<br>10(2)         | -19(3)                 |
| C43        | 73(3)<br>52(3)     | 73(4)<br>69(4)         | 42(3)              | 7 (3)<br>9(2)          | -10(3)                 | -39(4)                 |
| C44<br>C41 | 32(3)<br>80(5)     | 82(5)                  | $\frac{42}{35}$    | -10(3)                 | -0(3)                  | -30(3)                 |
| C33        | 56(4)              | 52(3)<br>50(4)         | 77(5)              | 7(3)                   | -3(3)                  | -9(3)                  |
| C34        | 60(4)              | 78(5)                  | 79(5)              | 35(4)                  | -7(4)                  | -4(4)                  |
| C35        | 69(5)              | 118(7)                 | 50(4)              | 32(4)                  | -15(3)                 | -17(5)                 |
| C27        | 67(5)              | 73(5)                  | 78(5)              | -30(4)                 | 35(4)                  | -28(4)                 |
| C100       | 55(4)              | 106(6)                 | 63(4)              | 22(4)                  | -19(3)                 | -45(4)                 |
| C28        | 65(5)              | 55(4)                  | 126(7)             | -25(5)                 | 41(5)                  | -12(4)                 |
| C99        | 77(5)              | 63(4)                  | 86(5)              | 10(4)                  | -30(4)                 | -40(4)                 |
| C36        | 58(4)              | 83(5)                  | 42(3)              | 8(3)                   | -12(3)                 | -19(3)                 |
| C30        | 62(4)              | 58(4)                  | 67(4)              | 1(3)                   | 9(3)                   | 2(3)                   |
| C29        | 71(5)              | 64(5)                  | 116(7)             | -1(5)                  | 13(5)                  | 10(4)                  |
| 047        | 128(6)             | 153(6)                 | 70(4)              | -8(4)                  | -7(4)                  | -55(5)                 |
| N3         | 94(5)              | 68(4)                  | 80(4)              | 5(3)                   | 23(4)                  | -25(3)                 |
| C97        | 72(5)              | 82(5)                  | 74(5)              | 7(4)                   | 2(4)                   | -20(4)                 |
| C85        | 72(10)             | 67(9)                  | 64(9)              | 11(8)                  | 11(8)                  | -12(9)                 |
| C98        | 142(8)             | 83(6)                  | 98(6)              | -18(5)                 | 57(6)                  | -54(6)                 |
| C90        | 78(11)             | 78(10)                 | 77(10)             | 13(8)                  | -14(8)                 | -18(9)                 |
|            | 128(14)            | 89(12)<br>06(12)       | 103(12)<br>02(12)  | 19(11)                 | -4(11)<br>42(11)       | 4(11)<br>14(11)        |
| C00<br>C00 | 130(14)<br>104(12) | 90(13)                 | 93(12)<br>91(11)   | -12(10)                | -43(11)<br>21(10)      | 14(11)<br>12(10)       |
| C87        | 153(15)            | 103(13)                | 105(13)            | 0(11)                  | -31(10)<br>-44(12)     | 9(12)                  |
| 045        | 134(13)            | 164(15)                | 103(10)<br>101(10) | 54(10)                 | 46(9)                  | 14(11)                 |
| N1         | 75(8)              | 117(10)                | 69(7)              | 43(7)                  | -16(6)                 | 16(7)                  |
| C69        | 56(5)              | 60(8)                  | 48(6)              | 11(6)                  | -12(4)                 | -1(6)                  |
| C71        | 57(9)              | 93(12)                 | 91(12)             | 35(10)                 | -27(9)                 | -5(9)                  |
| C75        | 69(18)             | 110(30)                | 56(13)             | 34(15)                 | 3(12)                  | 27(18)                 |
| C74        | 85(11)             | 67(9)                  | 73(10)             | 30(8)                  | -15(9)                 | 18(8)                  |
| C70        | 84(12)             | 101(13)                | 83(11)             | 60(10)                 | -36(9)                 | -10(10)                |
| C72        | 71(11)             | 105(14)                | 122(16)            | 49(13)                 | -12(11)                | -8(10)                 |
| C76        | 76(11)             | 171(16)                | 108(13)            | 65(13)                 | -8(10)                 | 16(12)                 |
| C73        | 150(40)            | 80(20)                 | 110(40)            | 50(20)                 | -10(30)                | -40(20)                |
| 046        | 58(6)              | 141(11)                | 134(11)            | -3(9)                  | 5(6)                   | -40(7)                 |
| N2         | 57(5)              | 57(6)                  | 61(6)              | 2(5)                   | -10(4)                 | -23(5)                 |
| C84        | 81(15)             | 100(20)                | 60(8)              | -9(10)                 | -4(7)                  | -26(13)                |
| C78        | 70(7)              | 90(10)                 | 51(7)              | -14(6)                 | -7(5)                  | -38(7)                 |
| 6/9<br>CQ2 | 81(10)<br>62(7)    | 11/(16)<br>70(0)       | 8/(11)<br>67(7)    | -40(12)<br>16(6)       | 13(8)<br>17(5)         | -30(12)<br>20(4)       |
| 02         | 02(/J<br>01(11)    | /ULOJ<br>127(15)       | 0/[/]<br>00(11)    | -10(0)<br>AE(10)       | -1/[3]                 | -20(0)<br>57(11)       |
| C00<br>C81 | 91(11)<br>95(14)   | 100(30)                | 07(11)<br>81(10)   | -43(10)                | 44(7)<br>12(12)        | -37(11)<br>-43(16)     |
| C83        | 57(6)              | 87(12)                 | 79(10)             | 2(10)                  | -15(5)                 | -77(8)                 |
| C77        | 52(4)              | 49(11)                 | 50(4)              | 1(8)                   | -14(3)                 | -12(7)                 |
| C91        | 74(10)             | 76(10)                 | 105(12)            | 24(10)                 | -5(10)                 | -26(9)                 |
| C96        | 101(14)            | 82(11)                 | 131(14)            | 11(10)                 | -43(11)                | -41(10)                |

| Atom | <i>U</i> <sub>11</sub> | <b>U</b> <sub>22</sub> | <b>U</b> 33 | <b>U</b> <sub>23</sub> | <i>U</i> <sub>13</sub> | <i>U</i> <sub>12</sub> |
|------|------------------------|------------------------|-------------|------------------------|------------------------|------------------------|
| C95  | 125(16)                | 108(13)                | 146(15)     | 8(11)                  | -62(13)                | -27(11)                |
| C94  | 132(16)                | 129(16)                | 142(16)     | 29(13)                 | -62(13)                | -14(13)                |
| C93  | 121(15)                | 122(17)                | 150(17)     | 20(15)                 | -22(14)                | 3(14)                  |
| C92  | 88(12)                 | 97(13)                 | 127(14)     | 58(11)                 | -4(11)                 | 2(10)                  |
| 07   | 28(8)                  | 23(7)                  | 37(8)       | 9(6)                   | -9(6)                  | -5(6)                  |
| 02   | 47(10)                 | 30(8)                  | 21(7)       | -1(6)                  | -10(7)                 | -3(7)                  |
| 05   | 23(8)                  | 29(8)                  | 49(10)      | 1(7)                   | -6(7)                  | -4(6)                  |
| 04   | 42(9)                  | 35(9)                  | 25(8)       | 1(6)                   | -3(7)                  | -13(7)                 |

 Table 12: Bond Lengths in Å for compound3.

| Atom | Atom | Longth / Å | Atom | Atom | I ongth / Å |
|------|------|------------|------|------|-------------|
| Mo11 | 026  |            |      | 024  |             |
| M011 | 026  | 1.858(3)   | M04  | 024  | 1.845(4)    |
| M011 | 027  | 1.975(3)   | M04  | 014  | 1.9/0(4)    |
| MOII | 025  | 1.992(3)   | M04  | 06   | 2.465(3)    |
| MOII | 029  | 1.825(4)   | M04  | 013  | 1.840(4)    |
| MOII | 06   | 2.473(3)   | M04  | 036  | 1.660(3)    |
| Moll | 043  | 1.660(3)   | Mo4  | 02   | 2.380(15)   |
| Moll | 07   | 2.373(14)  | M06  | 029  | 1.971(4)    |
| Mo8  | 020  | 1.835(3)   | M06  | 028  | 1.824(4)    |
| Mo8  | 032  | 1.845(3)   | M06  | 016  | 1.970(4)    |
| Mo8  | 019  | 1.972(3)   | Mo6  | 017  | 1.861(4)    |
| Mo8  | 08   | 2.433(3)   | Mo6  | 038  | 1.670(3)    |
| Mo8  | 031  | 1.995(4)   | Mo6  | 03   | 2.444(3)    |
| Mo8  | 040  | 1.673(4)   | Mo6  | 07   | 2.524(15)   |
| Mo8  | 04   | 2.565(15)  | Mo2  | 022  | 1.972(4)    |
| Mo7  | 018  | 1.830(3)   | Mo2  | 09   | 1.999(4)    |
| Mo7  | 020  | 1.965(3)   | Mo2  | 021  | 1.811(4)    |
| Mo7  | 017  | 1.980(3)   | Mo2  | 01   | 2.429(4)    |
| Mo7  | 015  | 1.852(3)   | Mo2  | 010  | 1.862(4)    |
| Mo7  | 03   | 2.432(3)   | Mo2  | 034  | 1.662(4)    |
| Mo7  | 039  | 1.670(4)   | Mo2  | 05   | 2.525(15)   |
| Mo7  | 04   | 2.535(16)  | Mo3  | 035  | 1.661(3)    |
| Mo10 | 024  | 1.997(4)   | Mo3  | 011  | 1.872(4)    |
| Mo10 | 025  | 1.847(3)   | Mo3  | 012  | 1.830(4)    |
| Mo10 | 021  | 1.987(4)   | Mo3  | 01   | 2.460(4)    |
| Mo10 | 023  | 1.830(4)   | Mo3  | 010  | 1.990(4)    |
| Mo10 | 06   | 2.457(4)   | Mo3  | 013  | 1.961(4)    |
| Mo10 | 042  | 1.659(4)   | Mo3  | 02   | 2.569(15)   |
| Mo10 | 05   | 2.392(16)  | Mo9  | 030  | 1.986(4)    |
| Mo5  | 014  | 1.811(4)   | Mo9  | 022  | 1.822(4)    |
| Mo5  | 016  | 1.852(4)   | Mo9  | 08   | 2.437(4)    |
| Mo5  | 012  | 1.966(4)   | Mo9  | 023  | 1.968(4)    |
| Mo5  | 037  | 1.662(4)   | Mo9  | 031  | 1.870(4)    |
| Mo5  | 015  | 1.997(4)   | Mo9  | 041  | 1.666(4)    |
| Mo5  | 03   | 2.446(3)   | Mo9  | 05   | 2.570(16)   |
| Mo5  | 02   | 2.469(17)  | P1   | 08   | 1.537(3)    |
| Mo12 | 032  | 2.011(4)   | P1   | 06   | 1.504(3)    |
| Mo12 | 027  | 1.816(4)   | P1   | 01   | 1.539(4)    |
| Mo12 | 030  | 1.856(4)   | P1   | 03   | 1.530(4)    |
| Mo12 | 028  | 1.959(4)   | P1   | 07   | 1.592(14)   |
| Mo12 | 08   | 2.444(3)   | P1   | 02   | 1.585(14)   |
| Mo12 | 044  | 1.660(3)   | P1   | 05   | 1.536(15)   |
| Mo12 | 07   | 2.497(15)  | P1   | 04   | 1.421(15)   |
| Mo1  | 018  | 1.968(3)   | P4   | C51  | 1.800(5)    |
| Mo1  | 019  | 1.835(3)   | P4   | C57  | 1.794(5)    |
| Mo1  | 011  | 1.987(4)   | P4   | C63  | 1.793(5)    |
| Mo1  | 09   | 1.859(4)   | P4   | C45  | 1.795(6)    |
| Mo1  | 033  | 1.673(3)   | C51  | C56  | 1.378(8)    |
| Mo1  | 01   | 2.423(4)   | C51  | C52  | 1.394(8)    |
| Mo1  | 04   | 2.585(16)  | C57  | C58  | 1.395(7)    |
| Mo4  | 026  | 1.982(3)   | C57  | C62  | 1.386(7)    |

