Supporting Information

Surface Deposition of 2D Covalent Organic Frameworks for Minimizing Nanocatalyst Sintering

Zhenqian Zheng^{a,b,#},Zheng Li^{a,#} Yuhao Yang^{b,#}, Xuepeng Wang^a, Song Wang^b, Ziyang Zhang^b, Ting Kang^b, Xingkun Chen^{a,*}, Wen-Jun Wang^b, Yunjie Ding^{a,c,d,*}, Pierre Braunstein ^e, Pingwei Liu^{b,*}

a Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, PR China

b State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China

c Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China

d The State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China

e Université de Strasbourg, CNRS, CHIMIE UMR 7177, Laboratoire deChimie de Coordination, Strasbourg, France

Equal contribution

Corresponding Authors: liupingwei@zju.edu.cn; cxklned@zjnu.cn; dyj@dicp.ac.cn

Experimental

Materials

1,4-Dioxane (99%), mesitylene (98%), ammonia solution (NH₄OH, 25~28 wt.%), dimethyloxalate (DMO, 99%), hydrochloric acid (HCl, 36~38%) and the solution of copper nitrate (Cu(NO₃)₂·3H₂O, >99.0 wt.%) were purchased from Sinopharm Chemical Reagent Co., Ltd. Benzaldehyde (98%), aniline (99.5%), scandium (III) trifluoromethanesulfonate (Sc(OTf)₃, 98%) and 1,3,5-tris(4-aminophenyl)-benzene (TAPB, 98%), were purchased from J&K Scientific Co. 1,3,5-Benzenetricarbaldehyde (BTCA, 98%) was purchased from ATK Chemical Company Limited. NaOH solution (1.0 N Standardized Solution) was purchased from Afaesha (China) Chemical Co., Ltd. All reagents and solvents were used without further purification.

Instrumentation

Powder X-ray diffraction (PXRD). PXRD diffraction spectra were obtained with a PANalytical X-pert Powder diffractometer (Cu anode) using a Scan step of 0.0262606° and step time of 97.983 s.

High-angle-annular-dark-field scanning transmission electron microscopy (HAADF-STEM). Elemental mapping analysis was performed on a JSM-7800F field emission scanning electron microscope and (HAADF-STEM) equipped with energy dispersive spectroscopy (EDS).

X-ray photoelectron spectroscopy (XPS). XPS was performed on an Escalab 250Xi unit (Thermo Fisher) to record the carbon and nitrogen content with Mg Kα X-ray as excitation light source.

Field emission scanning electron microscopy (FESEM). FESEM images were collected on a Hitachi SU-8010 field emission scanning electron microscope with accelerating voltage of 3 kV. All the samples were sprayed by Pt for 60 s. Energy Dispersive X-ray Spectroscopy (EDS) mapping was combined with an accelerating voltage of 15 kV.

Transmission electron microscope (TEM). TEM images were obtained using a HT-7700 transmission electron microscope from HITACHI company, with an accelerating voltage of 100 kV. Energy Dispersive X-ray Spectroscopy (EDS) mapping was combined with a X-MAXn65 T from Oxford Instruments with an accelerating voltage of 100 kV.

N₂ absorption-desorption analysis. The absorption-desorption isotherms were collected by an

AUTOSORB-IQ2-MP Surface Area and Porosimetry Analyzer. All the samples were kept at 120 °C for 12 h for dewatering. N₂ isotherms were measured at 77 K and analyzed by ASiQwin software.

Fourier transform infrared (FT-IR) spectroscopy. FT-IR spectra were recorded with a Nicolet5700 FT-IR spectrometer.

Thermogravimetric Analysis (TGA). A TA-Q500 thermogravimetric analyzer was used to collect the sample thermograms. The samples were stored at room temperature at a humidity of 50% prior to testing. Analysis involved heating to 900 °C at a rate of 5.00 °C/min.

Experimental Methods

Synthesis of Cu/SiO₂. The Cu/SiO₂ catalyst was prepared using the ammonia evaporation (AE) method. In a typical synthesis, an ammonia solution (12.6 mL) was mixed with a 0.3 M copper nitrate solution (70 mL) and stirred for 5 min. The pH of the complex was about 11. Then fumed silica (SiO₂, AEROSIL 300) (11.52 g) was added to the copper ammonia complex solution and the mixture was stirred at 35 °C for another 4 h. The suspension was then heated to 90 °C to evaporate the ammonia until the pH decreased to 6-7. The solid was filtered, washed with of deionized water (500 mL), dried at 120 °C for 10 h, and calcined in air at 450 °C (4 h, ramping rate 1°C/min).

