Supporting Information

An approach to functionalized carbazoles from Z-enoate propargylic alcohols. A unified total synthesis of N-Me-carazostatin, N-Mecarbazoquinocin C and N-Me-Lipocarbazole A 4

Debayan Roy, Prabhakararao Tharra, Beeraiah Baire*

Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
*Correspondence to: beeru@iitm.ac.in

Table of Contents

A. General Information. S3
B. Abbreviations S3
B. Experimental procedures and characterization data for the tandem reactions.
(i) General Procedure 1: Synthesis of functionalized carbazoles and benzazepine derivatives. S4
(ii) General Procedure 2: Synthesis of functionalized dihydrocarbazoles. S21
C. Experimental procedures and characterization data for total synthesis of N -Me- carazostatin (29) and N-Me-carbazoquinocin C (31). S24
D. Experimental procedures and characterization data for total synthesis of N-Me-Lipocarbazole $A 4$ (32).S30
E. Experimental procedures and characterization data for the synthesis of substrates.
(i) General procedure 3: Procedure for Sonogashira reaction. S34
(ii) General procedure 4: Preparation of the terminal propargylic alcohols. S43
(iii) General procedure 5: Nucleophilic addition of N-alkylindole to alkylvinyl ketones. S50
(iv) General procedure 6: N-Tosylation of the derivatives of 4-(1 H -indol-3-yl)butan-2-one. S54
(v) Synthesis of S30. S55
(vi) Procedure for the synthesis of N-alkylated indoles. S57
(vii) Procedure for isomerization of Ethyl (Z)-3-iodoacrylate S58
F. References. S59
G. Copy of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of all new compounds. S60
H. Crystallographic Data and Structure Refinements Summary of Compound 17 S154

A. General information

All the solvents were distilled prior to use and anhydrous solvents were prepared according to the standard drying procedures. All non-aqueous reactions were carried out under an atmosphere of nitrogen in flame-dried glassware. Commercially available chemicals were purchased from Sigma-Aldrich, Alfa Aesar and Spectrochem Pvt. Ltd. and were used as received without further purification.

Infrared (IR) spectra were recorded on a JASCO 4100 FT-IR spectrometer.
${ }^{1} \mathrm{H}$ NMR spectra were measured on Bruker AVANCE 400 MHz or Bruker AVANCE 500 MHz spectrometers. Chemical shifts were reported in ppm relative to solvent signals. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AVANCE 100 MHz or Bruker AVANCE 125 MHz spectrometers with complete proton decoupling. Chemical shifts were reported in ppm from the residual solvent as an internal standard $\left[\mathrm{CDCl}_{3} \delta=7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}, \delta=77.16$ for ${ }^{13} \mathrm{C}$ or calibrated to tetramethylsilane $(\delta=0.00)$]. The following abbreviations are used to indicate multiplicities: s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; sext, sextet; sept, septet; m, multiplet; dd, doublet of doublet; dt, doublet of triplet; dq, doublet of quartet; td, triplet of doublet; tt , triplet of triplet; dq, doublet of quartet; br, broad; J, coupling constant in Hz . The coupling constant $J(\mathrm{~Hz})$ has been rounded to one decimal place for all compounds. Where a coupling pattern can be assigned as a combination of multiplicities, the above abbreviations have been combined to describe the observed patterns (i.e., dt, doublet of triplets).

Mass spectra were recorded by electrospray ionization (ESI) method on a Q-TOF Micro with lock spray source.

The crystal datas were collected and integrated using a BrukerAxs kappa apex2 CCD diffractometer, with graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation.

For thin layer chromatography (TLC) analysis throughout this work, E-merck precoated TLC plates (silica gel 60 F254 grade, 0.25 mm) were used and visualized using a UV lamp (366 or 254 nm) or by use of one of the following visualization reagents: PMA: 1 g phosphomolybdic acid/ 10 mL ethanol; $\mathrm{KMnO}_{4}: 0.15 \mathrm{~g}$ potassium permanganate, $1 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$, / 20 mL water. Acme (India) silica gel (100-200 mesh) was used for column chromatography.

B. Abbreviations

equiv. - Equivalents; anhyd. - anhydrous; $\mu \mathrm{L}$ - Microliter; TLC - Thin Layer Chromatography; R_{f} - Retardation or retention factor; NMR - Nuclear magnetic resonance spectroscopy; IR - Infrared spectroscopy; ATR - Attenuated total reflection; HRMS (ESI) - High resolution electrospray ionization mass spectrometry; Calcd. For - Calculated for; M.P. - Melting point; ppm - Parts per million; ${ }^{n} \mathrm{Bu}-n$-butyl group; $\mathrm{Ts}-p$-toluenesulfonyl group; $\mathrm{Bs}-p$ bromophenylsulfonyl group; Pd / C - Palladium on carbon; $\mathrm{wt} \%$ - weight $\%$; atm - atmosphere; NBS - N-Bromosuccinimide; DIBAL-H - Diisobutylaluminium hydride; n - $\mathrm{BuLi}-n$-Butyllithium; $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ - Bis(triphenylphosphine) palladium(II) dichloride; DMF - dimethylformamide; $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ - Boron trifluoride etherate; $\mathrm{NaH}-$ Sodium hydride.

B. Experimental procedures and characterization data for the tandem reactions.

(i) General Procedure 1: Synthesis of functionalized carbazoles and benzazepine derivatives

General Scheme of the reaction:

Procedure: To a well stirred solution of propargylic alcohols 5a-j (1.0 equiv.) in anhydrous dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)(0.04 \mathrm{M})$, methanesulfonic acid $(\mathrm{MsOH})(10 \mathrm{~mol} \%)$ was added dropwise at room temperature under nitrogen atmosphere. The resulting mixture was transferred to a pre-heated oil bath and refluxed at $55{ }^{\circ} \mathrm{C}$ for $4.5 \mathrm{~h} .{ }^{*}$ After completion, the reaction mixture was cooled down to room temperature and saturated NaHCO_{3} solution was added. After stirring vigorously for 15 min (during this period the color of the initial dark brown reaction mixture becomes light orangish yellow), the layers were separated, and the residual compound from aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. Subsequent purification of the crude product via silica gel column chromatography (Hexane:EtOAc) provided the desired functionalized carbazoles 6a-j and 7a-j along with the benzazepine derivatives 8a-j.
[* Although the reaction of $\mathbf{5 a}$ with MsOH was completed after 3.5 h , the duration of reactions for the other substrates ($\mathbf{5 b} \mathbf{- j}$) was found to be between 4 h to 4.5 h . Therefore, all the reactions were continued for 4.5 h to ensure the complete consumption of the starting materials (i.e., $\mathbf{5 b} \mathbf{- j}$) during exploration of the substrate scope.