| Atom | Atom | Length/Å  | _ | Atom       | Atom | Length/Å  |
|------|------|-----------|---|------------|------|-----------|
| C56  | C55  | 1.394(9)  | _ | <u>C31</u> | C36  | 1.394(7)  |
| C63  | C64  | 1.374(8)  |   | C25        | C26  | 1.387(8)  |
| C63  | C68  | 1 394(8)  |   | C25        | C30  | 1 378(9)  |
| C45  | C50  | 1 386(8)  |   | C102       | C101 | 1 380(8)  |
| C45  | C46  | 1.381(8)  |   | C40        | C41  | 1.388(8)  |
| C58  | C59  | 1.377(8)  |   | C42        | C43  | 1.376(10) |
| C65  | C64  | 1.396(8)  |   | C42        | C41  | 1.372(10) |
| C65  | C66  | 1.362(10) |   | C38        | C99  | 1.394(9)  |
| C52  | C53  | 1.372(9)  |   | C32        | C33  | 1.385(8)  |
| C68  | C67  | 1.380(9)  |   | C26        | C27  | 1.382(9)  |
| C62  | C61  | 1.379(8)  |   | C101       | C100 | 1.370(10) |
| C66  | C67  | 1.375(10) |   | C43        | C44  | 1.383(8)  |
| C61  | C60  | 1.364(9)  |   | C33        | C34  | 1.364(10) |
| C59  | C60  | 1.384(10) |   | C34        | C35  | 1.367(11) |
| C50  | C49  | 1.386(9)  |   | C35        | C36  | 1.375(10) |
| C46  | C47  | 1.389(10) |   | C27        | C28  | 1.346(11) |
| C53  | C54  | 1.372(11) |   | C100       | C99  | 1.349(11) |
| C55  | C54  | 1.371(11) |   | C28        | C29  | 1.372(12) |
| C48  | C49  | 1.347(10) |   | C30        | C29  | 1.384(9)  |
| C48  | C47  | 1.357(11) |   | 047        | C97  | 1.210(9)  |
| P2   | C19  | 1.794(6)  |   | N3         | C97  | 1.336(9)  |
| P2   | C13  | 1.786(6)  |   | N3         | C85  | 1.395(14) |
| P2   | C7   | 1.800(6)  |   | N3         | C98  | 1.447(9)  |
| P2   | C1   | 1.795(5)  |   | N3         | C91  | 1.442(12) |
| C19  | C24  | 1.390(8)  |   | C85        | C90  | 1.354(14) |
| C19  | C20  | 1.390(9)  |   | C85        | C86  | 1.464(11) |
| C6   | C5   | 1.369(8)  |   | C90        | C89  | 1.387(15) |
| C6   | C1   | 1.374(7)  |   | C86        | C87  | 1.386(17) |
| C13  | C14  | 1.378(8)  |   | C88        | C89  | 1.383(16) |
| C13  | C18  | 1.386(8)  |   | C88        | C87  | 1.388(16) |
| C7   | C8   | 1.385(8)  |   | 045        | C75  | 1.25(5)   |
| C7   | C12  | 1.393(9)  |   | N1         | C69  | 1.42(3)   |
| C5   | C4   | 1.354(10) |   | N1         | C75  | 1.35(5)   |
| C24  | C23  | 1.389(9)  |   | N1         | C76  | 1.43(2)   |
| C15  | C14  | 1.377(9)  |   | C69        | C74  | 1.38(3)   |
| C15  | C16  | 1.358(9)  |   | C69        | C70  | 1.37(3)   |
| C1   | C2   | 1.402(8)  |   | C71        | C70  | 1.36(2)   |
| C4   | C3   | 1.371(10) |   | C71        | C72  | 1.38(2)   |
| C16  | C17  | 1.354(10) |   | C74        | C73  | 1.40(6)   |
| C8   | C9   | 1.375(10) |   | C72        | C73  | 1.35(5)   |
| C12  | C11  | 1.366(10) |   | 046        | C83  | 1.22(2)   |
| C20  | C21  | 1.373(10) |   | N2         | C84  | 1.44(4)   |
| C23  | C22  | 1.361(11) |   | N2         | C83  | 1.34(2)   |
| C2   | C3   | 1.378(9)  |   | N2         | C77  | 1.41(8)   |
| C9   | C10  | 1.355(11) |   | C78        | C79  | 1.38(2)   |
| C18  | C17  | 1.377(10) |   | C78        | C77  | 1.39(7)   |
| C10  | C11  | 1.379(10) |   | C79        | C80  | 1.39(2)   |
| C22  | C21  | 1.365(11) |   | C82        | C81  | 1.40(5)   |
| P3   | C37  | 1.793(5)  |   | C82        | C77  | 1.37(7)   |
| P3   | C39  | 1.793(5)  |   | C80        | C81  | 1.34(5)   |
| P3   | C31  | 1.793(5)  |   | C91        | C96  | 1.3900    |
| P3   | C25  | 1.800(5)  |   | C91        | C92  | 1.3900    |
| C37  | C102 | 1.395(8)  |   | C96        | C95  | 1.3900    |
| C37  | C38  | 1.374(8)  |   | C95        | C94  | 1.3900    |
| C39  | C40  | 1.380(7)  |   | C94        | C93  | 1.3900    |
| C39  | C44  | 1.399(7)  |   | C93        | C92  | 1.3900    |
| C31  | C32  | 1.388(8)  |   |            |      |           |

| Atom             | Atom         | Atom | Angle /°                | Atom              | Atom         | Atom | Angle /°                |
|------------------|--------------|------|-------------------------|-------------------|--------------|------|-------------------------|
| $\frac{1}{0.26}$ | Mo11         | 027  | 153 62(16)              | $\frac{1}{0.025}$ | Mo10         | 021  | 154.32(16)              |
| 020              | Mo11<br>Mo11 | 025  | 86 29(15)               | 025               | Mo10         | 06   | 71 82(14)               |
| 026              | Mo11         | 06   | 71 36(13)               | 025               | Mo10         | 05   | 1025(4)                 |
| 026              | Mo11         | 07   | 102 4(4)                | 021               | Mo10         | 024  | 81 67(15)               |
| 027              | Mo11         | 025  | 81.87(15)               | 021               | Mo10         | 06   | 82.65(14)               |
| 027              | Mo11         | 06   | 82.40(14)               | 021               | Mo10         | 05   | 56.4(4)                 |
| 027              | Mo11         | 07   | 56.3(4)                 | 023               | Mo10         | 024  | 154.12(17)              |
| 025              | Mo11         | 06   | 69.40(13)               | 023               | Mo10         | 025  | 95.60(16)               |
| 025              | Mo11         | 07   | 97.2(4)                 | 023               | Mo10         | 021  | 85.35(15)               |
| 029              | Mo11         | 026  | 94.51(16)               | 023               | Mo10         | 06   | 86.65(15)               |
| 029              | Mo11         | 027  | 86.23(15)               | 023               | Mo10         | 05   | 58.5(4)                 |
| 029              | Mo11         | 025  | 153.98(16)              | 042               | Mo10         | 024  | 99.79(19)               |
| 029              | Mo11         | 06   | 86.18(15)               | 042               | Mo10         | 025  | 103.02(19)              |
| 029              | Mo11         | 07   | 57.2(4)                 | 042               | Mo10         | 021  | 101.52(19)              |
| 043              | Mo11         | 026  | 102.36(18)              | 042               | Mo10         | 023  | 104.7(2)                |
| 043              | Mo11         | 027  | 102.84(18)              | 042               | Mo10         | 06   | 168.11(18)              |
| 043              | Mo11         | 025  | 99.80(18)               | 042               | Mo10         | 05   | 150.7(4)                |
| 043              | Mo11         | 029  | 105.39(19)              | 014               | Mo5          | 016  | 95.24(17)               |
| 043              | Mo11         | 06   | 167.46(17)              | 014               | Mo5          | 012  | 86.62(15)               |
| 043              | Mo11         | 07   | 150.7(4)                | 014               | Mo5          | 015  | 155.17(17)              |
| 020              | Mo8          | 032  | 96.17(16)               | 014               | Mo5          | 03   | 87.19(15)               |
| 020              | Mo8          | 019  | 85.47(14)               | 014               | Mo5          | 02   | 53.8(4)                 |
| 020              | Mo8          | 08   | 88.70(14)               | 016               | Mo5          | 012  | 155.32(16)              |
| 020              | Mo8          | 031  | 157.04(16)              | 016               | Mo5          | 015  | 85.98(15)               |
| 020              | Mo8          | 04   | 59.0(4)                 | 016               | Mo5          | 03   | 71.84(14)               |
| 032              | Mo8          | 019  | 155.89(16)              | 016               | Mo5          | 02   | 102.6(4)                |
| 032              | Mo8          | 08   | 72.62(14)               | 012               | Mo5          | 015  | 82.36(15)               |
| 032              | Mo8          | 031  | 87.00(16)               | 012               | Mo5          | 03   | 83.70(14)               |
| 032              | Mo8          | 04   | 101.7(4)                | 012               | Mo5          | 02   | 59.0(4)                 |
| 019              | Mo8          | 08   | 83.39(13)               | 037               | Mo5          | 014  | 104.01(19)              |
| 019              | Mo8          | 031  | 82.64(15)               | 037               | Mo5          | 016  | 101.2(2)                |
| 019              | Mo8          | 04   | 58.7(4)                 | 037               | Mo5          | 012  | 102.20(19)              |
| 031              | Mo8          | 08   | 70.49(14)               | 037               | Mo5          | 015  | 100.04(18)              |
| 031              | Mo8          | 04   | 98.1(4)                 | 037               | Mo5          | 03   | 167.51(17)              |
| 040              | Mo8          | 020  | 102.87(19)              | 037               | Mo5          | 02   | 148.7(4)                |
| 040              | Mo8          | 032  | 101.56(19)              | 015               | Mo5          | 03   | 69.58(13)               |
| 040              | Mo8          | 019  | 101.50(18)              | 015               | Mo5          | 02   | 101.6(4)                |
| 040              | Mo8          | 08   | 167.68(17)              | 032               | Mo12         | 08   | 69.92(13)               |
| 040              | Mo8          | 031  | 98.72(19)               | 032               | Mo12         | 07   | 101.8(4)                |
| 040              | Mo8          | 04   | 151.9(4)                | 027               | Mo12         | 032  | 156.49(16)              |
| 018              | Mo7          | 020  | 86.30(14)               | 027               | Mo12         | 030  | 95.52(17)               |
| 018              | Mo7          | 017  | 156.50(16)              | 027               | Mo12         | 028  | 86.78(15)               |
| 018              | Mo7          | 015  | 95.08(16)               | 027               | Mo12         | 08   | 88.27(15)               |
| 018              | M07          | 03   | δ/.53(14)               | 027               | M012         | 07   | 55.U(4)                 |
| 030              | Mo7          | 04   | 0U.2(4)                 | 030               | M012         | 032  | δ0.2U(10)               |
| 020              | M - 7        | 01/  | <sup>8</sup> 2.80(14)   | 030               | M012         | 028  | 154.5U(16)<br>71.04(14) |
| 020              | Mo7          | 03   | δ4.11(13)       F9.6(4) | 030               | M012         | 08   | / 1.94(14)<br>104 0(4)  |
| 020              | Mo7          | 04   | 30.0(4)<br>70.60(14)    | 030               | Mo12         | 0/   | 104.0(4)<br>91.00(15)   |
| 017              | M07          | 03   | 70.09(14)<br>06 5(4)    | 028<br>020        | M012<br>Mo12 | 032  | 01.77(13)<br>02.70(14)  |
| 017              | Mo7          | 04   | 155 Q6(16)              | 020               | Mo12         | 00   | 02.70(14)<br>57 1(4)    |
| 015              | M07          | 020  | 133.70(10)<br>86 60(15) | 040               | Mo12         | 022  | 37.1(4)<br>97.67(17)    |
| 015              | Mo7          | 03   | 72 00(14)               | 044               | Mo12         | 032  | 104 Q2(1Q)              |
| 015              | Mo7          | 04   | 101 5(4)                | 044               | Mo12         | 027  | 101.72(10)              |
| 030              | Mo7          | 018  | 103 25(19)              | 044               | Mo12         | 028  | 10252(19)               |
| 039              | Mo7          | 020  | 101.85(18)              | 044               | Mo12         | 020  | 165 93(15)              |
| 039              | Mo7          | 017  | 99 36(19)               | 044               | Mo12         | 07   | 148 8(3)                |
| 030              | Mo7          | 015  | 101 17(10)              | 019               | Mo1          | 011  | 82 85(15)               |
| 039              | Mo7          | 03   | 167 89(17)              | 018               | Mo1          | 01   | 84 43(14)               |
| 039              | Mo7          | 04   | 152 9(4)                | 018               | Mo1          | 04   | 58 0(4)                 |
| 024              | Mo10         | 06   | 69 59(13)               | 019               | Mo1          | 018  | 86 01(15)               |
| 024              | Mo10         | 05   | 95.7(4)                 | 019               | Mo1          | 011  | 157.01(16)              |
| 025              | Mo10         | 024  | 86.83(15)               | 019               | Mo1          | 09   | 95.84(17)               |
|                  |              |      |                         |                   |              |      | ( )                     |

