Supporting information

A novel Bismuth hydroxide (Bi(OH)₃) semiconductor with efficient photocatalytic activity[†]

Sitong Liu^a, Guangmin Ren^a, Xinyu Gao^a, Zizhen Li^a, Liang Wang^a and Xiangchao

Meng^{a, *}

a Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education,

College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao,

266100, China.

*Corresponding Author: mengxiangchao@ouc.edu.cn

Number of pages: 27

Number of figures: 17

Number of Tables: 2

Table of Contents

S1. Experimental section	S2
S2. Figures	S6
S3. Table	
S4. Reference	S27

S1. Experimental part

S1.1. Preparation of Bi(OH)₃

The Bi(OH)₃ were successfully synthesized through a simple one-step hydrothermal method. In a typical process, 1 mmol Bi(NO₃)₃·5H₂O was dispersed in 30 mL deionized water under ultrasonication. Then, the pH of the suspension was adjusted to 4, 7, 10, 12 and 14 by adding 10 M KOH. After stirring for 1 h at ambient temperature, the suspension was transferred into 100 mL Teflon-lined stainless-steel autoclaves and maintained at 150 °C for 12 h. The white precipitate was collected by centrifugation, rinsed thoroughly with deionized water, and dried at 80 °C for 12 h.

S1.2. Characterization

X-ray diffraction (XRD) patterns were recorded on an Ultima IV X-ray diffraction with Cu-K α radiation. Scanning electron microscopy (SEM) was performed with a Thermo Scientific ESCALAB Xi+ system. Ultraviolet-visible (UV–vis) diffuse reflectance spectra (DRS) of samples and the absorption spectra of phenol were analyzed by a Hitachi UV-3150 spectrometer. The elemental composition of samples was carried out using X-ray photoelectron spectra (XPS) on a Thermo Scientific ESCALAB Xi+ system with Mono AlKa radiation (hv = 1486.6 eV). Thermogravimetric (TG) measurements were carried out on STA6000 Thermogravimetry Analyzer. The CO₂ adsorption capacity of the catalysts was determined by by temperature-programmed desorption of CO₂-TPD (AutoChem1 II 2920). Before TPD experiments, the samples were plugged with helium at 250 °C for 60 min in order to remove any contaminations.

After cleaning, the samples were cooled and saturated for 20 min in flow of pure at 50 °C. Then, the samples were purged in helium flow until a constant baseline level was attained. TPD measurements were performed from 50 °C to 300 °C at a rate of 10 °C/min using helium as carrier flow. The evolved CO₂ were detected by an on-line TCD calibrated by the peak area of known pulses of CO₂. The TOC change was analyzed by a Shimadu TOC-L. The CO₂ adsorption capacity of the catalysts was determined by by temperature-programmed desorption of CO₂-TPD (AutoChem1 II 2920). Before TPD experiments, the samples were plugged with helium at 250 °C for 60 min in order to remove any contaminations. After cleaning, the samples were purged in helium flow until a constant baseline level was attained. TPD measurements were performed under 300 °C at a rate of 10 °C/min using helium as carrier flow. The evolved CO₂ were detected by an on-line TCD calibrated by the peak attained attained. TPD measurements were performed under 300 °C at a rate of 10 °C/min using helium as carrier flow. The evolved CO₂ were detected by an on-line TCD calibrated by the peak area of known pulses of CO₂.

S1.3. Photocatalytic CO₂ conversion

Photocatalytic reactions were conducted in a closed circulating system (CEL-SPH2N-D9, Beijing China Education Au-Light Co., Ltd.) irradiated with a 300 W Xenon lamp. Herein, 20 mg of catalyst was uniformly dispersed in 50-mL deionized water in the quartz glass reactor. Then, the photoreactor system needed a thorough vacuum treatment, and CO_2 gas of high purity introduced into the circulation system. During 6 h of reaction, the amount of product was analyzed using on-line gas chromatography (GC-7920, Beijing China Education Au-Light Co., Ltd.) equipped with an FID detector.

S1.4 Photocatalytic degradation

The degradation activity was evaluated by measuring the degradation of phenol. 50 mg (0.5 g/L) catalyst was added into 100 mL aqueous solution of 10 mg/L of phenol, RhB and MB. After stirring for 30 min in the dark to obtain an adsorption-desorption equilibrium, the system was tested under 300 W Xenon light. Aliquots were drawn and analyzed using a UV–vis spectrometer (Hitachi UV-3150 spectrometer) at the maximum absorption wavelength (269 nm of phenol, 554 nm of RhB and 664 nm of MB) at every certain minute after centrifuging.