Reaction of ethyl (Z)-6-hydroxy-6-methyl-8-(1-methyl-1H-indol-3-yl)oct-2-en-4-ynoate

 (5a)

According to the General Procedure 1, propargylic alcohol 5a ($130 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv.), methanesulfonic acid (MsOH) $(26 \mu \mathrm{~L}, 0.04 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ were used in 10 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, affording the desired carbazole 6a as light-yellow liquid ($86 \mathrm{mg}, 0.28$ mmol, 70%) by using Hexane/EtOAc (13:1) as eluent, carbazole 7a as yellow liquid (20.9 $\mathrm{mg}, 0.068 \mathrm{mmol}, 17 \%$) by using Hexane/EtOAc (9:1) as eluent and benzazepine 8a as yellow liquid ($15.6 \mathrm{mg}, 0.048 \mathrm{mmol}, 12 \%$) by using Hexane/EtOAc (7:1) as eluent.

Ethyl (E)-4-(2,9-dimethyl-9H-carbazol-1-yl)but-3-enoate (6a)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ $(\mathrm{d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.90-5.78(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$ and $1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.5,142.2,139.3,134.5,130.5,128.1,125.4,122.9,122.2$, $121.6,121.0,119.7,119.0,118.9,108.8,60.9,38.9,33.5,21.0$ and 14.4 ppm.

IR (ATR): 3054, 2983, 1731, 1589, 1467, 1443, 1405, 1291, 1266, 1160, 1026 and $739 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{2}$ 307.1572; found 307.1552.
TLC: $\mathrm{R}_{\mathrm{f}}=0.75$ (4:1 Hexanes/EtOAc).
Ethyl (E)-4-(2,9-dimethyl-9H-carbazol-1-yl)but-2-enoate (7a)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dt}, J=15.2,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.57-5.47(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.08-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$ and $1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,147.5,142.1,140.3,135.5,125.6,123.2,122.9,122.9$, $122.4,119.7,119.2,118.9,117.9,108.7,60.5,32.5,31.2,20.2$ and 14.3 ppm.
IR (ATR): 3442, 2978, 2930, 1716, 1651, 1595, 1466, 1271, 1226, 1166, 960 and $741 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{2}$ 307.1572; found 307.1554.
TLC: $\mathrm{R}_{\mathrm{f}}=0.7$ (4:1 Hexanes/EtOAc).
Ethyl 2-(4,10a-dimethyl-4,9,10,10a-tetrahydro-2H-1-oxa-4-azabenzo[f]cyclopenta[cd]az-ulen-2-yl)acetate (8a)

${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.01$ (dd, $J=16.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{dd}, J=15.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=$ $12.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{td}, J=12.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$ and $1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$ ppm.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,139.1,137.4,129.8,126.2,122.9,119.4,119.3,116.9$, $113.5,109.2,88.9,80.5,60.6,41.4,37.0,30.9,22.8,20.1$ and 14.3 ppm .
IR (ATR): 3443, 2925, 2852, 1734, 1468, 1373, 1160, 1121, 1095, 1057, 1030 and $740 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3}$ 325.1678; found 325.1667.
TLC: $\mathrm{R}_{\mathrm{f}}=0.62$ (4:1 Hexanes/EtOAc).
Reaction of ethyl (Z)-8-(1-butyl-1H-indol-3-yl)-6-hydroxy-6-methyloct-2-en-4-ynoate (5b)

According to the General Procedure 1, propargylic alcohol 5b ($147 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv.), methanesulfonic acid (MsOH) ($26 \mu \mathrm{~L}, 0.04 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were used in 10 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, affording the desired carbazole $\mathbf{6 b}$ as light-yellow liquid ($90.9 \mathrm{mg}, 0.26$ mmol, 65%) by using Hexane/EtOAc (19:1) as eluent, carbazole 7b as brownish-yellow liquid ($22.4 \mathrm{mg}, 0.064 \mathrm{mmol}, 16 \%$) by using Hexane/EtOAc (14:1) as eluent and benzazepine $\mathbf{8 b}$ as yellow liquid ($14.7 \mathrm{mg}, 0.04 \mathrm{mmol}, 10 \%$) by using Hexane/EtOAc (9:1) as eluent.

Ethyl (E)-4-(9-butyl-2-methyl-9H-carbazol-1-yl)but-3-enoate (6b)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.90$ $(\mathrm{d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dt}, J=16.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.41(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.36$ (dd, $J=7.0,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.44$ (d, $J=10.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.67$ (dt, $J=15.5,7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $1.32(\mathrm{dt}, J=14.3,7.3 \mathrm{~Hz}, 5 \mathrm{H})$ and $0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,141.4,138.4,134.5,130.0,128.5,125.3,123.0,122.2$, $121.7,120.9,119.8,119.0,118.9,109.1,61.0,44.3,38.9,31.9,21.2,20.3,14.4$ and 14.1 ppm.
IR (ATR): 2954, 2928, 2867, 1735, 1466, 1408, 1307, 1236, 1202, 1166, 781 and $733 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{2}$ 349.2042; found 349.2034.

TLC: $\mathrm{R}_{\mathrm{f}}=0.75$ (9:1 Hexanes/EtOAc).

Ethyl (E)-4-(9-butyl-2-methyl-9H-carbazol-1-yl)but-2-enoate (7b)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.55-$ $5.42(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}$, $3 \mathrm{H}), 1.80(\mathrm{dt}, J=15.7,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.50-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$ and $0.98(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.7,146.8,141.5,139.3,135.5,125.5,123.1,123.1,122.9$, $122.3,119.8,119.2,118.9,117.6,109.0,60.5,44.9,33.1,31.2,20.4,14.3$ and 14.0 ppm.

IR (ATR): 3025, 2925, 2859, 1718, 1455, 1299, 1172, 875, 790 and $726 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] Calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{2} 349.2042$; found 349.2040.
TLC: $\mathrm{R}_{\mathrm{f}}=0.7$ (9:1 Hexanes/EtOAc).

Ethyl 2-(4-butyl-10a-methyl-4,9,10,10a-tetrahydro-2H-1-oxa-4-azabenzo[f]cyclopenta-[cd]azulen-2-yl)acetate (8b)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.14(\mathrm{~m}$, $4 \mathrm{H}), 3.02(\mathrm{dd}, J=16.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{ddd}, J=21.5,14.0,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=$ $15.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=12.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 1 \mathrm{H})$, $1.76-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{dd}, J=15.0,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$ and $0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,138.7,137.3,129.2,126.4,122.9,119.4,116.5,113.8$, $109.5,89.1,80.6,60.7,44.0,41.6,36.9,32.4,22.8,20.4,20.1,14.4$ and 14.0 ppm .

IR (ATR): 3033, 2966, 1735, 1625, 1458, 1404, 1297, 882 and $791 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{3} 367.2147$; found 367.2097.
TLC: $\mathrm{R}_{\mathrm{f}}=0.56$ (9:1 Hexanes/EtOAc).