| Atom | Atom       | Atom | Angle/°                 | Atom     | Atom             | Atom | Angle/°                 |
|------|------------|------|-------------------------|----------|------------------|------|-------------------------|
| 019  | Mo1        | 01   | 88.13(14)               | 021      | Mo2              | 05   | 55.0(4)                 |
| 019  | Mo1        | 04   | 59.4(3)                 | 010      | Mo2              | 022  | 155.33(17)              |
| 011  | Mo1        | 01   | 70.85(14)               | 010      | Mo2              | 09   | 86.07(17)               |
| 011  | Mo1        | 04   | 97.8(4)                 | 010      | Mo2              | 01   | 72.41(15)               |
| 09   | Mo1        | 018  | 156.69(16)              | 010      | Mo2              | 05   | 103.2(4)                |
| 09   | Mo1        | 011  | 86.80(16)               | 034      | Mo2              | 022  | 102.63(19)              |
| 09   | Mo1        | 01   | 72.43(15)               | 034      | Mo2              | 09   | 98.25(18)               |
| 09   | Mo1        | 04   | 103.2(4)                | 034      | Mo2              | 021  | 104.21(19)              |
| 033  | Mo1        | 018  | 100.81(17)              | 034      | Mo2              | 01   | 166.48(17)              |
| 033  | Mo1        | 019  | 103.52(18)              | 034      | Mo2              | 010  | 100.5(2)                |
| 033  | Mo1        | 011  | 98.30(18)               | 034      | Mo2              | 05   | 149.9(4)                |
| 033  | Mo1        | 09   | 101.33(19)              | 035      | Mo3              | 011  | 101.88(17)              |
| 033  | Mo1        | 01   | 167.45(16)              | 035      | M03              | 012  | 104.49(19)              |
| 033  | Mo1        | 04   | 151.3(4)                | 035      | M03              | 01   | 166.91(16)              |
| 026  | M04<br>Mo4 | 00   | 69.80(13)               | 035      | M03<br>Mo2       | 010  | 98./4(19)<br>101.02(10) |
| 020  | M04<br>Mo4 | 02   | 90.4(4)<br>97.46(15)    | 032      | M03<br>Mo2       | 015  | 101.92(10)<br>147.7(2)  |
| 024  | Mo4        | 020  | 07.40(15)<br>152.45(16) | 035      | M03<br>Mo2       | 02   | 147.7(3)<br>71.60(14)   |
| 024  | Mo4        | 014  | 7157(14)                | 011      | Mo3              | 010  | 85 92(17)               |
| 024  | Mo4        | 02   | 103 3(4)                | 011      | Mo3              | 010  | 154 95(17)              |
| 014  | Mo4        | 026  | 81 72(15)               | 011      | Mo3              | 02   | 1063(3)                 |
| 014  | Mo4        | 06   | 81 94(14)               | 012      | Mo3              | 011  | 94 98(17)               |
| 014  | Mo4        | 02   | 54.5(4)                 | 012      | Mo3              | 01   | 87.65(15)               |
| 013  | Mo4        | 026  | 154.81(16)              | 012      | Mo3              | 010  | 156.01(17)              |
| 013  | Mo4        | 024  | 94.48(17)               | 012      | Mo3              | 013  | 86.55(16)               |
| 013  | Mo4        | 014  | 85.60(16)               | 012      | Mo3              | 02   | 58.0(4)                 |
| 013  | Mo4        | 06   | 86.96(15)               | 010      | Mo3              | 01   | 69.83(14)               |
| 013  | Mo4        | 02   | 58.7(4)                 | 010      | Mo3              | 02   | 98.7(4)                 |
| 036  | Mo4        | 026  | 98.99(17)               | 013      | Mo3              | 01   | 83.42(15)               |
| 036  | Mo4        | 024  | 102.70(19)              | 013      | Mo3              | 010  | 82.85(17)               |
| 036  | Mo4        | 014  | 102.89(19)              | 013      | Mo3              | 02   | 53.8(4)                 |
| 036  | Mo4        | 06   | 167.27(17)              | 030      | Mo9              | 08   | 70.20(13)               |
| 036  | Mo4        | 013  | 105.03(19)              | 030      | Mo9              | 05   | 97.4(4)                 |
| 036  | Mo4        | 02   | 150.3(4)                | 022      | Mo9              | 030  | 155.57(16)              |
| 029  | M06        | 03   | 83.47(14)               | 022      | Mo9              | 08   | 87.13(15)               |
| 029  | Mo6        | 07   | 53.0(3)                 | 022      | Mo9              | 023  | 86.26(15)               |
| 028  | M06<br>Moc | 029  | 85.50(15)               | 022      | M09<br>Mo0       | 031  | 95.31(17)               |
| 028  | M00<br>M06 | 010  | 154.92(10)<br>05 26(16) | 022      | M09<br>MoQ       | 030  | 20./(4)<br>92.22(16)    |
| 020  | Mo6        | 017  | 95.50(10)<br>86.69(15)  | 023      | Mog              | 030  | 82.33(10)               |
| 020  | Moo        | 07   | 575(4)                  | 023      | Mo9              | 05   | 53 8(4)                 |
| 016  | Moo        | 029  | 82 42(16)               | 031      | Mo9              | 030  | 86 54(16)               |
| 016  | Mo6        | 03   | 70.18(13)               | 031      | Mo9              | 08   | 72.25(14)               |
| 016  | Mo6        | 07   | 97.9(4)                 | 031      | Mo9              | 023  | 155.49(17)              |
| 017  | Mo6        | 029  | 155.52(16)              | 031      | Mo9              | 05   | 106.6(4)                |
| 017  | Mo6        | 016  | 86.90(15)               | 041      | Mo9              | 030  | 98.94(18)               |
| 017  | Mo6        | 03   | 72.18(14)               | 041      | Mo9              | 022  | 104.47(19)              |
| 017  | Mo6        | 07   | 107.4(3)                | 041      | Mo9              | 08   | 167.60(17)              |
| 038  | Mo6        | 029  | 101.13(17)              | 041      | Mo9              | 023  | 101.43(19)              |
| 038  | Mo6        | 028  | 105.33(18)              | 041      | Mo9              | 031  | 101.83(19)              |
| 038  | Mo6        | 016  | 98.54(17)               | 041      | Mo9              | 05   | 147.8(4)                |
| 038  | Mo6        | 017  | 102.20(17)              | 80       | P1               | 01   | 108.4(2)                |
| 038  | Mo6        | 03   | 167.34(15)              | 06       | P1               | 08   | 110.2(2)                |
| 038  | Mo6        | 07   | 146.8(3)                | 06       | P1               | 01   | 110.1(2)                |
| 022  | Mo2        | 09   | 82.24(16)               | 06       | P1               | 03   | 110.9(2)                |
| 022  | Mo2        | 01   | 83.18(15)               | 03       | P1<br>D1         | 08   | 108.7(2)                |
| 022  | MOZ        | 05   | 58.5(4)                 | 03       | PI<br>D1         | 01   | 108.4(2)                |
| 09   | Mo2        |      | /0.20(14)<br>101.6(4)   | 02<br>05 | Р1<br>D1         | 07   | 103./(8)<br>105.2(9)    |
| 09   | Mo2        | 03   | 101.0(4)<br>96.02(15)   |          | r1<br>D1         | 07   | 105.2(8)<br>105.2(8)    |
| 021  | Mo2        | 022  | 00.03(13)<br>15646(17)  | 03       | Г1<br>D1         | 02   | 103.0(7)<br>112.0(0)    |
| 021  | Mo2        | 01   | 88 24(15)               | 04       | г <u>г</u><br>Р1 | 02   | 113 2(9)                |
| 021  | Mo2        | 010  | 96.56(17)               | 04       | P1               | 05   | 115.8(9)                |
|      |            |      |                         |          |                  |      | (-)                     |