Synthesis of COF/Cu/SiO₂ with different weight ratios of monomers to Cu/SiO₂. Various ratios of COF precursors were employed. We detail COF/Cu/SiO₂-I (2.5%) as an example. TAPB (17.6 mg), BTCA (8.1 mg), benzaldehyde (60.7 μ L) and aniline (54.4 μ L) were dissolved in a mixture dioxane/mesitylene (20 mL, 1/2 v/v). Cu/SiO₂ (1.0 g) was dispersed in the above solution under sonication. Then, Sc(OTf)₃ (0.73 mg, 1.5 μ mol) in dioxane/mesitylene (0.1 mL, 2/1 v/v) was added to the mixture and stirring at room temperature was maintained for 3 days. The obtained COF/Cu/SiO₂ was collected by filtration and dried in vacuum at 40 °C.

	Weight Ratio	Fee	Solvent dosage		
	(%)	TAPB	BTCA	Cu/SiO ₂	(ml)
Cu/SiO ₂	0.0	/	/	/	/
COF/Cu/SiO ₂ -I	1.2	8.8	4.1	1025.0	20.0
COF/Cu/SiO ₂ -II	2.5	17.6	8.1	1025.0	20.0
COF/Cu/SiO ₂ -III	5.0	35.2	16.2	1025.0	20.0
TAPB-BTCA COF	/	35.2	16.2	0	20.0

Table S1. The weight ratios of monomers in production of COF/Cu/SiO₂ catalysts

*Weight Ratio = $(m_{TAPB} + m_{BTCA}) / m_{Cu/SiO2}$

Synthesis of TAPB-BTCA COF. TAPB (35.2 mg), BTCA (16.2 mg), benzaldehyde (121.4 μ L) and aniline (108.8 μ L) were dissolved in a mixture dioxane/mesitylene (20 mL, 1/2 v/v). Sc(OTf)₃ (0.73 m) in dioxane/mesitylene (0.1 ml, 2/1 v/v) was added to the mixture and stirring was maintained at room temperature for 3 days. The obtained COF was collected by filtration and dried in vacuum at 40 °C.

Catalytic test of DMO hydrogenation. The catalytic vapor-phase hydrogenation of DMO was performed in a stainless steel fixed-bed micro-reactor (inner diameter, 10.0 mm; length, 660 mm), equipped with a thermocouple and a mass flow controller. Typically, the catalyst (1.0 g) was placed in the center of the reactor and reduced in situ with H₂ (30 cm³/min, 230 °C, 0.1 MPa, 3 h). After cooling to the reaction temperature, the system pressure was increased to 1.5 MPa with a back-pressure regulator. Then, a DMO solution (20 wt.% DMO in methanol, 99%, Analytic Reagent) was admitted using a plunger pump (NP-KX-210, Nihon Seimitsu Kagaku Co., ltd). The reaction products were collected by a cold trap and analyzed offline with an Agilent 7890B chromatograph equipped with an HP-FFAP capillary column (30 m×0.32 mm×0.25 μ m) and a flame ionization detector (FID) using *n*-butanol as the internal standard.

Etching experiment of COF/Cu/SiO₂. Etching off SiO₂ and Cu in COF/Cu/SiO₂, then characterizing the residues to prove the existence of COF. The sample was watered and ultrasounded. $300 \text{ mg COF/Cu/SiO}_2$

was placed in a 40 ml strain bottle. Then, 20 ml 1 mol/L NaOH solution was added to the bottle and stirring at 70 °C was maintained for 20 min. After placing for 10 min, removed 10 ml of upper liquid and added 10 ml 1 mol/L NaOH solution. Repeated above process 6 times, the obtained COF/Cu-Residue was collected by filtration and dried in vacuum at 40 °C. Took 5 mg COF/Cu in a centrifugal tubeand and 5 ml 2 mol/L hydrochloric acid was added to it. The obtained COF-Residue was collected by centrifuge and dried in vacuum at 40 °C.

Etching experiment of Cu/SiO₂. The sample was watered and ultrasounded. 300 mg Cu/SiO₂ was placed in a 40 ml strain bottle. Then, 20 ml 1 mol/L NaOH solution was added to the bottle and stirring at 70 $^{\circ}$ C was maintained for 20 min. After placing for 10 min, removed 10 ml of upper liquid and added 10 ml 1 mol/L NaOH solution. Repeated above process 6 times, the obtained Cu-Residue was collected by filtration and dried in vacuum at 40 $^{\circ}$ C. Took 5 mg Cu in a centrifugal tubeand and 5 ml 2 mol/L hydrochloric acid was added to it. There was no residue after the reaction.

Fig. S1. TEM image of Cu/SiO₂ and Nanoparticle distribution of Cu/SiO₂.

Fig. S2. HAADF-STEM images, and N and Cu elemental mapping of COF/Cu/SiO₂.

Fig. S3. XPS spectra of Cu/SiO_2 (a) and $COF/Cu/SiO_2$ (b).

Fig. S4. FT-IR spectra of TAPB-BTCA COF, COF/Cu/SiO₂ and Cu/SiO₂.

Fig. S5. Nitrogen isothermal absorption and desorption curve of Cu/SiO₂, COF/Cu/SiO₂-I, COF/Cu/SiO₂-II, COF/Cu/SiO₂-III and TAPB-BTCA COF.