Reaction of ethyl (Z)-8-(1-butyl-1H-indol-3-yl)-6-hydroxy-6-methyloct-2-en-4-ynoate (5c)

According to the General Procedure 1, propargylic alcohol 5c ($152.6 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv.), methanesulfonic acid (MsOH) ($26 \mu \mathrm{~L}, 0.04 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were used in 10 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, affording the desired carbazole $\mathbf{6 c}$ as yellow liquid ($98.9 \mathrm{mg}, 0.27 \mathrm{mmol}$, 68%) by using Hexane/EtOAc (24:1) as eluent, carbazole 7 c as yellow liquid ($20.4 \mathrm{mg}, 0.056$ mmol, 14%) by using Hexane/EtOAc (19:1) as eluent and benzazepine 8c as brownishyellow liquid ($18.3 \mathrm{mg}, 0.048 \mathrm{mmol}, 12 \%$) by using Hexane/EtOAc (9:1) as eluent.

Ethyl (E)-4-(7-butyl-2,9-dimethyl-9H-carbazol-1-yl)but-3-enoate (6c)

${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}$, $1 \mathrm{H}), 7.03$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.92$ (d, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dt}, J=16.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $3.89(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{dd}, J=7.1,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.81-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}$, $3 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$ and $0.95(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,142.7,140.8,139.4,133.9,130.6,128.0,122.3,121.5$, $120.9,120.8,120.0,119.4,118.6,108.4,61.0,38.9,36.7,34.5,33.5,22.6,20.9,14.4$ and 14.2 ppm .

IR (ATR): 2926, 2859, 1734, 1593, 1449, 1402, 1296, 1237, 1151, 1031, 799 and $735 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{2} 363.2198$; found 363.2179.
TLC: $\mathrm{R}_{\mathrm{f}}=0.78$ (4:1 Hexanes/EtOAc).

Ethyl (E)-4-(7-butyl-2,9-dimethyl-9H-carbazol-1-yl)but-2-enoate (7c)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dt}, J=$ $15.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.09-7.01(\mathrm{~m}, 2 \mathrm{H}), 5.57-5.45(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}$,

2H), 4.05 (d, $J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.65$ $(\mathrm{m}, 2 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$ and $0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,147.6,142.5,141.0,140.4,134.9,123.2,123.0,122.3$, $120.9,120.1,119.4,118.6,117.8,108.4,60.4,36.7,34.5,32.5,31.2,29.8,22.6,20.1,14.3$ and 14.2 ppm

IR (ATR): 3027, 2926, 2861, 1719, 1452, 1298, 1170, 874, 792 and $727 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{2} 363.2198$; found 363.2185.
TLC: $\mathrm{R}_{\mathrm{f}}=0.69$ (4:1 Hexanes/EtOAc).
Ethyl 2-(6-butyl-4,10a-dimethyl-4,9,10,10a-tetrahydro-2H-1-oxa-4-azabenzo[f]cyclopen-ta[cd]azulen-2-yl)acetate (8c)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=8.0,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 5.42-5.36(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.02-2.96$ $(\mathrm{m}, 1 \mathrm{H}), 2.82-2.72(\mathrm{~m}, 4 \mathrm{H}), 2.59(\mathrm{dd}, J=15.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=12.1,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.96(\mathrm{td}, J=12.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{ddd}, J=15.3,11.0,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.36(\mathrm{~m}, 2 \mathrm{H})$, $1.34(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$ and $0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,139.5,138.3,137.5,129.4,124.3,120.7,119.0,116.1$, $113.5,108.6,89.0,80.5,60.7,41.5,37.1,36.5,34.5,30.9,29.8,22.8,22.6,20.2,14.4$ and 14.2 ppm .

IR (ATR): 2925, 2856, 1734, 1652, 1616, 1462, 1374, 1170, 800 and $792 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{3} 381.2304$; found 381.2297.
TLC: $\mathrm{R}_{\mathrm{f}}=0.5$ (4:1 Hexanes/EtOAc).
Reaction of ethyl (Z)-8-(1-decyl-1H-indol-3-yl)-6-hydroxy-6-methyloct-2-en-4-ynoate
(5d)

According to the General Procedure 1, propargylic alcohol 5d ($180.7 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv.), methanesulfonic acid (MsOH) $(26 \mu \mathrm{~L}, 0.04 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ were used in 10 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, affording the desired carbazole $\mathbf{6 d}$ as light-yellow liquid ($116.2 \mathrm{mg}, 0.268$ mmol, 67%) by using Hexane/EtOAc (100:0 to 99:1) as eluent, carbazole 7d as yellow liquid
($19.1 \mathrm{mg}, 0.044 \mathrm{mmol}, 11 \%$) by using Hexane/EtOAc ($99: 1$) as eluent and benzazepine $\mathbf{8 d}$ as yellow liquid ($23.5 \mathrm{mg}, 0.052 \mathrm{mmol}, 13 \%$) by using Hexane/EtOAc ($7: 1$) as eluent.

Ethyl (E)-4-(9-decyl-2-methyl-9H-carbazol-1-yl)but-3-enoate (6d)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.90$ (d, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dt}, J=15.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.38(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.37(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 19 \mathrm{H})$ and $0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,141.4,138.4,134.5,130.0,128.5,125.3,123.0,122.2$, $121.7,121.0,119.8,119.0,118.9,109.1,61.0,44.6,38.9,32.0,29.8,29.7,29.7,29.6,29.4$, 27.1, 22.8, 21.2, 14.4 and 14.2 ppm .

IR (ATR): 2954, 2924, 2853, 1736, 1460, 1412, 1275, 1261, 1155, 1024, 767 and $740 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{NO}_{2} 433.2981$; found 433.2945.
TLC: $\mathrm{R}_{\mathrm{f}}=0.8$ (6:1 Hexanes/EtOAc).
Ethyl (E)-4-(9-decyl-2-methyl-9H-carbazol-1-yl)but-2-enoate (7d)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.39$ $(\mathrm{m}, 1 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=7.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.54-$ $5.42(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=13.8,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{dd}, J=4.5,1.9$ $\mathrm{Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{dt}, J=15.7,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.28-1.25(\mathrm{~s}, 17 \mathrm{H}), 1.21(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H})$ and $0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7$, 146.8, 141.5, 139.3, 135.5, 125.5, 123.12, 123.06, $122.9,122.3,119.8,119.2,118.9,117.6,109.0,60.5,45.1,32.0,31.2,31.0,29.8,29.7,29.6$, 29.4, 27.1, 22.8, 20.4, 14.3 and 14.2 ppm

IR (ATR): 2953, 2923, 2852, 1720, 1461, 1269, 1173, 1162, 1039, 765 and $743 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{NO}_{2} 433.2981$; found 433.2948.
TLC: $\mathrm{R}_{\mathrm{f}}=0.78$ (6:1 Hexanes/EtOAc).