S1.5 Photocatalytic H_2 production reaction

For photocatalytic H₂ production, 50 mg of Bi(OH)₃ catalyst was dispersed in 90 mL deionized water and 10 mL methanol. Evacuation of the reaction system to remove other gases. A 300 W Xe lamp was used as light source (Perfect Light, Beijing). The collected gaseous products were detected by GC using a thermal conductivity detector (TCD).

S1.6 Electrochemical measurements

The photoelectrochemical measurements were carried out in a three-electrode cell on CHI 660E electrochemical workstation. A saturated calomel electrode and platinum electrode were used as the reference electrode and the counter electrode, respectively. FTO conductive glasses coated with prepared samples were usedas working electrode. Specifically: samples (5 mg) were dissolved in ethylene glycol (100 μ L) with Nafion 117 solution (50 μ L) and ultrasonically dispersed to form a homogeneous suspension,

then it was drop-coated to the FTO conductive glass with the area of 1×1 cm² and airing dried it.

The electrochemical impedance spectra (EIS) were tested at the frequency varied between 105 to 0.1 Hz with 5 mV amplitude. The ON-OFF photo-induced transient current was measured at a bias voltage of 0.4 V, irradiated by 300 W Xe lamp.

S2. Results

S2.1 XRD patterns

Fig. S1 XRD patterns of sample at pH 4, pH 7 and pH 12.

Fig. S2 (a) SEM image and (b) XRD patterns of Bi(OH)₃ after illumination.

Fig. S3 EPR spectra of Bi(OH)₃ before and after illumination.

Fig. S4 UV-vis DRS spectra of Bi(OH)₃ before and after illumination (Bi(OH)₃-L).

S2.5 Tauc plots and VB-XPS spectra

Fig. S5 (a) Tauc plots and (b) VB-XPS spectra of $Bi(OH)_3$ before and after illumination.

Fig. S6 Photocurrent response of Bi(OH)₃.

S2.7 Thermal Stability

Fig. S7 Thermogravimetric (TG) curve of $Bi(OH)_3$ under air atmosphere.

S2.8 Control experiments

Fig. S8 Photoreduction of CO_2 into CO over $Bi(OH)_3$ under different conditions: (a) with and

without light irradiation under CO₂/H₂O and under Ar/H₂O vapor flow and light irradiation; (b)

with and without H_2O in CO_2 atmosphere under light irradiation.

Fig. S9 MS analysis for CO produced from ¹³CO₂ isotope experiment.

Fig. S10 Photocatalytic H₂ yields of Bi(OH)₃.

Fig. S11 Photocatalytic CO yields of Bi₂O₃.

Fig. S12 CO₂-TPD of Bi(OH)₃ and Bi₂O₃.

Fig. S13 TOC change in photodegradation 10 mg/L phenol over Bi(OH)₃ (catalyst dosage: 0.5g/L).

S2.14 Phenol degradation of Bi₂O₃

Fig. S14. Photodegradation of 10 mg/L phenol over Bi_2O_3 .

S2.15 Photodegradation of dyes

Fig. S15 Photodegradation of 10 mg/L (a) RhB and (b) MB under 300 W Xe lamp.

S2.16 Zeta potential

Fig. S16 Zeta potential of Bi(OH)₃.

Fig. S17 ESR spectra of radical species trapped by 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) after

10 min light irradiation with (c) methanol and (d) aqueous dispersion.