Fig. S6. Pore size distribution of Cu/SiO₂, COF/Cu/SiO₂-I, COF/Cu/SiO₂-II, COF/Cu/SiO₂-III and TAPB-BTCA COF.

	Weight Ratio	S_{DET} (m ² g ⁻¹)	D _{pore}	$V_{total} (cm^3 g^{-1})$		
	(%)	SBEL (III &)	(nm)	micro	meso	Overall
Cu/SiO ₂	0.0	439	11.3	0.00	0.90	0.90
COF/Cu/SiO ₂ -I	1.2	246	7.5	0.04	0.58	0.62
COF/Cu/SiO ₂ -II	2.5	217	8.5	0.04	0.51	0.55
COF/Cu/SiO ₂ -III	5.0	232	8.9	0.05	0.52	0.57
TAPB-BTCA COF	/	426	1.5	0.24	0.22	0.46

Table S2. Specific surface area and pore size distribution of samples with different weight ratios.

Table S3. Standard deviation of dimethyl oxalate conversion and ethylene glycol selectivity.

	Standard deviation of	Standard deviation of EG
	DMO conversion	selectivity
Cu/SiO ₂	0.0022	0.0065
COF/Cu/SiO ₂ -I	0.0004	0.0020
COF/Cu/SiO ₂ -II	0.0049	0.0048
COF/Cu/SiO ₂ -III	0.0041	0.0090

Table S4. For Fig. 2f the comparison between spent $COF/Cu/SiO_2$ and Cu/SiO_2 .

variance analysis

source of difference	e SS	DF	MS	F	P-value	F crit
Between groups	977.77	1	977.77	454.85	9.55E-23	4.10
Within groups	81.69	38	2.15			
Total	1059.46	39				
SS: sum of square						
Df: degrees of freedom						
MS: mean square						
F: Test statistics						
P-value: observed significan	ce level					
F crit: critical value						
Since F (454.85) > F crit (4.10), a significant	differe	ence was pre	esent for C	u particles si	izes distrib
inspection standard a=0.05.						

Table S5. For Fig. S16 the comparison between fresh and spent Pd/SiO₂ catalysts:

variance analysis

source of difference	SS	DF	MS	F	P-value	F crit
Between groups	484.74	1	484.74	242.73	3E-36	3.89
Within groups	395.40	198	1.99			
Total	880.15	199				

Since F (242.73)> F crit (3.89), a significant difference was present for Pd particles sizes distribution when inspection standard a=0.05.

Table S6. For Fig. S16 the comparison between fresh and spent COF/Pd/SiO₂ catalysts:

variance analysis

source of difference	SS	DF	MS	F	P-value	F crit
Between groups	23.02	1	23.02	10.89	0.0011	3.89
Within groups	418.39	198	2.11			
Total	441.42	199				

Since F > F crit, a significant difference was present for Pd particles sizes distribution when inspection standard a=0.05.

Table S7. For Fig. S16 the comparison between the spent Pd/SiO₂ and COF/Pd/SiO₂ catalysts:

variance analysis

source of difference	SS	DF	MS	F	P-value	F crit
Between groups	130.5	1	130.05	48.06	5.7E-11	3.89
Within groups	535.79	198	2.71			
Total	665.84	199				

Since F > F crit, a significant difference was present for Pd particles sizes distribution when inspection standard a=0.05.

Fig. S7. TGA thermograms of $Cu/SiO_2(a)$, $COF/Cu/SiO_2(b)$.

After etching process:

Fig. S8. Etching experiment of COF/Cu/SiO_2 and Cu/SiO_2

S-14

Fig. S9. a) Etching process and FESEM images of Cu/SiO₂ and COF/Cu/SiO₂. b) PXRD patterns of Cu/SiO₂, COF/Cu/SiO₂, TAPB-BTCA COF and their solid residues. c) FT-IR spectra of Cu/SiO₂, COF/Cu/SiO₂, TAPB-BTCA COF and their solid residues.

Fig. S10. TGA thermograms of Cu-Residue(a), COF/Cu-Residue (b).

Fig. S11. FT-IR spectra of COF/Cu/SiO₂, TAPB-BTCA COF and COF-Residue.

Fig. S12. TEM images, and Si, O and C elemental mapping of COF/spherical silica (a) and COF/Cu/Spherical silica (b).

Fig.S13. GC signals of the liquid products of DMO hydrogenation over COF/Cu/SiO2 catalyst in Fig. 2b.

Fig. S14. GC signals of the liquid products in Fig. 3.

Fig. S15. TEM image of Pd/SiO₂, COF/Pd/SiO₂, Pd/SiO₂ after 60 h reaction and COF/Pd/SiO₂ after 100 h reaction.

Fig. S16. Nanoparticle distributions of Pd/SiO₂, COF/Pd/SiO₂, Pd/SiO₂ after 60 h reaction and COF/Pd/SiO₂ after 100 h reaction.