Ethyl 2-(4-decyl-10a-methyl-4,9,10,10a-tetrahydro-2H-1-oxa-4-azabenzo[f]cyclopenta[$c d]$ azulen-2-yl)acetate (8d)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.13(\mathrm{~m}$, 4 H), 3.02 (dd, $J=16.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=15.4,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.22(\mathrm{dd}, J=12.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{td}, J=12.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{dtd}, J=21.3,13.9,7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 17 \mathrm{H})$ and $0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,138.6,137.3,129.2,126.4,122.9,119.4,119.4,116.4$, $113.8,109.5,89.1,80.6,60.7,44.3,41.6,36.9,32.0,30.3,29.7,29.5,29.4,27.2,22.8,22.8$, 20.1, 14.4 and 14.2 ppm .

IR (ATR): 2924, 2852, 1733, 1697, 1653, 1611, 1462, 1371, 1123, 1057 and $738 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{NO}_{3} 451.3086$; found 451.3052.
TLC: $\mathrm{R}_{\mathrm{f}}=0.6$ (6:1 Hexanes/EtOAc).
Reaction of ethyl (Z)-8-(5-chloro-1-methyl-1H-indol-3-yl)-6-hydroxy-6-methyloct-2-en-4-ynoate (5e)

According to the General Procedure 1, propargylic alcohol 5e ($144 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv.), methanesulfonic acid (MsOH) $(26 \mu \mathrm{~L}, 0.04 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ were used in 10 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, affording the desired carbazole $\mathbf{6 e}$ as light-yellow liquid ($94.3 \mathrm{mg}, 0.276$ $\mathrm{mmol}, 69 \%$) by using Hexane/EtOAc (24:1) as eluent, carbazole 7e as brown liquid (16.4 mg , $0.048 \mathrm{mmol}, 12 \%$) by using Hexane/EtOAc (14:1) as eluent and benzazepine 8e as brownishyellow liquid ($15.8 \mathrm{mg}, 0.044 \mathrm{mmol}, 11 \%$) by using Hexane/EtOAc ($7: 1$) as eluent.

Ethyl (\boldsymbol{E})-4-(6-chloro-2,9-dimethyl-9H-carbazol-1-yl)but-3-enoate (6e)

${ }^{1}{ }^{1}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J$ $=8.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=16.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.88-5.78(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.42(\mathrm{~s}, 3 \mathrm{H})$ and $1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.5,140.5,139.7,135.4,130.2,128.5,125.3,124.5,123.9$, $122.0,121.2,121.2,119.4,119.0,109.8,61.0,38.8,33.6,21.0$ and 14.4 ppm.
IR (ATR): 2980, 2927, 1733, 1465, 1400, 1275, 1159, 1141, 1079, 1030 and $806 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClNO}_{2}$ 341.1183; found 341.1181.
TLC: $\mathrm{R}_{\mathrm{f}}=0.8$ (4:1 Hexanes/EtOAc).

Ethyl (E)-4-(6-chloro-2,9-dimethyl-9H-carbazol-1-yl)but-2-enoate (7e)

${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (ddd, J $=13.1,9.1,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.57-5.48(\mathrm{~m}$, $1 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$ and $1.22(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,147.2,140.8,140.5,136.4,125.6,124.7,124.1,123.3$, $122.8,121.9,119.5,119.1,118.2,109.8,60.5,32.7,31.1,20.2$ and 14.3 ppm
IR (ATR): 2924, 1713, 1650, 1463, 1271, 1224, 1201, 1175, 1163, 1038, 802 and $740 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClNO}_{2}$ 341.1183; found 341.1162.
TLC: $\mathrm{R}_{\mathrm{f}}=0.75$ ($4: 1$ Hexanes/EtOAc).
Ethyl 2-(7-chloro-4,10a-dimethyl-4,9,10,10a-tetrahydro-2H-1-oxa-4-azabenzo[f]cyclope-nta[cd]azulen-2-yl)acetate (8e)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 2 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{dd}, J=16.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.70$ $(\mathrm{m}, 2 \mathrm{H}), 2.60(\mathrm{dd}, J=15.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=11.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{td}, J=12.2$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$ and $1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.1,137.5,137.1,131.0,127.2,125.2,123.1,118.8,117.9$, $113.0,110.2,88.9,80.6,60.7,41.3,36.9,31.1,22.8,20.0$ and 14.4 ppm .
IR (ATR): 2924, 2851, 1730, 1611, 1469, 1371, 1271, 1054, 989, 793 and $737 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ClNO}_{3}$ 359.1288; found 359.1280.

TLC: $\mathrm{R}_{\mathrm{f}}=0.6$ (4:1 Hexanes/EtOAc).

Reaction of ethyl (Z)-8-(5-bromo-1-methyl-1H-indol-3-yl)-6-hydroxy-6-methyloct-2-en-4-y-noate (5f)

According to the General Procedure 1, propargylic alcohol 5 f ($161.2 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv.), methanesulfonic acid (MsOH) ($26 \mu \mathrm{~L}, 0.04 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were used in 10 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, affording the desired carbazole $\mathbf{6 f}$ as brownish-white solid (109.7 mg , $0.284 \mathrm{mmol}, 71 \%$) by using Hexane/EtOAc (24:1) as eluent, carbazole 7f as yellow liquid ($15.4 \mathrm{mg}, 0.04 \mathrm{mmol}, 10 \%$) by using Hexane/EtOAc (14:1) as eluent and benzazepine $\mathbf{8 f}$ as yellow liquid ($19.3 \mathrm{mg}, 0.048 \mathrm{mmol}, 12 \%$) by using Hexane/EtOAc (9:1) as eluent.

Ethyl (E)-4-(6-bromo-2,9-dimethyl-9H-carbazol-1-yl)but-3-enoate (6f)

${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dt}, J=14.4,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$ and $1.30(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.5,140.7,139.5,135.4,130.1,128.5,127.9,124.5,122.4$, $122.1,121.2,121.0,119.0,111.8,110.3,61.0,38.8,33.5,21.0$ and 14.4 ppm.

IR (ATR): 2978, 2923, 1732, 1463, 1399, 1274, 1158, 1141, 1065, 1030, 804 and $737 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{BrNO}_{2} 386.0750$; found 386.0742.
TLC: $\mathrm{R}_{\mathrm{f}}=0.78$ (4:1 Hexanes/EtOAc).
M.P.: $75-78{ }^{\circ} \mathrm{C}$.