| Atom                            | Atom | Atom       | Anglo/°    | Atom       | Atom       | Atom              | Anglo /°             |
|---------------------------------|------|------------|------------|------------|------------|-------------------|----------------------|
| $\frac{\Lambda_{011}}{M_{011}}$ | 026  | Mo4        | 129 35(18) | 768        | <u>(63</u> |                   | 119 4(4)             |
| MoT                             | 018  | Mo1        | 148 5(2)   | C00<br>(50 | C45        | Р4.               | 121 0(4)             |
| Mo8                             | 010  | Mo7        | 148 8(2)   | C46        | C45        | P4                | 121.0(4)<br>120.0(5) |
| Mo8                             | 032  | Mo12       | 127 2(2)   | C46        | C45        | C50               | 119.0(6)             |
| Mo12                            | 027  | Mo11       | 149.2(2)   | C59        | C58        | C57               | 119.6(6)             |
| Mo4                             | 024  | Mo10       | 129.01(19) | C66        | C65        | C64               | 120.2(6)             |
| Mo10                            | 025  | Mo11       | 129.26(19) | C63        | C64        | C65               | 119.2(6)             |
| Mo12                            | 030  | Mo9        | 127.8(2)   | C53        | C52        | C51               | 119.5(7)             |
| Mo9                             | 022  | Mo2        | 149.4(2)   | C67        | C68        | C63               | 119.4(6)             |
| Mo11                            | 029  | Mo6        | 150.6(2)   | C61        | C62        | C57               | 120.2(5)             |
| Mo1                             | 019  | Mo8        | 149.16(19) | C65        | C66        | C67               | 120.7(6)             |
| Mo6                             | 028  | Mo12       | 150.4(2)   | C60        | C61        | C62               | 119.9(6)             |
| Mo5                             | 014  | Mo4        | 150.9(2)   | C58        | C59        | C60               | 120.0(6)             |
| Mo5                             | 016  | Mo6        | 128.45(19) | C49        | C50        | C45               | 120.0(6)             |
| Mo8                             | 08   | Mo12       | 90.21(11)  | C66        | C67        | C68               | 120.0(7)             |
| Mo8                             | 08   | Mo9        | 90.40(11)  | C45        | C46        | C47               | 119.7(7)             |
| Mo9                             | 08   | Mo12       | 90.01(12)  | C52        | C53        | C54               | 120.4(7)             |
| P1                              | 08   | Mo8        | 126.2(2)   | C54        | C55        | C56               | 120.0(7)             |
| P1                              | 08   | Mo12       | 124.04(19) | C55        | C54        | C53               | 120.5(7)             |
| P1                              | 08   | Mo9        | 125.0(2)   | C49        | C48        | C47               | 121.0(7)             |
| Mo6                             | 017  | Mo7        | 127.3(2)   | C48        | C49        | C50               | 120.1(7)             |
| Mo3                             | 011  | Mo1        | 127.2(2)   | C61        | C60        | C59               | 120.7(6)             |
| Mo1                             | 09   | Mo2        | 126.7(2)   | C48        | C47        | C46               | 120.2(7)             |
| Mo2                             | 021  | Mo10       | 150.0(2)   | C19        | P2         | C7                | 111.5(3)             |
| Mo10                            | 023  | Mo9        | 150.2(2)   | C19        | P2         | C1                | 109.4(3)             |
| Mo10                            | 06   | Mo11       | 89.47(11)  | C13        | P2         | C19               | 107.5(3)             |
| Mo10                            | 06   | Mo4        | 89.64(11)  | C13        | P2         | C7                | 111.4(3)             |
| Mo4                             | 06   | Mo11       | 89.38(11)  | C13        | P2         | C1                | 111.3(3)             |
| P1                              | 06   | Mo11       | 125.5(2)   | C1         | P2         | C7                | 105.8(3)             |
| P1                              | 06   | Mo10       | 125.9(2)   | C24        | C19        | P2                | 120.8(5)             |
| P1                              | 06   | Mo4        | 125.5(2)   | C20        | C19        | P2                | 120.3(5)             |
| Mo3                             | 012  | M05        | 148.6(2)   | C20        | C19        | C24               | 118.8(6)             |
| M09<br>M-1                      | 031  | M08<br>M-2 | 126.8(2)   | C5         | L6<br>C12  |                   | 120.0(6)             |
| Mo1                             | 01   | Mo2        | 90.61(12)  | C14        | C13        | PZ<br>C10         | 122.5(5)             |
| M01<br>Mo2                      | 01   | Mo2        | 90.18(12)  | C14        | C13        | 010<br>D2         | 110.5(0)<br>110.0(7) |
| M02<br>D1                       | 01   | Mo1        | 90.02(11)  |            | C7         | P2<br>D2          | 119.0(5)<br>121.0(5) |
| FI<br>D1                        | 01   | Mo1<br>Mo2 | 123.00(17) |            | C7         | г <u>2</u><br>С12 | 121.9(5)             |
| Г I<br>D1                       | 01   | Mo2        | 124.0(2)   | C0<br>C12  | C7         | D2                | 110.9(0)             |
| Mo2                             | 010  | Mo3        | 127.7(2)   | C12        | C5         | Γ <u>2</u><br>Γ6  | 121 2(6)             |
| MoZ<br>MoZ                      | 015  | Mo5        | 128.0(2)   | C73        | C24        | C19               | 1197(6)              |
| Mo4                             | 013  | Mo3        | 149 9(2)   | C16        | C15        | C14               | 120.8(6)             |
| Mo7                             | 03   | Mo5        | 90.35(12)  | C6         | C1         | P2                | 1211(4)              |
| Mo7                             | 03   | Mo6        | 89.80(11)  | C6         | C1         | C2                | 119.5(5)             |
| Mo6                             | 03   | Mo5        | 89.49(11)  | C2         | C1         | P2                | 119.3(4)             |
| P1                              | 03   | Mo7        | 126.97(19) | C5         | C4         | C3                | 119.4(6)             |
| P1                              | 03   | Mo5        | 124.43(19) | C15        | C14        | C13               | 119.9(6)             |
| P1                              | 03   | Mo6        | 124.61(19) | C17        | C16        | C15               | 120.2(7)             |
| C57                             | P4   | C51        | 111.2(3)   | С9         | C8         | C7                | 119.6(7)             |
| C57                             | P4   | C45        | 109.3(3)   | C11        | C12        | C7                | 120.3(6)             |
| C63                             | P4   | C51        | 108.5(3)   | C21        | C20        | C19               | 120.6(7)             |
| C63                             | P4   | C57        | 107.3(2)   | C22        | C23        | C24               | 120.1(7)             |
| C63                             | P4   | C45        | 111.2(3)   | C3         | C2         | C1                | 118.5(6)             |
| C45                             | P4   | C51        | 109.3(3)   | C10        | C9         | C8                | 121.3(7)             |
| C56                             | C51  | P4         | 121.1(4)   | C4         | C3         | C2                | 121.2(7)             |
| C56                             | C51  | C52        | 120.3(5)   | C17        | C18        | C13               | 120.6(7)             |
| C52                             | C51  | P4         | 118.5(4)   | С9         | C10        | C11               | 119.7(7)             |
| C58                             | C57  | P4         | 120.7(4)   | C23        | C22        | C21               | 120.8(7)             |
| C62                             | C57  | P4         | 119.7(4)   | C12        | C11        | C10               | 120.2(8)             |
| C62                             | C57  | C58        | 119.5(5)   | C16        | C17        | C18               | 120.0(7)             |
| C51                             | C56  | C55        | 119.3(6)   | C22        | C21        | C20               | 119.9(8)             |
| C64                             | C63  | P4         | 119.6(4)   | C37        | Р3         | C31               | 109.2(2)             |
| C64                             | C63  | C68        | 120.4(5)   | C37        | Р3         | C25               | 108.9(2)             |

| Atom | Atom | Atom | Angle/°   | Atom | Atom | Atom | Angle/°   |
|------|------|------|-----------|------|------|------|-----------|
| C39  | Р3   | C37  | 109.2(2)  | C74  | C69  | N1   | 119(2)    |
| C39  | Р3   | C31  | 109.1(2)  | C70  | C69  | N1   | 120(2)    |
| C39  | Р3   | C25  | 109.6(3)  | C70  | C69  | C74  | 121(2)    |
| C31  | Р3   | C25  | 110.6(2)  | C70  | C71  | C72  | 119.9(15) |
| C102 | C37  | Р3   | 119.8(4)  | 045  | C75  | N1   | 120(3)    |
| C38  | C37  | Р3   | 119.9(4)  | C69  | C74  | C73  | 116(3)    |
| C38  | C37  | C102 | 120.1(5)  | C71  | C70  | C69  | 121.0(17) |
| C40  | C39  | Р3   | 119.5(4)  | C73  | C72  | C71  | 119(3)    |
| C40  | C39  | C44  | 119.8(5)  | C72  | C73  | C74  | 123(4)    |
| C44  | C39  | Р3   | 120.7(4)  | C83  | N2   | C84  | 118(2)    |
| C32  | C31  | Р3   | 120.4(4)  | C83  | N2   | C77  | 122(3)    |
| C32  | C31  | C36  | 119.7(5)  | C77  | N2   | C84  | 120(4)    |
| C36  | C31  | Р3   | 119.9(5)  | C79  | C78  | C77  | 119(3)    |
| C26  | C25  | Р3   | 119.6(5)  | C78  | C79  | C80  | 120.5(17) |
| C30  | C25  | Р3   | 121.0(5)  | C77  | C82  | C81  | 121(3)    |
| C30  | C25  | C26  | 119.4(6)  | C81  | C80  | C79  | 121(2)    |
| C101 | C102 | C37  | 119.8(6)  | C80  | C81  | C82  | 119(3)    |
| C39  | C40  | C41  | 119.7(6)  | 046  | C83  | N2   | 125.1(19) |
| C41  | C42  | C43  | 120.7(6)  | C78  | C77  | N2   | 118(5)    |
| C37  | C38  | C99  | 118.6(6)  | C82  | C77  | N2   | 122(5)    |
| C33  | C32  | C31  | 119.1(6)  | C82  | C77  | C78  | 120(5)    |
| C27  | C26  | C25  | 119.2(7)  | C96  | C91  | N3   | 118.5(10) |
| C100 | C101 | C102 | 119.4(6)  | C96  | C91  | C92  | 120.0     |
| C42  | C43  | C44  | 119.8(6)  | C92  | C91  | N3   | 121.5(10) |
| C43  | C44  | C39  | 119.9(6)  | C95  | C96  | C91  | 120.0     |
| C42  | C41  | C40  | 120.2(6)  | C96  | C95  | C94  | 120.0     |
| C34  | C33  | C32  | 120.5(7)  | C93  | C94  | C95  | 120.0     |
| C33  | C34  | C35  | 120.8(7)  | C94  | C93  | C92  | 120.0     |
| C34  | C35  | C36  | 120.0(7)  | C93  | C92  | C91  | 120.0     |
| C28  | C27  | C26  | 120.9(7)  | Mo11 | 07   | Mo12 | 97.2(5)   |
| C99  | C100 | C101 | 120.9(6)  | Mo11 | 07   | Mo6  | 97.1(5)   |
| C27  | C28  | C29  | 120.9(7)  | Mo12 | 07   | Mo6  | 93.5(5)   |
| C100 | C99  | C38  | 121.0(7)  | P1   | 07   | Mo11 | 126.8(9)  |
| C35  | C36  | C31  | 119.9(7)  | P1   | 07   | Mo12 | 118.3(7)  |
| C25  | C30  | C29  | 120.5(7)  | P1   | 07   | Mo6  | 117.1(7)  |
| C28  | C29  | C30  | 119.1(8)  | Mo5  | 02   | Mo3  | 93.0(5)   |
| C97  | N3   | C85  | 120.9(11) | Mo4  | 02   | Mo5  | 98.0(5)   |
| C97  | N3   | C98  | 120.4(8)  | Mo4  | 02   | Mo3  | 95.7(5)   |
| C97  | N3   | C91  | 118.8(10) | P1   | 02   | Mo5  | 120.3(8)  |
| C85  | N3   | C98  | 118.6(11) | P1   | 02   | Mo4  | 126.3(9)  |
| C91  | N3   | C98  | 120.7(10) | P1   | 02   | Mo3  | 116.3(7)  |
| 047  | C97  | N3   | 125.0(8)  | Mo10 | 05   | Mo2  | 96.5(6)   |
| N3   | C85  | C86  | 113.4(14) | Mo10 | 05   | Mo9  | 95.3(5)   |
| C90  | C85  | N3   | 120.9(13) | Mo2  | 05   | Mo9  | 91.8(5)   |
| C90  | C85  | C86  | 125.6(13) | P1   | 05   | Mo10 | 128.3(9)  |
| C85  | C90  | C89  | 118.6(15) | P1   | 05   | Mo2  | 119.4(8)  |
| C87  | C86  | C85  | 111.1(15) | P1   | 05   | Mo9  | 117.4(9)  |
| C89  | C88  | C87  | 121.9(17) | Mo8  | 04   | Mo1  | 90.9(5)   |
| C88  | C89  | C90  | 118.0(15) | Mo7  | 04   | Mo8  | 91.7(5)   |
| C86  | C87  | C88  | 122.1(18) | Mo7  | 04   | Mo1  | 91.1(5)   |
| C69  | N1   | C76  | 117.1(16) | P1   | 04   | Mo8  | 124.3(9)  |
| C75  | N1   | C69  | 122(2)    | P1   | 04   | Mo7  | 126.6(9)  |
| C75  | N1   | C76  | 121(2)    | P1   | 04   | Mo1  | 122.2(9)  |
|      |      |      |           |      |      |      |           |

Table 14: Torsion Angles in ° for compound3.

| Atom | Atom | Atom | Atom | Angle/°  |
|------|------|------|------|----------|
| 026  | Mo11 | 029  | Mo6  | 121.8(5) |
| 026  | Mo4  | 024  | Mo10 | 65.2(2)  |
| 026  | Mo4  | 013  | Mo3  | 27.8(8)  |
| 018  | Mo7  | 015  | Mo5  | -88.3(2) |
| 018  | Mo1  | 019  | Mo8  | -36.8(4) |