Catalyst	Light source	Activity (µmol g ⁻¹ h ⁻¹)	Ref.	
Bi(OH) ₃	300 W Xe lamp	CO: 36	This work	
TiO ₂ @CTF-Py	300 W Xe lamp	CO: 43.34	[1]	
	$(\lambda > 320 \text{ nm})$			
CNFs/TiO ₂ NCs	Simulated sunlight	Simulated sunlight CO: 0.4		
ZnO	300 W Xe lamp	CO: 0.75	[3]	
		CH ₄ : 0.04		
ZnO/graphene	300 W Xe lamp	CO: 3.38	[4]	
		CH ₃ OH: 0.59		
OVs-Rich BiOBr	300 W Xe lamp	CO: 2.03	[5]	
Atomic Layers				
g-C ₃ N ₄ /BiOCl	300 W Xe lamp	CO: 28.4	[6]	
		CH ₄ : 4.6		
Bi ₂ O _{3-x}	940 nm LED light	CO: 4.6	[7]	
Bi ₂ O ₃	300 W Xe lamp	CO: 17.39	[8]	
Nanosheet/Bi2WO6	$(\lambda > 400 \text{ nm})$			
3D Bi ₂ MoO ₆	300 W Xe lamp	CO: 41.5	[9]	
microspheres				
Bi ₂ MoO ₆ nanosheets	300 W Xe lamp	CO: 14.38	[10]	
Zn-Al layered double	500 W Xe lamp CO: 0.62		[11]	
hydroxides				
Ag_3PO_4/g - C_3N_4	500 W Xe lamp	CO: 39.8	[12]	
		CH ₃ OH: 8.8		
$g-C_3N_4/Bi_4O_5I_2$	300 W Xe lamp	CO: 39.8	[13]	
	$(\lambda > 400 \text{ nm})$	CH ₃ OH: 8.8		
		CO: 45.6		
		CH ₄ : 5.6		
g-C ₃ N ₄ /BiOBr	300 W Xe lamp	CO: 6.67	[14]	
	(λ>380 nm)	CH ₄ : 0.92		
Bi ₂ WO ₆ /RGO/g-C ₃ N ₄	300 W Xe lamp	CO: 16	[15]	
	(λ>420 nm)	CH ₄ : 2.5		
P-doped g-C ₃ N ₄	Simulated sunlight	CO: 2.37	[16]	

Table S1 Summary of photocatalysts for CO₂ reduction

	(300 W Xe)		
O and C codoped g-	300 W Xe lamp	CO: 4.6	[17]
C_3N_4	$(\lambda > 420 \text{ nm})$		
In_2O_3	Visible light	CO: 63.3	[18]
	(λ>420 nm)		

Catalyst	Light source	Initial concentration	Degradation activities	Degradation Time	Ref.
Bi(OH) ₃	300 W Xe	Phenol	92.7%	180 min	This
	lamp	(10 mg/L)			work
		RhB	100%	40 min	
		(10 mg/L)			
Pt/TiO ₂	High pressure	Phenol	~92%	90 min	[19]
	mercury lamp	(0.43 mM)			
Tm-modified	Visible light (λ	Phenol	~86%	60 min	[20]
TiO ₂	> 420 nm)	(0.21 mM)			
BiOBr/Bismuth	UV-vis light	RhB	100%	50 min	[21]
Oxyhydrate		(15 ppm)			
Pd/Bi ₂ MoO ₆	Visible light	RhB	97.35%	150 min	[22]
		(1×10 ⁻⁵ M)			
Ag ₂ O/Bi ₂ MoO ₆	Visible light (λ	RhB	95%	60 min	[23]
	> 420 nm)	(10 mg/L)			
ZnO/ZnMgAl-	12 W UV lamp	Phenol	98%	3 h	[24]
CO ₃ -LDHs	(λ= 254 nm)	(10 mg/L)			
CeO ₂ /Mg-Al	UV light	Phenol	50%	7 h	[25]
LDH		(0.85 mM)			
Pd-BiOBr	Visible light	Phenol	95.1%	180 min	[26]
		(10 mg/L)			
Carbon	300 W Xe lamp	RhB	50%	50 min	[27]
quantum	$(\lambda > 420 \text{ nm})$	(10 mg/L)			
dots/BiOBr					
Bi ₂ O ₃ @BiOI@	Visible light	RhB	89.9%	60 min	[28]
UiO-66		(10 mg/L)			
FeOOH/Bi ₂ O ₃	300 W Xe lamp	Phenol	85%	160 min	[29]
		(20 mg/L)			