Ethyl (E)-4-(6-bromo-2,9-dimethyl-9H-carbazol-1-yl)but-2-enoate (7f)

[^0]$\mathrm{Hz}, 1 \mathrm{H}), 5.57-5.46(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{dd}, J=4.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}$, $3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$ and $1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.6,147.2,140.8,140.6,136.4,128.2,124.7,123.3,122.9$, $122.5,121.8,119.1,118.2,112.0,110.3,60.5,32.7,31.1,20.2$ and 14.3 ppm
IR (ATR): 2925, 1714, 1649, 1462, 1273, 1221, 1208, 1179, 1162, 1039, 806 and $737 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{BrNO}_{2}$ 386.0750; found 386.0747.
TLC: $\mathrm{R}_{\mathrm{f}}=0.72$ (4:1 Hexanes/EtOAc).
Ethyl 2-(7-bromo-4,10a-dimethyl-4,9,10,10a-tetrahydro-2H-1-oxa-4-azabenzo[f]cyclopenta $[c d]$ azulen-2-yl)acetate (8 f)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=8.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 2.94(\mathrm{dd}, J=16.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{dd}, J=15.6,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.21(\mathrm{dd}, J=11.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{td}, J=12.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$ and $1.28(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,137.7,137.0,130.9,127.9,125.6,121.9,117.9,112.9$, $112.6,110.7,88.9,80.6,60.7,41.3,36.8,31.1,22.8,19.4$ and 14.4 ppm .
IR (ATR): 2924, 2850, 1730, 1468, 1370, 1190, 1167, 1095, 1051, 1027, 815 and $736 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrNO}_{3}$ 404.0856; found 404.0862.
TLC: $\mathrm{R}_{\mathrm{f}}=0.55$ (4:1 Hexanes/EtOAc).

Reaction of ethyl (Z)-6-hydroxy-8-(5-methoxy-1-methyl-1H-indol-3-yl)-6-methyloct-2-en-4-ynoate (5g)

According to the General Procedure 1, propargylic alcohol 5g ($142 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv.), methanesulfonic acid (MsOH) $(26 \mu \mathrm{~L}, 0.04 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ were used in 10 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, affording the desired carbazole $\mathbf{6 g}$ as light-yellow liquid ($101.2 \mathrm{mg}, 0.3$ mmol, 75%) by using Hexane/EtOAc (19:1) as eluent, carbazole 7 g as yellow liquid (14.8 $\mathrm{mg}, 0.044 \mathrm{mmol}, 11 \%$) by using Hexane/EtOAc (14:1) as eluent and benzazepine 8g as brownish-yellow gummy liquid ($11.4 \mathrm{mg}, 0.032 \mathrm{mmol}, 8 \%$) by using Hexane/EtOAc ($9: 1$) as eluent.

Ethyl (\boldsymbol{E})-4-(6-methoxy-2,9-dimethyl-9H-carbazol-1-yl)but-3-enoate (6g)

${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dt}, J=15.9,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$ and $1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.5,153.7,139.8,137.3,134.4,130.4,128.0,123.1,121.9$, $121.2,121.0,118.8,114.3,109.5,102.8,60.9,56.1,38.8,33.5,20.9$ and 14.3 ppm.
IR (ATR): 2938, 2834, 17291479, 1446, 1208, 1160, 1028, 976, 803 and $732 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3} 337.1678$; found 337.1669.
TLC: $\mathrm{R}_{\mathrm{f}}=0.75$ (4:1 Hexanes/EtOAc).

Ethyl (\boldsymbol{E})-4-(6-methoxy-2,9-dimethyl-9H-carbazol-1-yl)but-2-enoate (7g)

${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dt}, J=$ $15.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 2 \mathrm{H}), 5.58-5.47(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.05-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 6 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$ and $1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.7,153.8,147.5,140.8,137.2,135.4,123.2,123.2,122.7$, $122.0,118.8,118.0,114.6,109.5,102.8,60.5,56.2,32.7,31.1,20.1$ and 14.3 ppm

IR (ATR): 2929, 1715, 1648, 1484, 1277, 1207, 1170, 1042, 807 and $730 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] Calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}$ 337.1678; found 337.1674.
TLC: $\mathrm{R}_{\mathrm{f}}=0.68$ (4:1 Hexanes/EtOAc).
Ethyl 2-(7-methoxy-4,10a-dimethyl-4,9,10,10a-tetrahydro-2H-1-oxa-4-azabenzo[f]cyclo-penta[cd]azulen-2-yl)acetate (8g)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.88(\mathrm{~m}, 2 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H})$, $5.40(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{dd}, J=$ $16.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{dd}, J=15.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=12.0,5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.96(\mathrm{td}, J=12.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$ and $1.28(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,154.1,137.5,134.6,130.3,126.4,116.7,113.3,113.0$, $110.0,100.9,88.9,80.5,60.7,56.1,41.5,37.1,31.1,22.8,20.1$ and 14.4 ppm .
IR (ATR): 2929, 2854, 1733, 1615, 1485. 1462, 1234, 1213, 1170, 1047, 798 and $729 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4}$ 355.1784; found 355.1747.
TLC: $\mathrm{R}_{\mathrm{f}}=0.57$ (4:1 Hexanes/EtOAc).

Reaction of ethyl (Z)-6-hydroxy-8-(4-methoxy-1-methyl-1H-indol-3-yl)-6-methyloct-2-en-4-ynoate (5h)

According to the General Procedure 1, propargylic alcohol 5h (142 mg, $0.4 \mathrm{mmol}, 1.0$ equiv.), methanesulfonic acid (MsOH) ($26 \mu \mathrm{~L}, 0.04 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were used in 10 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, affording the desired carbazole $\mathbf{6 h}$ light-yellow liquid ($108 \mathrm{mg}, 0.32$ $\mathrm{mmol}, 80 \%$) by using Hexane/EtOAc (19:1) as eluent, carbazole 7h as brownish-white solid ($13.5 \mathrm{mg}, 0.04 \mathrm{mmol}, 10 \%$) by using Hexane/EtOAc (14:1) as eluent and benzazepine $\mathbf{8 h}$ as light-brown gummy liquid ($7.1 \mathrm{mg}, 0.02 \mathrm{mmol}, 5 \%$) by using Hexane/EtOAc (9:1) as eluent.

Ethyl (E)-4-(5-methoxy-2,9-dimethyl-9H-carbazol-1-yl)but-3-enoate (6h)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.84(\mathrm{dt}, J=16.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{dd}, J$ $=7.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$ and $1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,156.0,143.7,138.5,133.4,130.7,127.9,126.0,121.8$, $121.5,120.4,111.8,101.9,100.2,60.9,55.5,38.9,33.8,20.9$ and 14.4 ppm.
IR (ATR): 2944, 1734, 1587, 1496, 1461, 1402, 1299, 1258, 1164, 1101 and $728 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}$ 337.1678; found 337.1671.
TLC: $\mathrm{R}_{\mathrm{f}}=0.68$ (4:1 Hexanes/EtOAc).