| Atom | Atom         | Atom | Atom          | Angle/°              |
|------|--------------|------|---------------|----------------------|
| 018  | Mo1          | 09   | Mo2           | 5.0(6)               |
| 020  | Mo8          | 032  | Mo12          | -88.8(3)             |
| 020  | Mo7          | 018  | Mo1           | -36.2(4)             |
| 020  | Mo7          | 015  | Mo5           | 4.0(5)               |
| 032  | Mo8          | 020  | Mo7           | 118.2(4)             |
| 032  | Mo12         | 027  | Mo11          | 30.0(7)              |
| 032  | Mo12         | 030  | Mo9           | 68.7(3)              |
| 027  | Mo11         | 026  | Mo4           | 2.9(5)               |
| 027  | Mo11         | 029  | Mo6           | -31.7(5)             |
| 027  | Mo12         | 030  | Mo9           | -87.7(3)             |
| 024  | Mo10         | 025  | Mo11          | 67.2(2)              |
| 024  | Mo10         | 023  | Mo9           | 27.0(7)              |
| 024  | M04          | 013  | Mo3           | 121.4(5)             |
| 025  | Moll<br>Moll | 026  | Mo4           | 66.2(2)              |
| 025  | Moll<br>Mol0 | 029  | M06<br>Mo0    | 31.0(7)<br>121.2(F)  |
| 025  | M010<br>Mo12 | 023  | M09<br>Mo11   | 121.3(3)<br>122.2(4) |
| 030  | M012<br>M09  | 027  | Mo11<br>Mo2   | 29 2 (8)             |
| 030  | Mo9          | 022  | Mo2<br>Mo8    | 67.2(0)              |
| 022  | Mo2          | 021  | M00<br>Mo10   | -34 8(5)             |
| 022  | Mo2          | 010  | Mo3           | 79(6)                |
| 022  | Mo9          | 031  | Mo8           | -87.9(3)             |
| 029  | Mo11         | 026  | Mo4           | -87.7(3)             |
| 029  | Mo6          | 028  | Mo12          | -32.1(5)             |
| 029  | Mo6          | 017  | Mo7           | 3.4(5)               |
| 035  | Mo3          | 011  | Mo1           | 166.2(3)             |
| 035  | Mo3          | 012  | Mo5           | -135.0(4)            |
| 019  | Mo8          | 020  | Mo7           | -37.7(4)             |
| 019  | Mo8          | 032  | Mo12          | 3.9(5)               |
| 019  | Mo1          | 09   | Mo2           | -88.5(3)             |
| 028  | Mo12         | 027  | Mo11          | -31.3(4)             |
| 028  | Mo12         | 030  | Mo9           | 6.4(6)               |
| 028  | Mo6          | 017  | Mo7           | -87.5(2)             |
| 014  | Mo5          | 016  | M06           | -87.1(3)             |
| 014  | M04          | 024  | MolU<br>Mol   | -0.5(5)              |
| 014  | Mo4<br>MoF   | 013  | Mo3           | -32.0(5)             |
| 010  | M05<br>Mo6   | 014  | M04<br>Mo12   | 123.9(4)<br>29.2(7)  |
| 010  | Moo          | 017  | Mo7           | 674(2)               |
| 08   | Mo8          | 020  | Mo7           | 45.8(4)              |
| 08   | Mo8          | 032  | Mo12          | -2.1(2)              |
| 08   | Mo12         | 027  | Mo11          | 51.5(4)              |
| 08   | Mo12         | 030  | Mo9           | -1.4(2)              |
| 08   | Mo9          | 022  | Mo2           | 50.7(5)              |
| 08   | Mo9          | 031  | Mo8           | -2.6(2)              |
| 08   | P1           | 06   | Mo11          | -65.1(3)             |
| 08   | P1           | 06   | Mo10          | 55.0(3)              |
| 08   | P1           | 06   | Mo4           | 175.5(2)             |
| 08   | P1           | 01   | Mo1           | 55.0(3)              |
| 08   | P1           | 01   | Mo2           | -66.2(3)             |
| 08   | P1           | 01   | Mo3           | 175.2(2)             |
| 08   | P1           | 03   | Mo7           | -62.9(3)             |
| 08   | P1           | 03   | Mo5           | 175.4(2)             |
| 08   | PI<br>M-7    | 03   | M06           | 58.0(3)              |
| 017  | Mo7          |      | MOT<br>Mot    | 20.3(/)              |
| 017  | M0/<br>M06   | 012  | 14105<br>Mo12 | 00.2(2)<br>122.2(E)  |
| 01/  | Mo1          | 020  | M012<br>M09   | 123.3(3)<br>24 2(7)  |
| 011  | Mo1          | 013  | Mo2           | 24.3(7)<br>68.6(2)   |
| 011  | Mo3          | 012  | Mo5           | 121 3(4)             |
| 09   | Mo1          | 019  | Mo8           | 119.9(4)             |
| 09   | Mo2          | 021  | Mo10          | 25.4(8)              |
| 09   | Mo2          | 010  | Mo3           | 69.6(3)              |
|      |              |      |               |                      |

| Atom | Atom        | Atom | Atom        | Angle/°   |
|------|-------------|------|-------------|-----------|
| 021  | Mo10        | 025  | Mo11        | 3.9(5)    |
| 021  | Mo10        | 023  | Mo9         | -32.9(5)  |
| 021  | Mo2         | 010  | Mo3         | -86.9(3)  |
| 038  | Mo6         | 028  | Mo12        | -132.4(5) |
| 038  | M06         | 017  | Mo7         | 165.5(2)  |
| 023  | Mo10<br>Mo0 | 025  | Moll<br>Mol | -87.0(3)  |
| 023  | M09         | 022  | MoZ<br>M-O  | -32.9(5)  |
| 023  | M09<br>Mo1  | 031  | M08<br>Mo9  | 4.8(6)    |
| 033  | M01<br>Mo1  | 019  | M00<br>Mo2  | -130.9(4) |
| 033  | Mo11        | 03   | Mo2         | 2 2(2)    |
| 00   | Mo11        | 020  | M04<br>M06  | 50 9(5)   |
| 06   | Mo10        | 025  | M00<br>Mo11 | -24(2)    |
| 06   | Mo10        | 023  | Mo9         | 50.0(5)   |
| 06   | Mo4         | 024  | Mo10        | -4 4(2)   |
| 06   | Mo4         | 013  | Mo3         | 50.2(5)   |
| 06   | P1          | 08   | Mo8         | 174.9(2)  |
| 06   | P1          | 08   | Mo12        | 54.9(3)   |
| 06   | P1          | 08   | Mo9         | -63.4(3)  |
| 06   | P1          | 01   | Mo1         | 175.7(2)  |
| 06   | P1          | 01   | Mo2         | 54.4(3)   |
| 06   | P1          | 01   | Mo3         | -64.1(3)  |
| 06   | P1          | 03   | Mo7         | 175.8(2)  |
| 06   | P1          | 03   | Mo5         | 54.1(3)   |
| 06   | P1          | 03   | Mo6         | -63.3(3)  |
| 012  | Mo5         | 014  | Mo4         | -31.5(5)  |
| 012  | Mo5         | 016  | Mo6         | 6.2(6)    |
| 012  | Mo3         | 011  | Mo1         | -87.8(3)  |
| 031  | Mo8         | 020  | Mo7         | 21.3(7)   |
| 031  | Mo8         | 032  | Mo12        | 68.4(3)   |
| 031  | Mo9         | 022  | Mo2         | 122.6(5)  |
| 037  | Mo5         | 014  | Mo4         | -133.2(5) |
| 037  | M05         | 016  | M06         | 167.5(3)  |
| 01   | Mol<br>Mol  | 019  | M08<br>Mo2  | 4/.8(4)   |
| 01   | Mo1<br>Mo2  | 09   | MoZ<br>Mo10 | -2.3(2)   |
| 01   | M0Z<br>Mo2  | 021  | M010<br>Mo2 | 48.5(5)   |
| 01   | Mo2         | 010  | M05<br>Mo1  | -0.8(2)   |
| 01   | Mo3         | 012  | Mo1<br>Mo5  | 49 9(4)   |
| 01   | P1          | 08   | MoS<br>Mo8  | -64 4(3)  |
| 01   | P1          | 08   | Mo12        | 175 5(2)  |
| 01   | P1          | 08   | Mo92        | 57 2(3)   |
| 01   | P1          | 06   | Mo11        | 175.4(2)  |
| 01   | P1          | 06   | Mo10        | -64.5(3)  |
| 01   | P1          | 06   | Mo4         | 55.9(3)   |
| 01   | P1          | 03   | Mo7         | 54.7(3)   |
| 01   | P1          | 03   | Mo5         | -67.0(3)  |
| 01   | P1          | 03   | Mo6         | 175.7(2)  |
| 010  | Mo2         | 021  | Mo10        | 120.6(5)  |
| 010  | Mo3         | 011  | Mo1         | 68.2(3)   |
| 010  | Mo3         | 012  | Mo5         | 30.2(7)   |
| 015  | Mo7         | 018  | Mo1         | 119.7(4)  |
| 015  | Mo5         | 014  | Mo4         | 32.1(7)   |
| 015  | Mo5         | 016  | Mo6         | 68.1(3)   |
| 013  | Mo4         | 024  | Mo10        | -89.7(3)  |
| 013  | Mo3         | 011  | Mo1         | 4.7(6)    |
| 013  | Mo3         | 012  | Mo5         | -33.6(4)  |
| 040  | Mo8         | 020  | Mo7         | -138.5(4) |
| 040  | M08         | 032  | Mo12        | 166.7(3)  |
| 03   | M07         | 018  | Mol<br>Mol  | 48.1(4)   |
| 03   | МоГ         | 015  | M05         | -2.6(2)   |
| 03   | M05<br>Мог  | 014  | M04<br>Моб  | 52.4(4)   |
| 05   | MO2         | 010  | MOQ         | -1.8(2)   |

| Atom | Atom         | Atom | Atom        | Angle/°              |
|------|--------------|------|-------------|----------------------|
| 03   | Mo6          | 028  | Mo12        | 51.6(5)              |
| 03   | Mo6          | 017  | Mo7         | -2.7(2)              |
| 03   | P1           | 08   | Mo8         | 53.2(3)              |
| 03   | P1           | 08   | Mo12        | -66.9(3)             |
| 03   | P1           | 08   | Mo9         | 174.8(2)             |
| 03   | P1           | 06   | Mo11        | 55.4(3)              |
| 03   | P1           | 06   | Mo10        | 175.5(2)             |
| 03   | P1           | 06   | Mo4         | -64.1(3)             |
| 03   | P1           | 01   | Mo1         | -62.8(3)             |
| 03   | P1           | 01   | Mo2         | 176.0(2)             |
| 03   | P1           | 01   | Mo3         | 57.4(3)              |
| 042  | Mo10         | 025  | Mo11        | 166.5(2)             |
| 042  | Mo10         | 023  | Mo9         | -133.6(5)            |
| 044  | Mo12         | 027  | Moll        | -133.4(4)            |
| 044  | Mo12         | 030  | Mo9         | 165.8(3)             |
| 039  | Mo7          | 018  | Mol<br>Mol  | -13/.5(4)            |
| 039  | Mo7          | 015  | M05         | 107.1(3)             |
| 034  | Mo2          | 021  | MOIU<br>Mo2 | -130.8(5)            |
| 034  | Mo2          | 010  | M03<br>Mo10 | 107.3(3)<br>162.9(2) |
| 036  | Mo4          | 024  | Mo10<br>Mo3 | 103.0(2)             |
| 043  | Mo11         | 015  | Mo4         | 165 A(3)             |
| 043  | Mo11<br>Mo11 | 020  | Mof         | -1340(5)             |
| 041  | Mo11<br>Mo9  | 022  | Mo2         | -1337(5)             |
| 041  | Mo9          | 031  | Mo8         | 166 1(3)             |
| P4   | C51          | C56  | C55         | -174.3(5)            |
| P4   | C51          | C52  | C53         | 174.6(5)             |
| P4   | C57          | C58  | C59         | -179.5(5)            |
| P4   | C57          | C62  | C61         | 179.4(5)             |
| P4   | C63          | C64  | C65         | -170.1(4)            |
| P4   | C63          | C68  | C67         | 171.3(5)             |
| P4   | C45          | C50  | C49         | -179.5(5)            |
| P4   | C45          | C46  | C47         | 179.4(6)             |
| C51  | P4           | C57  | C58         | 67.5(6)              |
| C51  | P4           | C57  | C62         | -113.7(5)            |
| C51  | P4           | C63  | C64         | -155.4(4)            |
| C51  | P4           | C63  | C68         | 33.5(5)              |
| C51  | P4           | C45  | C50         | -140.6(5)            |
| C51  | P4           | C45  | C46         | 40.6(6)              |
| C51  | C56          | C55  | C54         | -0.1(11)             |
| C51  | C52          | C53  | C54         | -0.1(11)             |
| C57  | P4           | C51  | C56         | -23.1(6)             |
| C57  | P4           | C51  | C52         | 102.2(5)             |
| C57  | P4<br>D4     | C62  | C69         | 04.3(5)<br>96 7(E)   |
| C57  | Г4<br>Р4     | C45  | C50         | -00.7(3)             |
| C57  | P4           | C45  | C46         | 1625(5)              |
| C57  | C58          | C59  | C40         | 0.4(11)              |
| C57  | C62          | C61  | C60         | -0.2(11)             |
| C56  | C51          | C52  | C53         | -0.2(10)             |
| C56  | C55          | C54  | C53         | -0.2(12)             |
| C63  | P4           | C51  | C56         | -140.9(5)            |
| C63  | P4           | C51  | C52         | 44.4(5)              |
| C63  | P4           | C57  | C58         | -174.0(5)            |
| C63  | P4           | C57  | C62         | 4.8(6)               |
| C63  | P4           | C45  | C50         | 99.7(5)              |
| C63  | P4           | C45  | C46         | -79.2(6)             |
| C63  | C68          | C67  | C66         | -1.0(11)             |
| C45  | P4           | C51  | C56         | 97.7(5)              |
| C45  | P4           | C51  | C52         | -77.0(5)             |
| C45  | P4           | C57  | C58         | -53.3(6)             |
| C45  | P4           | C57  | C62         | 125.6(5)             |
| C45  | P4           | C63  | C64         | -35.2(5)             |