S4. References

- 1. Z. Xu, Y. Cui, D. J. Young, J. Wang, H.-Y. Li, G.-Q. Bian and H.-X. Li, *Journal of CO*₂ *Utilization*, 2021, **49**, 101561.
- Z. Lei, Z. Xiong, Y. Wang, Y. Chen, D. Cao, Y. Zhao, J. Zhang and C. Zheng, *Catalysis Communications*, 2018, 108, 27-32.
- P. Li, H. Hu, G. Luo, S. Zhu, L. Guo, P. Qu, Q. Shen and T. He, ACS Applied Materials & Interfaces, 2020, 12, 56039-56048.
- 4. L. Wang, H. Tan, L. Zhang, B. Cheng and J. Yu, *Chemical Engineering Journal*, 2021, **411**, 128501.
- L. Wang, G. Liu, B. Wang, X. Chen, C. Wang, Z. Lin, J. Xia and H. Li, Solar RRL, 2021, 5, 2000480.
- Y. Chen, F. Wang, Y. Cao, F. Zhang, Y. Zou, Z. Huang, L. Ye and Y. Zhou, ACS Applied Energy Materials, 2020, 3, 4610-4618.
- Y. Li, M. Wen, Y. Wang, G. Tian, C. Wang and J. Zhao, *Angewandte Chemie*, 2021, 133, 923-929.
- Z. Xie, Y. Xu, D. Li, S. Meng, M. Chen and D. Jiang, ACS Applied Energy Materials, 2020, 3, 12194-12203.
- 9. X. Zhang, G. Ren, C. Zhang, R. Li, Q. Zhao and C. Fan, *Catalysis Letters*, 2020, **150**, 2510-2516.
- S. Li, L. Bai, N. Ji, S. Yu, S. Lin, N. Tian and H. Huang, *Journal of Materials Chemistry A*, 2020, 8, 9268-9277.
- 11. N. Ahmed, Y. Shibata, T. Taniguchi and Y. Izumi, Journal of Catalysis, 2011, 279, 123-135.
- 12. Y. He, L. Zhang, B. Teng and M. Fan, Environmental Science & Technology, 2015, 49, 649-656.
- 13. Y. Bai, L. Ye, L. Wang, X. Shi, P. Wang, W. Bai and P. K. Wong, *Applied Catalysis B: Environmental*, 2016, **194**, 98-104.
- Y. Bai, T. Chen, P. Wang, L. Wang, L. Ye, X. Shi and W. Bai, *Sol. Energy Mater. Sol. Cells*, 2016, **157**, 406-414.
- 15. W.-K. Jo, S. Kumar, S. Eslava and S. Tonda, *Applied Catalysis B: Environmental*, 2018, 239, 586-598.
- B. Liu, L. Ye, R. Wang, J. Yang, Y. Zhang, R. Guan, L. Tian and X. Chen, ACS applied materials & interfaces, 2018, 10, 4001-4009.
- S. Wan, M. Ou, X. Wang, Y. Wang, Y. Zeng, J. Ding, S. Zhang and Q. Zhong, *Dalton Transactions*, 2019, 48, 12070-12079.
- X. Zhu, J. Yang, X. Zhu, J. Yuan, M. Zhou, X. She, Q. Yu, Y. Song, Y. She, Y. Hua, H. Li and H. Xu, *Chemical Engineering Journal*, 2021, 422, 129888.
- Y. Wang, J. Zhao, X. Xiong, S. Liu and Y. Xu, *Applied Catalysis B: Environmental*, 2019, 258, 117903.
- P. Mazierski, P. N. Arellano Caicedo, T. Grzyb, A. Mikolajczyk, J. K. Roy, E. Wyrzykowska, Z. Wei, E. Kowalska, T. Puzyn, A. Zaleska-Medynska and J. Nadolna, *Applied Catalysis B: Environmental*, 2019, 252, 138-151.

- 21. S. Shenawi-Khalil, V. Uvarov, S. Fronton, I. Popov and Y. Sasson, *The Journal of Physical Chemistry C*, 2012, **116**, 11004-11012.
- 22. A. Phuruangrat, T. Klangnoi, P. Patiphatpanya, P. Dumrongrojthanath, S. Thongtem and T. Thongtem, *J. Electron. Mater.*, 2020, **49**, 3684-3691.
- 23. J. Zhang, H. Liu and Z. Ma, Journal of Molecular Catalysis A: Chemical, 2016, 424, 37-44.
- 24. S.-Z. Wu, N. Li and W.-D. Zhang, J. Porous Mater., 2014, 21, 157-164.
- J. S. Valente, F. Tzompantzi and J. Prince, *Applied Catalysis B: Environmental*, 2011, 102, 276-285.
- 26. X. Meng, Z. Li and Z. Zhang, *Materials Research Bulletin*, 2018, 99, 471-478.
- 27. J. Xia, J. Di, H. Li, H. Xu, H. Li and S. Guo, *Applied Catalysis B: Environmental*, 2016, **181**, 260-269.
- J. Tang, T. Zhang, Z. Duan, C. Li, C. Meng, Y. Zhang, Q. Zhang, D. Hou, Q. Xv and Y. Zhu, Chem. Phys. Lett., 2021, 768, 138354.
- 29. D. He, X. Wu, Y. Chen, Y. Situ, L. Zhong and H. Huang, *Chemosphere*, 2018, **210**, 334-340.