Ethyl (\boldsymbol{E})-4-(5-methoxy-2,9-dimethyl-9H-carbazol-1-yl)but-2-enoate (7h)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.52-5.44(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 4.04-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$ and $1.20(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,156.0,147.6,143.6,139.4,134.4,126.1,123.1,122.6$, $122.3,122.2,121.8,117.2,101.7,100.3,60.4,55.5,32.8,31.1,20.1$ and 14.3 ppm
IR (ATR): 2940, 1717, 1587, 1457, 1264, 1171, 1043 and $730 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] Calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3} 337.1678$; found 337.1670.
TLC: $\mathrm{R}_{\mathrm{f}}=0.61$ (4:1 Hexanes/EtOAc).
M.P.: $94-96^{\circ} \mathrm{C}$.

Ethyl 2-(8-methoxy-4,10a-dimethyl-4,9,10,10a-tetrahydro-2H-1-oxa-4-azabenzo[f]cyclo-penta[cd]azulen-2-yl)acetate (8 h)

8h
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.78$ (s, 3H), 3.35 (dd, $J=17.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95$ (ddd, $J=17.6,12.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.76$ (dd, $J=$ $15.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=15.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{td}, J=12.3,6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$ and $1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2,155.4,140.6,137.5,128.3,123.8,116.6,116.0,113.9$, $102.5,99.4,88.7,80.4,60.7,55.3,41.5,37.4,31.2,22.7,22.2$ and 14.4 ppm .

IR (ATR): 2933, 2853, 1733, 1578, 1461, 1366, 1262, 1169, 1095, 1033, 757 and $737 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4}$ 355.1784; found 355.1773.
TLC: $\mathrm{R}_{\mathrm{f}}=0.54$ (4:1 Hexanes/EtOAc).

Reaction of ethyl (Z)-6-(2-(1-allyl-4-(allyloxy)-1H-indol-3-yl)ethyl)-6-hydroxydec-2-en-4ynoate (5i)

According to the General Procedure 1, propargylic alcohol 5i ($179.8 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv.), methanesulfonic acid (MsOH) ($26 \mu \mathrm{~L}, 0.04 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were used in 10 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, affording the desired carbazole $\mathbf{6 i}$ as light-yellow liquid ($119.4 \mathrm{mg}, 0.276$ mmol, 69%) by using Hexane/EtOAc ($99: 1$ to $49: 1$) as eluent, carbazole $7 \mathbf{i}$ as brown liquid $(6.9 \mathrm{mg}, 0.016 \mathrm{mmol}, 4 \%)$ by using Hexane/EtOAc (49:1) as eluent.

Ethyl (E)-4-(9-allyl-5-(allyloxy)-2-butyl-9H-carbazol-1-yl)but-3-enoate (6i)

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90$ (dd, $J=12.1,9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22$ (ddd, $J=22.1$, $10.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.97-5.83(\mathrm{~m}, 2 \mathrm{H}), 5.55(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.09 (d, $J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 4.84-4.77(\mathrm{~m}, 3 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.80-2.74(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{dt}, J=15.4,7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.42-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H})$ and $0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.4,155.0,143.2,138.6,137.8,133.9,133.8,129.7,127.8$, $126.0,122.1,121.3,121.3,120.1,117.3,116.0,112.3,102.4,101.6,69.0,60.9,47.2,38.9$, $34.2,33.4,22.8,14.4$ and 14.2 ppm .

IR (ATR): 2928, 2857, 1737, 1587, 1450, 1407, 1260, 1143, 1104, 762, 750 and $727 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] Calcd. for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{NO}_{3} 431.2460$; found 431.2454 .
TLC: $\mathrm{R}_{\mathrm{f}}=0.75$ (32:1 Hexanes/EtOAc after $6^{\text {th }}$ run).
Ethyl (E)-4-(9-allyl-5-(allyloxy)-2-butyl-9H-carbazol-1-yl)but-2-enoate (7i)

[N.B.: Carbazole 7i could not be isolated completely from $\mathbf{6 i}$ and a (1:0.63) mixture of $\mathbf{7 i}$ and $\mathbf{6 i}$ could only be obtained at best after multiple column chromatography.]
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dt}, J=15.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ $-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.29-6.18(\mathrm{~m}, 1 \mathrm{H}), 6.09$ (ddd, $J=14.3,8.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.59-5.3(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.44$ (m, $1 \mathrm{H}), 5.38-5.33(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.86(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{~d}, J=5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.82-4.78(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.97-3.87(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.65(\mathrm{~m}, 2 \mathrm{H})$, $1.66-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$ and $0.94(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8,148.5,143.4,139.4,139.1,134.3,133.8,126.2,123.1$, $122.13,122.07,122.0,117.5,116.6,116.3,112.3,102.1,101.8,69.1,60.4,47.4,34.3,33.2$, $32.1,30.3,29.8,23.0,14.3$ and 14.2 ppm .
IR (ATR): 2929, 2854, 1714, 1585, 1446, 1400, 1253, 1138, 1114, 783, 761 and $736 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{NO}_{3} 431.2460$; found 431.2443.
TLC: $\mathrm{R}_{\mathrm{f}}=0.74$ ($32: 1$ Hexanes/EtOAc after $6^{\text {th }}$ run).

Reaction of ethyl (Z)-6-hydroxy-6-(2-(5-methoxy-1-methyl-1H-indol-3-yl)ethyl)-8-meth-yln-on-2-en-4-ynoate (5j)

According to the General Procedure 1, propargylic alcohol 5j ($159 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv.), methanesulfonic acid (MsOH) ($26 \mu \mathrm{~L}, 0.04 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were used in 10 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, affording the desired carbazole $\mathbf{6 j}$ as light-yellow liquid ($113.8 \mathrm{mg}, 0.3$ mmol, 75%) by using Hexane/EtOAc (14:1) as eluent, carbazole $\mathbf{7 j}$ as off-white solid (13.7 $\mathrm{mg}, 0.036 \mathrm{mmol}, 9 \%$) by using Hexane/EtOAc (6:1) as eluent.

Ethyl (E)-4-(2-isobutyl-6-methoxy-9-methyl-9H-carbazol-1-yl)but-3-enoate (6j)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=16.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.82(\mathrm{dt}, J=15.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.34$ (d, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.90(\mathrm{dp}, J=13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H})$ and $0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.4,153.7,139.9,138.4,137.4,130.5,128.1,123.1,121.9$, $121.3,121.1,118.6,114.4,109.5,102.8,60.9,56.2,42.7,38.9,33.7,30.1,22.7$ and 14.4 ppm.

IR (ATR): 2952, 2867, 1734, 1486, 1466, 1438, 1287, 1222, 1205, 1167, 1027 and $805 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{3} 379.2147$; found 379.2145.
TLC: $\mathrm{R}_{\mathrm{f}}=0.7$ (6:1 Hexanes/EtOAc).