| Atom | Atom       | Atom       | Atom      | Angle/°              |
|------|------------|------------|-----------|----------------------|
| C45  | P4         | C63        | C68       | 153.8(5)             |
| C45  | C50        | C49        | C48       | -0.4(12)             |
| C45  | C46        | C47        | C48       | 0.6(13)              |
| C58  | C57        | C62        | C61       | -1.8(10)             |
| C58  | C59        | C60        | C61       | -2.3(12)             |
| C65  | C66        | C67        | C68       | 0.3(11)              |
| C64  | C63        | C68        | C67       | 0.4(9)               |
| C64  | C65        | C66        | C67       | 1.0(9)               |
| C52  | C51        | C56        | C55       | 0.3(9)               |
| C52  | C53        | C54        | C55       | 0.3(13)              |
| C68  | C63        | C64        | C65       | 0.8(8)               |
| C62  | C57        | C58        | C59       | 1.7(10)              |
| C62  | C61        | C60        | C59       | 2.3(12)              |
| C66  | C65        | C64        | C63       | -1.5(8)              |
| C50  | C45        | C46        | C47       | 0.5(11)              |
| C46  | C45        | C50        | C49       | -0.6(10)             |
| C49  | C48        | C47        | C46       | -1.7(15)             |
| C47  | C48        | C49        | C50       | 1.6(14)              |
| P2   | C19        | C24        | C23       | -173.6(5)            |
| P2   | C19        | C20        | C21       | 175.6(7)             |
| P2   | C13        | C14        | C15       | -179.8(5)            |
| P2   | C13        | C18        | C17       | 179.8(7)             |
| P2   | C7         | C8         | C9        | -179.7(6)            |
| P2   | C7         | C12        | C11       | -179.9(6)            |
| P2   | C1         | C2         | C3        | 174.0(6)             |
| C19  | P2         | C13        | C14       | -130.6(6)            |
| C19  | P2         | C13        | C18       | 49.2(7)              |
| C19  | P2         | C7         | C8        | -106.2(6)            |
| C19  | P2         | C7         | C12       | 75.4(6)              |
| C19  | P2         | C1         | C6        | 8.9(6)               |
| C19  | P2         | C1         | C2        | -168.1(5)            |
| C19  | C24        | C23        | C22       | -2.4(11)             |
| C19  | C20        | C21        | C22       | -1.5(14)             |
|      | C5         | C4         | C3        | -1.0(11)             |
| C12  |            | C10        | C24       | -3.1(11)<br>1E2.0(E) |
| C13  | F 2<br>D2  | C19<br>C19 | C24       | -132.0(3)            |
| C13  | P2         | C7         | C20       | 13 9(6)              |
| C13  | P2         | C7         | C12       | -164 5(5)            |
| C13  | P2         | C1         | C6        | -1098(5)             |
| C13  | P2         | C1         | C2        | 73.2(6)              |
| C13  | C18        | C17        | C16       | 0.3(15)              |
| C7   | P2         | C19        | C24       | -29.7(6)             |
| C7   | P2         | C19        | C20       | 155.5(6)             |
| C7   | P2         | C13        | C14       | 106.9(6)             |
| C7   | P2         | C13        | C18       | -73.3(7)             |
| C7   | P2         | C1         | C6        | 129.1(5)             |
| C7   | P2         | C1         | C2        | -47.9(6)             |
| C7   | C8         | С9         | C10       | 0.0(12)              |
| C7   | C12        | C11        | C10       | -0.7(13)             |
| C5   | C6         | C1         | P2        | -173.9(5)            |
| C5   | C6         | C1         | C2        | 3.2(9)               |
| C5   | C4         | C3         | C2        | 1.6(12)              |
| C24  | C19        | C20        | C21       | 0.6(11)              |
| C24  | C23        | C22        | C21       | 1.6(13)              |
| C15  | C16        | C17        | C18       | -0.3(14)             |
| C1   | P2         | C19        | C24       | 87.0(5)              |
| C1   | P2         | C19        | C20       | -87.9(6)             |
|      | ۲ <u>۷</u> | L13        | U14       | -10.8(7)             |
|      | ۲2<br>۲۵   | U13<br>C7  | C18       | 109.0(6)             |
|      | ґ∠<br>рэ   | U/<br>C7   | τα<br>C12 | 135.0(5)             |
|      | Г2<br>С6   | Ն/<br>Հե   | U12<br>C4 | -43.4(b)             |
| U1   | 0          | 63         | Ն4        | -0.9(10)             |

| Atom | Atom         | Atom       | Atom | Angle/°              |
|------|--------------|------------|------|----------------------|
| C1   | C2           | С3         | C4   | 0.7(12)              |
| C14  | C13          | C18        | C17  | -0.4(13)             |
| C14  | C15          | C16        | C17  | 0.3(13)              |
| C16  | C15          | C14        | C13  | -0.4(11)             |
| C8   | C7           | C12        | C11  | 1.6(11)              |
| C8   | C9           | C10        | C11  | 0.9(13)              |
| C12  | C7           | C8         | C9   | -1.3(10)             |
| C20  | C19          | C24        | C23  | 1.3(10)              |
| C23  | C22          | C21        | C20  | 0.3(14)              |
| C9   | C10          | C11        | C12  | -0.5(14)             |
| C18  | C13          | C14        | C15  | 0.4(11)              |
| P3   | C37          | C102       | C101 | -1704(4)             |
| P3   | C37          | C38        | C99  | 171 3(5)             |
| P3   | C39          | C40        | C41  | -178.7(5)            |
| P3   | C39          | C44        | C43  | 179 8(5)             |
| P3   | C31          | C32        | C33  | 177.6(3)             |
| P3   | C31          | C36        | C35  | -1783(5)             |
| P3   | C25          | C26        | C27  | -1776(5)             |
| P3   | C25          | C30        | C29  | 179.0(5)             |
| C37  | P3           | C39        | C40  | -273(5)              |
| C37  | P3           | C39        | C44  | 153 8(5)             |
| C37  | P3           | C31        | C32  | 133.0(3)<br>132 7(4) |
| C37  | D2           | C31        | C36  | -485(5)              |
| C37  | D2           | C25        | C26  | 85 2(5)              |
| C37  | D2           | C25        | C20  | -91 A(5)             |
| C37  | C102         | C101       | C100 | 14(0)                |
| C37  | C102         | C101       | C100 | -1.4(5)              |
| C20  | C30<br>D2    | C27        | C100 | -0.4(10)             |
| C20  | гэ<br>20     | C37        | C102 | 77.7(3)              |
| C20  | РЭ<br>02     | C21        | C30  | -90.9(5)<br>12.2(E)  |
| C20  | гэ<br>102    | C21        | C26  | 15.5(5)<br>167.0(5)  |
| C30  | F 3<br>D2    | C25        | C26  | 1552(4)              |
| C20  | г 3<br>D2    | C25        | C20  | -133.3(4)            |
| C39  | F 5<br>C 4 0 | C23        | C42  | 20.1(0)              |
| C21  | C40<br>D2    | C27        | C42  | -0.0(10)<br>41.6(E)  |
| C21  | г 3<br>D2    | C27        | C102 | -41.0(3)<br>1/2.7(5) |
| C21  | гэ<br>102    | C20        | C30  | 143.7(3)             |
| C21  | F 3<br>D 2   | C39        | C40  | 92.0(5)              |
| C21  | гэ<br>102    | C25        | C76  | -00.0(5)             |
| C21  | г 3<br>D2    | C25        | C20  | -34.9(3)<br>140 E(E) |
| C21  | r 3<br>C 2 2 | C22        | C34  | 140.3(3)<br>1.2(0)   |
| C25  | D2           | C37        | C102 | -1626(4)             |
| C25  | F 3<br>D2    | C37        | C102 | 22.0(4)              |
| C25  | D2           | C30        | C40  | 1/67(5)              |
| C25  | F 3<br>D2    | C30        | C40  | 245(5)               |
| C25  | P2           | C31        | C32  | -107 A(5)            |
| C25  | D2           | C21        | C36  | 714(5)               |
| C25  | r 3<br>C26   | C27        | C28  | 0 0(10)              |
| C25  | C20          | C20        | C28  | -0.9(10)             |
| C102 | C37          | C29        | C20  | -2.2(12)             |
| C102 | C101         | C100       | C00  | -3.3(7)              |
| C102 | C101         | C100       | C43  | -2.4(10)             |
| C40  | C43          | C44        | C30  | -1.0(5)              |
| C38  | C37          | C102       | C101 | 4 2(8)               |
| C32  | C21          | C102       | C25  | 4.2(0)               |
| C32  | C33          | C34        | C35  | -0.3(3)              |
| C26  | C25          | C30        | C29  | 24(10)               |
| C26  | C27          | C28        | C20  | 4.7(10)<br>1 1(10)   |
| C101 | C100         | C20<br>C90 | C28  | 1.1(14)<br>2 2(11)   |
| C43  | C42          | C41        | C40  | -0 2(11)             |
| C44  | C30          | C40        | C41  | 0.2(11)              |
| C41  | C42          | C43        | C44  | 0.2(7)<br>1 5(11)    |
| (33  | C34          | C35        | C36  | -03(17)              |
| 000  | 0.07         | 000        | 000  | -0.5(14)             |

| Atom | Atom         | Atom       | Atom       | Angle/°             |
|------|--------------|------------|------------|---------------------|
| C34  | C35          | C36        | C31        | 0.3(11)             |
| C27  | C28          | C29        | C30        | 0.4(12)             |
| C36  | C31          | C32        | C33        | -1.2(8)             |
| C30  | C25          | C26        | C27        | -0.9(9)             |
| N3   | C85          | C90        | C89        | -175(2)             |
| N3   | C85          | C86        | C87        | 169(2)              |
| N3   | C91          | C96        | C95        | -178.8(18)          |
| N3   | C91          | C92        | C93        | 178.7(18)           |
| C97  | N3           | C85        | C90        | 44(3)               |
| C97  | N3           | C85        | C86        | -138.9(16)          |
| C97  | N3           | C91        | C96        | 54.5(15)            |
| C97  | N3           | C91        | C92        | -124.3(12)          |
| C85  | N3           | C97        | 047        | 174.1(13)           |
| C85  | C90          | C89        | C88        | -5(3)               |
| C85  | C86          | C87        | C88        | 18(4)               |
| C98  | N3           | C97        | 047        | -1.0(13)            |
| C98  | N3           | C85        | C90        | -140.6(18)          |
| C00  | N3<br>N2     | C01        |            | 36(2)               |
| C08  | N3<br>N2     | C91        | C90        | -120.7(12)          |
| C90  | C85          | C91<br>C86 | C92        | -14(3)              |
| C86  | C85          | C00        | C89        | 9(3)                |
| C89  | C88          | C87        | C86        | -17(5)              |
| C87  | C88          | C89        | C90        | 9(4)                |
| N1   | C69          | C74        | C73        | -176(3)             |
| N1   | C69          | C70        | C71        | -179.0(19)          |
| C69  | N1           | C75        | 045        | 177(3)              |
| C69  | C74          | C73        | C72        | -11(7)              |
| C71  | C72          | C73        | C74        | 9(7)                |
| C75  | N1           | C69        | C74        | 148(3)              |
| C75  | N1           | C69        | C70        | -34(4)              |
| C74  | C69          | C70        | C71        | -1(3)               |
| C70  | C69          | C74        | C73        | 7(4)                |
| C70  | C71          | C72        | C73        | -3(5)               |
| C72  | C71          | C70        | C69        | 0(3)                |
| C76  | N1           | C69        | C74        | -32(3)              |
| C76  | N1           | C69        | C70        | 146(2)              |
| C76  | N1<br>N2     | C75        | 045        | -3(6)               |
| C84  | NZ<br>N2     | C83        | 046        | -1(4)               |
| C04  | NZ<br>N2     | C77        | L/8        | -25(7)<br>155(5)    |
| C79  | NZ<br>C79    |            | C02        | 155(5)              |
| C79  | C78          | C77        | N2         | -180(4)             |
| C79  | C78          | C77        | C82        | 1(7)                |
| C79  | C80          | C81        | C82        | -6(7)               |
| C81  | C82          | C77        | N2         | 178(5)              |
| C81  | C82          | C77        | C78        | -3(8)               |
| C83  | N2           | C77        | C78        | 152(4)              |
| C83  | N2           | C77        | C82        | -29(7)              |
| C77  | N2           | C83        | 046        | -177(3)             |
| C77  | C78          | C79        | C80        | -2(5)               |
| C77  | C82          | C81        | C80        | 5(8)                |
| C91  | N3           | C97        | 047        | -176.2(12)          |
| C91  | C96          | C95        | C94        | 0.0                 |
| C96  | C91          | C92        | C93        | 0.0                 |
| C96  | C95          | C94        | C93        | 0.0                 |
| C95  | C94          | C93        | C92        | 0.0                 |
| C94  | C93          | C92        | C91        | 0.0                 |
| U92  | L91<br>Ma11  | L96        | L95<br>Ma  | 0.0                 |
| 07   | M011<br>Mo11 | 020        | M04<br>Моб | -30.4(4)            |
| 07   | Mo12         | 029        | Mo11       | 20.0(0)<br>20.0(E)  |
| 07   | Mo12         | 027        | MoQ        | 20.0(3)<br>-32 5(4) |
| 07   | 11012        | 000        | 107        | -52.5(4)            |