Ethyl (E)-4-(2-isobutyl-6-methoxy-9-methyl-9H-carbazol-1-yl)but-2-enoate (7j)

${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dt}, J=$ $15.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (dd, $J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.51-5.42(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{dd}, J=4.4,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}$, $3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$ and $0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,153.9,148.1,140.8,139.0,137.3,123.4,123.2,122.5$, $122.3,118.6,117.9,114.6,109.5,102.7,60.5,56.3,42.7,32.7,30.6,30.5,22.8$ and 14.3 ppm.

IR (ATR): 2924, 1712, 1650, 1486, 1268, 1165, 1033, 804 and $736 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{3}$ 379.2147; found 379.2133.
TLC: $\mathrm{R}_{\mathrm{f}}=0.62$ (4:1 Hexanes/EtOAc).
M.P.: $104-106{ }^{\circ} \mathrm{C}$.

Reaction of ethyl (\boldsymbol{E})-6-hydroxy-6-methyl-8-(1-methyl-1H-indol-3-yl)oct-2-en-4-ynoate (5a-E)

According to the General Procedure 1, propargylic alcohol 5a-E ($130 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv.), methanesulfonic acid (MsOH) $(26 \mu \mathrm{~L}, 0.04 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ were used in 10 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, affording the desired carbazole 6a as light-yellow liquid ($90 \mathrm{mg}, 0.29$ mmol, 73%) by using Hexane/EtOAc (13:1) as eluent, carbazole 7a as yellow liquid (13.5 $\mathrm{mg}, 0.044 \mathrm{mmol}, 11 \%$) by using Hexane/EtOAc (9:1) as eluent and benzazepine 8a as yellow liquid ($19.5 \mathrm{mg}, 0.06 \mathrm{mmol}, 15 \%$) by using Hexane/EtOAc (7:1) as eluent.

Dimethyl (E)-1-((E)-4-ethoxy-4-oxobut-2-en-1-ylidene)-9-methyl-1,2,4,9-tetrahydro-3H-carbazole-3,3-dicarboxylate (17)

According to the General Procedure 1, Z-enoate 16 ($164.6 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv.), was reacted with methanesulfonic acid (MsOH) $(26 \mu \mathrm{~L}, 0.04 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in 10 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 3 h , affording the tetrahydrocarbazole $\mathbf{1 7}$ as bright yellow crystalline solid ($128.4 \mathrm{mg}, 0.312 \mathrm{mmol}, 78 \%$) by using Hexane/EtOAc (13:1) as eluent.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{dd}, J=15.0,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{dd}, J=10.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 2 \mathrm{H})$

${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 198.4,173.5,149.4,138.5,135.5,134.8,133.7,130.6,129.0$, $128.5,127.0,125.3,125.1,124.9,118.9,117.5,60.6,38.1,34.7,31.5,31.2,28.8,23.0,19.8$, 14.3 and 14.2 ppm .

IR (ATR): 2956, 2925, 2855, 2382, 2350, 1734, 1697, 1448, 1368, 1176 and $751 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M+H] ${ }^{+}$Calcd. for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{~S}$ 494.1996; found 494.1984.
TLC: $\mathrm{R}_{\mathrm{f}}=0.3$ (6:1 Hexanes/EtOAc).
M.P.: $152-155^{\circ} \mathrm{C}$.
(ii) General Procedure 2: Synthesis of functionalized dihydrocarbazoles

General Scheme of the reaction:

Procedure: To a well stirred solution of propargylic alcohols 18a-d (1.0 equiv.) in anhydrous dichloromethane $(0.04 \mathrm{M})$, methanesulfonic acid (MsOH) ($15 \mathrm{~mol} \%$) was added dropwise at room temperature under nitrogen. The resulting mixture was transferred to a pre-heated oil bath and refluxed at $55{ }^{\circ} \mathrm{C}$ until the TLC showed complete consumption of the starting material. After completion, the reaction mixture was cooled down to room temperature and saturated NaHCO_{3} solution was added. After stirring vigorously for 15 min (during this period the color of the initial dark brown reaction mixture becomes light orangish yellow), the layers were separated, and the residual compound from aqueous layer was extracted with
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under reduced pressure. Subsequent purification of the crude product via silica gel column chromatography (Hexane:EtOAc) provided the desired functionalized dihydrocarbazoles 19a-d.

Ethyl 4-(2-methyl-9-tosyl-4,9-dihydro-3H-carbazol-1-yl)-4-oxobutanoate (19a)

According to the General Procedure 2, propargylic alcohol 18a ($186.2 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv.), methanesulfonic acid (MsOH) ($39 \mu \mathrm{~L}, 0.06 \mathrm{mmol}, 15 \mathrm{~mol} \%$) were used in 10 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, affording the desired dihydrocarbazole 19a as brown waxy solid (158.3 $\mathrm{mg}, 0.34 \mathrm{mmol}, 85 \%$) by using Hexane/EtOAc ($6: 1$) as eluent.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.22$ $(\mathrm{m}, 3 \mathrm{H}), 7.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}, J$ $=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 5 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$ and $1.26(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 198.9,173.5,144.7,144.5,138.4,134.7,132.5,130.6,129.2$, $129.1,127.1,125.2,125.0,124.6,118.9,117.3,60.6,37.9,32.9,28.9,21.7,21.7,19.6$ and 14.3 ppm .

IR (ATR): 2928, 1731, 1697, 1605, 1469, 1456, 1355, 1282, 1225, 1185 and $736 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{~S}$ 466.1683; found 466.1649.
TLC: $\mathrm{R}_{\mathrm{f}}=0.3$ (4:1 Hexanes/EtOAc).

Ethyl 4-(6-methoxy-2-methyl-9-tosyl-4,9-dihydro-3H-carbazol-1-yl)-4-oxobutanoate (19b)

According to the General Procedure 2, propargylic alcohol 18b ($99 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.), methanesulfonic acid (MsOH) ($20 \mu \mathrm{~L}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%$) were used in 5 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, affording the desired dihydrocarbazole 19b as brownish-yellow gummy liquid ($92.2 \mathrm{mg}, 0.186 \mathrm{mmol}, 93 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.30-2.21(\mathrm{~m}, 8 \mathrm{H})$ and $1.25(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 198.7,173.4,157.6,144.6,144.5,135.5,132.6,132.2,131.7$, $129.1,129.0,127.0,124.7,118.2,113.4,101.6,60.4,55.6,37.8,32.8,28.8,21.6,21.6,19.5$ and 14.2 ppm .

IR (ATR): 2925, 1732, 1698, 1599, 1479, 1459, 1364, 1293, 1239, 1170 and $816 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NO}_{6} \mathrm{~S} 496.1788$; found 496.1787.
TLC: $\mathrm{R}_{\mathrm{f}}=0.3$ (2:1 Hexanes/EtOAc).