| Atom | Atom | Atom | Atom | Angle/°    |
|------|------|------|------|------------|
| 07   | Mo6  | 028  | Mo12 | 16.1(5)    |
| 07   | Mo6  | 017  | Mo7  | -29.9(4)   |
| 07   | P1   | 02   | Mo5  | -66.2(10)  |
| 07   | P1   | 02   | Mo4  | 62.9(11)   |
| 07   | P1   | 02   | Mo3  | -177.1(8)  |
| 07   | P1   | 05   | Mo10 | -49.1(12)  |
| 07   | P1   | 05   | Mo2  | -176.7(8)  |
| 07   | P1   | 05   | Mo9  | 73.8(10)   |
| 07   | P1   | 04   | Mo8  | -58.4(12)  |
| 07   | P1   | 04   | Mo7  | 65.1(12)   |
| 07   | P1   | 04   | Mo1  | -175.2(8)  |
| 02   | Mo5  | 014  | Mo4  | 22.0(6)    |
| 02   | Mo5  | 016  | Mo6  | -33.0(4)   |
| 02   | Mo4  | 024  | Mo10 | -30.8(5)   |
| 02   | Mo4  | 013  | Mo3  | 18.6(6)    |
| 02   | Mo3  | 011  | Mo1  | -29.7(5)   |
| 02   | Mo3  | 012  | Mo5  | 15.2(5)    |
| 02   | P1   | 07   | Mo11 | -51.5(11)  |
| 02   | P1   | 07   | Mo12 | -177.0(8)  |
| 02   | P1   | 07   | Mo6  | 72.3(10)   |
| 02   | P1   | 05   | Mo10 | 60.3(12)   |
| 02   | P1   | 05   | Mo2  | -67.3(10)  |
| 02   | P1   | 05   | Mo9  | -176.8(8)  |
| 02   | P1   | 04   | Mo8  | -175.3(9)  |
| 02   | P1   | 04   | Mo7  | -51.8(13)  |
| 02   | P1   | 04   | Mo1  | 67.9(12)   |
| 05   | Mo10 | 025  | Mo11 | -28.0(5)   |
| 05   | Mo10 | 023  | Mo9  | 20.1(6)    |
| 05   | Mo2  | 021  | Mo10 | 19.0(6)    |
| 05   | Mo2  | 010  | Mo3  | -31.4(5)   |
| 05   | Mo9  | 022  | Mo2  | 16.3(6)    |
| 05   | Mo9  | 031  | Mo8  | -29.0(4)   |
| 05   | P1   | 07   | Mo11 | 59.4(11)   |
| 05   | P1   | 07   | Mo12 | -66.1(10)  |
| 05   | P1   | 07   | Mo6  | -176.8(8)  |
| 05   | P1   | 02   | Mo5  | -176.6(8)  |
| 05   | P1   | 02   | Mo4  | -47.5(12)  |
| 05   | P1   | 02   | Mo3  | 72.5(10)   |
| 05   | P1   | 04   | Mo8  | 62.3(13)   |
| 05   | P1   | 04   | Mo7  | -174.3(9)  |
| 05   | P1   | 04   | Mo1  | -54.5(12)  |
| 04   | Mo8  | 020  | Mo7  | 18.2(5)    |
| 04   | Mo8  | 032  | Mo12 | -29.3(5)   |
| 04   | Mo7  | 018  | Mo1  | 19.4(5)    |
| 04   | Mo7  | 015  | Mo5  | -27.8(4)   |
| 04   | Mo1  | 019  | Mo8  | 18.0(5)    |
| 04   | Mo1  | 09   | Mo2  | -28.6(4)   |
| 04   | P1   | 07   | Mo11 | -174.0(9)  |
| 04   | P1   | 07   | Mo12 | 60.5(11)   |
| 04   | P1   | 07   | Mo6  | -50.2(11)  |
| 04   | P1   | 02   | Mo5  | 55.5(12)   |
| 04   | P1   | 02   | Mo4  | -175.4(10) |
| 04   | P1   | 02   | Mo3  | -55.4(12)  |
| 04   | P1   | 05   | Mo10 | -173.4(10) |
| 04   | P1   | 05   | Mo2  | 59.0(12)   |
| 04   | P1   | 05   | Mo9  | -50.5(11)  |

**Table 15**: Hydrogen Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for **compound3**.  $U_{eq}$  is defined as 1/3 of the trace of the orthogonalised  $U_{ij}$ .

| Atom          | X                   | У                   | Z                           | $U_{eq}$  |
|---------------|---------------------|---------------------|-----------------------------|-----------|
| H56           | 418.64              | 9120.04             | 3508.12                     | 65        |
| H58           | 1957.85             | 8452.03             | 3233.2                      | 67        |
| H65           | 829.18              | 4409.31             | 4358.62                     | 69        |
| H64           | 1535.49             | 5668.09             | 4322.96                     | 56        |
| H52           | -316.94             | 7855.56             | 4974.07                     | 70        |
| H68           | -925.69             | 7055.96             | 4019.11                     | 75        |
| H62           | 622.23              | 6381.22             | 3037.93                     | 61        |
| H66           | -731.3              | 4488.19             | 4257.35                     | 78        |
| H61           | 986.47              | 6382.31             | 2037.54                     | 81        |
| H59           | 2317.62             | 8438.54             | 2231.19                     | 83        |
| H50           | 2880.12             | 6978.86             | 3775.62                     | 70        |
| H67           | -1615.25            | 5800.37             | 4090.83                     | 84        |
| H46           | 1332.04             | //96.39             | 5198.81                     | 82        |
| H53           | -1237.5             | 9091.45             | 5281.84                     | 88        |
| H55           | -513.94             | 10362.29            | 3831.92                     | 86        |
| H54           | -1329.56            | 10337.03            | 4/15./9                     | 100       |
| H48           | 40/4.5              | /354.02             | 5289.65                     | 101       |
| H49           | 4192.6              | 6941.06             | 4329.34                     | 87        |
| H60           | 1784.84             | 7432.07             | 1634.4                      | 89        |
| H47           | 2666                | 7744.05             | 5/36.6                      | 105       |
| HO            | 9040.1              | 4395.72             | 1349.04                     | 58        |
| H5            | 10483.4             | 4222.77             | 908.19                      | 71        |
|               | 8113.89             | 5411.61             | 2/13./2                     | 67        |
| H15           | 6094.46             | 60/6.//             | -339.15                     | 81        |
| H4            | 11025.09            | 5337.3              | 399.45                      | /9        |
| H14           | /363.82             | 59/1.91             | 250.08                      | 68        |
| H16           | 4649.54             | 6064.18             | 69.7                        | 85        |
|               | 6352.9              | /39/.19             | 1/24.1/                     | 75        |
| HIZ           | 8954.25             | 6542.57             | 21/2.24                     | 85        |
| HZU<br>HZ2    | 6909.46             | 4212.11             | 1449.01                     | 92        |
| HZ3           | 8128.33             | 41/8.33             | 3306.75                     | 85        |
|               | 8033.33             | 0848.28             | / 30.13                     | 82        |
| H9<br>112     | 0437.52             | 8052.88             | 2229.00                     | 96        |
| П3<br>1110    | 10093.40            | 0030.30<br>F0F0 77  | 293.20                      | 94        |
| П10<br>1110   | 3090.70<br>772776   | 2020.//             | 10/5.5                      | 105       |
| H10<br>H122   | //3/./0             | 8853.04             | 2/12.22                     | 99        |
|               | 7472.02             | 3019.90             | 2990.23                     | 97        |
|               | 9000.95             | 7797.01<br>F064.1   | 20/9.5/                     | 90<br>107 |
| П1/<br>1121   | 4445.10             | 2021.25             | 2060.26                     | 107       |
| 1141<br>U102  | 0037.0<br>5657.22   | 3031.33<br>1041 E1  | 2009.20<br>772 76           | 10/<br>E7 |
| 11102<br>1140 | 5057.45<br>6270.04  | 1001.31<br>710 72   | //3./0<br>1021.00           | ۵/<br>۲۵  |
| 1140<br>UAO   | 03/0.00<br>0002 02  | / 10./Z             | 1041.77<br>2171 11          | 03<br>77  |
| 1142<br>U20   | 0003.04<br>7100 E0  | 770.07<br>1200.20   | 51/4.41<br>6/1 E            | //<br>65  |
| 1130<br>1130  | 7123.33<br>70271    | -1300.29<br>2120 25 | 041.3<br>1007 05            | 03<br>56  |
| H26           | 7724.1<br>8411 00   | 2120.33<br>70 07    | _211.02                     | 50        |
| ндо<br>Ц101   | 1202 66             | 10.07               | -314.02<br>Q17.62           | 71        |
| HV3<br>HV3    | 4303.00<br>0200 E0  | 725 15              | 2550 24                     | / 1<br>72 |
| ндл           | 9290.30<br>9191 97  | 5127                | 2559.24<br>1560 <i>1</i> .2 | 13<br>62  |
| H41           | 655285              | 979.82              | 2814 42                     | 7Q        |
| H33           | 7880 12             | 3405 00             | 549 65                      | 72        |
| H37           | 7401.00             | 3403.07             | -404.88                     | 73<br>87  |
| 1134          | 6977.2              | 2287.63             | -904.00                     | 95        |
| H27           | 9633 52             | -914 72             | -680 38                     | 95<br>86  |
| H100          | 4372 62             | -1046 45            | 792 47                      | 90<br>86  |
| H28           | -572.02<br>10441 21 | -1881 2             | -69 71                      | QQ        |
| H99           | 5744 07             | -1897.67            | 663.08                      | 9.9<br>86 |
| H36           | 70/0 21             | 988 23              | -326 76                     | 72        |
| H3U           | 88/1 06             | -975 1              | -330.70                     | 76        |
| H20           | 10071.70            | - 1021 20           | 926 20<br>976 20            | 102       |
| HQ7           | 10071.02<br>4611 17 | -1961.69<br>8315 A  | 2115 01                     | 00        |
| норл          | 3633 33             | 6307.06             | 2702 70                     | 150       |
| H98R          | 4603 02             | 5937 92             | 2580.64                     | 158       |
| 11700         | 1005.04             | 5757.74             | 2300.0T                     | 100       |

| Atom | X       | У        | Z       | U <sub>eq</sub> |
|------|---------|----------|---------|-----------------|
| H98C | 3888.56 | 6338.12  | 2115.07 | 158             |
| H90  | 4510.55 | 8601.52  | 3138.62 | 92              |
| H86  | 5575.28 | 6030.93  | 3078.54 | 130             |
| H88  | 6518.7  | 7638.53  | 4216.85 | 129             |
| H89  | 5565.5  | 8831.74  | 3860.67 | 115             |
| H87  | 6785.05 | 6394.14  | 3666.94 | 146             |
| H71  | 2811.1  | 823.16   | 5045.14 | 97              |
| H75  | 5348.48 | 505.28   | 3941.7  | 99              |
| H74  | 5549.49 | -726.37  | 5660.04 | 93              |
| H70  | 4172.62 | 1005.25  | 4569.29 | 107             |
| H72  | 2797.63 | -155.12  | 5829.29 | 120             |
| H76A | 6467.61 | 338.92   | 5499.74 | 183             |
| H76B | 7056.06 | 561.13   | 4940.12 | 183             |
| H76C | 6927.71 | -404.87  | 5086.69 | 183             |
| H73  | 4115.77 | -1048.06 | 6027.27 | 132             |
| H84A | 4230.06 | 5906.21  | 6045.84 | 119             |
| H84B | 4816.15 | 4994.49  | 6123.86 | 119             |
| H84C | 3736.46 | 5088.33  | 6188.83 | 119             |
| H78  | 5706.53 | 5753.35  | 5532.15 | 81              |
| H79  | 7034.51 | 5651.41  | 4935.14 | 109             |
| H82  | 4568.39 | 4333.13  | 4366.02 | 77              |
| H80  | 7144.24 | 4836.97  | 4082.95 | 119             |
| H81  | 5884.94 | 4295.59  | 3750.71 | 108             |
| H83  | 3311.36 | 5043.85  | 4737.01 | 87              |
| H96  | 4046.26 | 8553.7   | 3191.97 | 122             |
| H95  | 4745.14 | 8984.42  | 4025.68 | 149             |
| H94  | 6051.47 | 8149.92  | 4382.12 | 161             |
| H93  | 6658.94 | 6884.7   | 3904.85 | 159             |
| H92  | 5960.07 | 6453.97  | 3071.14 | 127             |

**Table 16**: Atomic Occupancies for all atoms that are not fully occupied in compound3.

| Atom | Occupancy | Atom | Occupancy | Atom | o Occupancy |
|------|-----------|------|-----------|------|-------------|
| 08   | 0.8       | H76B | 0.5       | C93  | 0.51(3)     |
| 06   | 0.8       | H76C | 0.5       | H93  | 0.51(3)     |
| 01   | 0.8       | C73  | 0.5       | C92  | 0.51(3)     |
| 03   | 0.8       | H73  | 0.5       | H92  | 0.51(3)     |
| C85  | 0.49(3)   | 046  | 0.5       | 07   | 0.2         |
| C90  | 0.49(3)   | N2   | 0.5       | 02   | 0.2         |
| H90  | 0.49(3)   | C84  | 0.5       | 05   | 0.2         |
| C86  | 0.49(3)   | H84A | 0.5       | 04   | 0.2         |
| H86  | 0.49(3)   | H84B | 0.5       |      |             |
| C88  | 0.49(3)   | H84C | 0.5       |      |             |
| H88  | 0.49(3)   | C78  | 0.5       |      |             |
| C89  | 0.49(3)   | H78  | 0.5       |      |             |
| H89  | 0.49(3)   | C79  | 0.5       |      |             |
| C87  | 0.49(3)   | H79  | 0.5       |      |             |
| H87  | 0.49(3)   | C82  | 0.5       |      |             |
| 045  | 0.5       | H82  | 0.5       |      |             |
| N1   | 0.5       | C80  | 0.5       |      |             |
| C69  | 0.5       | H80  | 0.5       |      |             |
| C71  | 0.5       | C81  | 0.5       |      |             |
| H71  | 0.5       | H81  | 0.5       |      |             |
| C75  | 0.5       | C83  | 0.5       |      |             |
| H75  | 0.5       | H83  | 0.5       |      |             |
| C74  | 0.5       | C77  | 0.5       |      |             |
| H74  | 0.5       | C91  | 0.51(3)   |      |             |
| C70  | 0.5       | C96  | 0.51(3)   |      |             |
| H70  | 0.5       | H96  | 0.51(3)   |      |             |
| C72  | 0.5       | C95  | 0.51(3)   |      |             |
| H72  | 0.5       | H95  | 0.51(3)   |      |             |
| C76  | 0.5       | C94  | 0.51(3)   |      |             |
| H76A | 0.5       | H94  | 0.51(3)   |      |             |

#### Citations

O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, (2009), **42**, 339-341.

SADABS, Bruker axs, Madison, WI (?).

Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., (2015), C71, 3-8.

Sheldrick, G.M., ShelXT-Integrated space-group and crystal-structure determination, *Acta Cryst.*, (2015), **A71**, 3-8.

Packing diagrams for compounds 1, 2 and 3 are shown in Figures S5, S6 and S7



Fig. 1.

S



ons in the crystal structure of compound

Fig. S6. The packing of tetraphenylphosphonium cations and Keggin anions in the crystal structure of compound 2.



Fig. S7. The packing of tetraphenylphosphonium cations and Keggin anions in the crystal structure of compound 3.



Fig. S8. Left: The asymmetric unit in the crystal structure of compound 1.

#### **S5.** Thermogravimetric Analysis (TGA)

The TGA data was recorded on a Mettler Toledo TGA 1 instrument for the temperature range of 25°-800°C at the rate of 5°C min<sup>-1</sup> under an inert flow of dry N<sub>2</sub> gas (flow rate 20 cm<sup>3</sup> min<sup>-1</sup>). Prior to recording the data for the solid sample, a blank was run under the same parameters using an empty ceramic crucible.

**S5.1**. The thermogravimetric analysis for compounds 1 shows the loss of two NMF molecules in the temperature range of 130-150°C.



Fig. S9. Thermal analysis plot for compound 1.

**S5.2.** The thermogravimetric analysis for compound **2** showed minimal weight loss before 400°C. The framework disintegration was observed beyond 450°C.



Fig. S10. Thermal analysis plot for compound 2.

**S6.** The thermogravimetric analysis for compounds **3** shows the loss of one NMF molecule in the temperature range of  $130-150^{\circ}$ C.



Fig. S11. Thermal analysis plot for compound 3.

#### **S6. Electron Paramagnetic Resonance Spectroscopy (EPR)**



The room temperature EPR spectra of reduced compound 1 is shown in Fig. S13.

Fig. S12. The room temperature EPR spectra of green crystalline solid of compound 1.

#### **S7. Elemental analysis**

The CHN data of compounds 1, 2 and 3 are given in Fig. S14 and data were collected on Elementar, Vario EL Cube instrument. The compound 1 shows presence of four solvent methyl formanilide molecules as observed from the CHN data. The crystal structure of compound 2 is solved and refined by applying SQUEEZ command therefore the solvent molecules are not given in the crystal data but solvent molecules are mentioned in the formulas of compound 2 based on CHN data.

|    | weight [- | Name   | Method | N 1%1 | C 1961 | LL (9/1 | 5 19(1) |        | c . 1  |        |        |           |           |         |           |
|----|-----------|--------|--------|-------|--------|---------|---------|--------|--------|--------|--------|-----------|-----------|---------|-----------|
| 18 | 7.9870    | AT-ORG | 5mg90s | 1.11  | 34.18  | 2 099   | 5 [%]   | N Area | C Area | H Area | S Area | C/N ratio | C/H ratio | Date    | Time      |
| 19 | 5.3190    | ATGR   | 5mg90s | 1.53  | 40.26  | 2.000   | 0.030   | 34/1   | 70 302 | 10 922 | 1 541  | 30.8506   | 16.3693   | 22/08/2 | 022 15:13 |
| 20 | 3.9760    | AT-YLW | 5mg90s | 1.11  | 33.11  | 1 722   | 0.039   | 3 212  | 55 304 | 8 475  | 1 095  | 26.2724   | 16.2348   | 22/08/2 | 022 15:23 |
|    |           |        |        |       |        |         |         |        |        |        |        |           |           |         |           |
|    |           |        |        |       |        |         |         |        |        |        |        |           |           |         |           |

The observed and calculated CHN data for compounds 1, 2 and 3 are given below.

Compound 1  $[PPh_4]_4[PMo^VMo^{VI}_{11}O_{40}] \cdot 3CH_3(C_6H_5)NCHO$ 

Anal. Calcd. for C<sub>120</sub>H<sub>107</sub>N<sub>3</sub>O<sub>43</sub>P<sub>5</sub>Mo<sub>12</sub>: C, 40.26 (40.20); H, 2.48 (3.01); N, 1.53 (1.17).

Compound **2**  $[PPh_4]_3[PMo^{VI}_{12}O_{40}] \cdot 3CH_3(C_6H_5)NCHO$ 

Anal. Calcd. for C<sub>96</sub>H<sub>87</sub>N<sub>3</sub>O<sub>43</sub>P<sub>4</sub>Mo<sub>12</sub>: C, 33.11 (35.52); H, 1.73(2.70); N, 1.11 (1.29).

Compound **3**  $[PPh_4]_3[PMo^{VI}_{12}O_{40}] \cdot 2CH_3(C_6H_5)NCHO$ 

Anal. Calcd. for  $C_{88}H_{78}N_2O_{42}P_4Mo_{12}$ : C, 34.18 (33.98); H, 2.09(2.53); N, 1.11(0.90).

### **S8.** Synthetic procedures

### 8.1. Synthesis of polycrystalline compound.

Aqueous solution of  $H_3[PMo_{12}O_{40}]$  (0.70g, 0.42mmol in 75ml) was prepared. To it 25mL  $H_2O$ -MeOH (4:1 v/v) solution of tetraphenylphosphonium bromide; PPh<sub>4</sub>Br (1.5g, 3.5mmol) was added. The obtained yellow colored suspension was refluxed for two hours

at 100°C. Resultant yellow precipitate was washed with water and vacuum dried. Yield: 89.6%. IR (cm<sup>-1</sup>): 1435 (s, v(C=C)), 1104 (s, v<sub>s</sub>(P-C)), 1060 (m, v<sub>as</sub>(PO<sub>4</sub>)), 952 (m, v(Mo=O<sub>1</sub>)), 879 (s), 794 (s), 714 (m), 680 (s, v(C-H)), 522 (s), 408 (s).

#### 8.2. Synthesis of Compound 1

A 4 mL suspension of polycrystalline compound (81.1  $\mu$ mol, 0.25 g) in Nmethylformanilide (NMF) was sonicated for thirty minutes. The obtained suspension was then irradiated with sunlight. After fifteen minutes green needle shape crystals were obtained. The crystals were separated, washed and dried. IR (cm<sup>-1</sup>): 1670 (s, v(C=O)), 1593 (s), 1497 (s), 1437 (s, v(C=C)), 1347 (m), 1323 (m), 1266 (m), 1189 (m), 1165 (s), 1108 (s, v<sub>s</sub>(P-C)), 1060 (m, v<sub>as</sub>(PO<sub>4</sub>)), 1027 (m), 997 (m), 955 (m, v(Mo=O<sub>t</sub>)), 877 (s), 802 (s), 743 (m), 719 (m), 689 (s, v(C-H)), 527 (s), 459 (m).

#### 8.3. Synthesis of Compound 2

After the separation of compound **1** from the polycrystalline suspension in NMF, the solvent was filtered to remove the undissolved compound polycrystalline compound. The clear yellow filtrate was then allowed to stand at low temperature (~ 10°C). Yellow plate shape crystals were obtained after 7 days. IR (cm<sup>-1</sup>): 1482 (m), 1437 (s, v(C=C)), 1323 (m), 1189 (m), 1162 (m), 1108 (s, v<sub>s</sub>(P-C)), 1060 (m, v<sub>as</sub>(PO<sub>4</sub>)), 997 (m), 952 (m, v(Mo=O<sub>t</sub>)), 877 (s), 797 (s), 746 (m), 719 (m), 686 (s, v(C-H)), 524 (s), 461 (m).

#### 8.4. Synthesis of Compound 3

After the separation of compound **1** from suspension in NMF, the solvent was filtered to remove the undissolved polycrystalline compound. The clear yellow filtrate was then allowed to stand undisturbed at room temperature. Orange cube shape crystals were obtained after 4 days.

IR (cm<sup>-1</sup>): 1670 (s, v(C=O)), 1589 (s), 1497 (s), 1434 (s, v(C=C)), 1350 (m), 1320 (m), 1266 (m), 1191 (m), 1162 (s), 1108 (s, v<sub>s</sub>(P-C)), 1060 (m, v<sub>as</sub>(PO<sub>4</sub>)), 1027 (m), 994 (m), 955 (m, v(Mo=O<sub>t</sub>)), 880 (s), 802 (s), 746 (m), 719 (m), 686 (s, v(C-H)), 524 (s), 461 (m).

#### S8. The real time images of initiation of crystallization and green crystal of compound 1



\*\*\*\*\*\*

Initiation crystallization

\*\*\*\*\*\*

of

Green crystals formed along with the yellow amorphous compound which remains undissolved

\*\*\*\*\*