Ethyl 4-(6-bromo-2-methyl-9-tosyl-4,9-dihydro-3H-carbazol-1-yl)-4-oxobutanoate (19c)

According to the General Procedure 2, propargylic alcohol 18c ($108.6 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.), methanesulfonic acid (MsOH) ($20 \mu \mathrm{~L}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%$) were used in 5 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, affording the desired dihydrocarbazole 19 c as brown gummy liquid (96.7 $\mathrm{mg}, 0.178 \mathrm{mmol}, 89 \%$) by using Hexane/EtOAc ($6: 1$) as eluent.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{t}, J$ $=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.31-2.25(\mathrm{~m}, 5 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$ and $1.25(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 198.5,173.4,145.6,145.1,137.0,135.9,132.3,132.2,129.3$, $128.9,127.8,127.0,123.5,121.7,118.6,60.5,37.8,32.8,28.8,21.7,21.6,19.4$ and 14.3 ppm.

IR (ATR): 2927, 2379, 2350, 2314, 1731, 1696, 1595, 1439, 1365, 1172 and $812 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BrNO}_{5} \mathrm{~S} 544.0788$; found 544.0776.
TLC: $\mathrm{R}_{\mathrm{f}}=0.3$ (4:1 Hexanes/EtOAc).
Ethyl 4-(2-butyl-9-(phenylsulfonyl)-4,9-dihydro-3H-carbazol-1-yl)-4-oxobutanoate (19d)

According to the General Procedure 2, propargylic alcohol 18d ($100 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.), methanesulfonic acid (MsOH) ($20 \mu \mathrm{~L}, 0.03 \mathrm{mmol}, 15 \mathrm{~mol} \%$) were used in 5 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, affording the desired dihydrocarbazole 19d as off-white solid (90.8 mg , $0.184 \mathrm{mmol}, 92 \%$) by using Hexane/EtOAc ($6: 1$) as eluent.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}$, $1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=6.8 \mathrm{~Hz}$,
$2 \mathrm{H}), 2.77(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{dd}, J=15.6,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.57-$ $1.51(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.23(\mathrm{~m}, 5 \mathrm{H})$ and $0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 198.4,173.5,149.4,138.5,135.5,134.8,133.7,130.6,129.0$, $128.5,127.0,125.3,125.1,124.9,118.9,117.5,60.6,38.1,34.7,31.5,31.2,28.8,23.0,19.8$, 14.3 and 14.2 ppm .

IR (ATR): 2956, 2925, 2855, 2382, 2350, 1734, 1697, 1448, 1368, 1176 and $751 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M+H] ${ }^{+}$Calcd. for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{~S}$ 494.1996; found 494.1984.
TLC: $\mathbf{R}_{\mathrm{f}}=0.45$ ($4: 1$ Hexanes/EtOAc).
M.P.: $110-112{ }^{\circ} \mathrm{C}$.
C. Experimental procedures and characterization data for total synthesis of N-Me-
carazostatin (29) and N-Me-carbazoquinocin C (31).

Ethyl 4-(2,9-dimethyl-9H-carbazol-1-yl)butanoate (25)

To a well stirred solution of mixture of ethyl (E)-4-(2,9-dimethyl-9H-carbazol-1-yl)but-3enoate 6a and ethyl (E)-4-(2,9-dimethyl-9H-carbazol-1-yl)but-2-enoate $7 \mathbf{7 a}$ ($200 \mathrm{mg}, 0.65$ $\mathrm{mmol}, 1.0$ equiv.) in EtOAc (10 mL) was added $\mathrm{Pd} / \mathrm{C}(20 \mathrm{mg}, 10 \mathrm{wt} \%)$. The resulting reaction mixture was stirred under Hydrogen (1 atm) atmosphere for 2 h at room temperature. After completion the reaction mixture was filtered through a Celite ${ }^{\circledR}$ pad by washing with EtOAc. The filtrate was concentrated in-vacuo. Purification of crude product via a silica gel column chromatography (9:1 Hexanes/EtOAc) provided the desired reduced ester 25 (200.7 $\mathrm{mg}, 0.65 \mathrm{mmol}, 99.7 \%$) as colorless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.41(\mathrm{~m}, 5 \mathrm{H}), 2.00-1.88(\mathrm{~m}$, $2 \mathrm{H})$ and $1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.3,142.2,139.8,134.6,125.3,123.0,122.9,122.7,122.4$, $119.5,118.9,117.9,108.7,60.5,34.2,32.5,27.7,26.5,20.1$ and 14.3 ppm.
IR (ATR): 2926, 1728, 1590, 1456, 1217, 1190, 1157, 1121, 1025, 925, 807 and $739 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] Calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2}$ 309.1729; found 309.1712.
TLC: $\mathbf{R}_{\mathrm{f}}=0.28$ (9:1 Hexanes/EtOAc).

4-(2,9-dimethyl-9H-carbazol-1-yl)butanal (24)

DIBAL-H ($1.9 \mathrm{~mL}, 1.22$ equiv., 1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added dropwise to a solution of Ethyl 4-(2,9-dimethyl-9H-carbazol-1-yl)butanoate $\mathbf{2 5}\left(480 \mathrm{mg}, 1.55 \mathrm{mmol}, 1.0\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 $\mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 1.5 h . The reaction was stopped by addition of $\mathrm{MeOH}(3 \mathrm{~mL})$ followed by addition of Rochelle's salt (10 $\mathrm{ml}, 1 \mathrm{M})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$. The resultant mixture was stirred vigorously for 1.5 h until a clear biphasic mixture is obtained. The organic layer was separated, and aqueous phase was extracted with EtOAc ($3 \times 7 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in-vacuo. Purification of crude product via a silica gel column chromatography ($4: 1$ Hexanes/EtOAc) provided the desired aldehyde 24 (386.6 mg , $1.46 \mathrm{mmol}, 94 \%$ yield) as colorless oil.
${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.79(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=12.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H})$ and $1.99-1.90(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.9,142.3,139.9,134.7,125.4,123.1,122.8,122.5,119.6$, 119.0, 118.0, 108.8, 43.8, 32.6, 27.6, 23.7 and 20.3 ppm.

IR (ATR): 2970, 2931, 1725, 1683, 1626, 1466, 1454, 1423, 1246, 996, 849, 821 and 736 cm^{-1}.

HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}$ 265.1467; found 265.1447.
TLC: $\mathbf{R}_{\mathrm{f}}=0.48$ (4:1 Hexanes/EtOAc).
(Z)-1-(hept-4-en-1-yl)-2,9-dimethyl-9H-carbazole (26)

To a flame dried round bottom flask were added triphenyl(propyl)phosphonium iodide (1.3 g , $3.02 \mathrm{mmol}, 4$ equiv.) and anhydrous THF (12 mL). After the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$, $n-\mathrm{BuLi}(1.4 \mathrm{~mL}, 2.26 \mathrm{mmol}, 3.0$ equiv., 1.6 M in hexane) was added dropwise over 5 min . The resulting mixture was then stirred for 1 h at the same temperature followed by addition of 4-(2,9-dimethyl-9H-carbazol-1-yl)butanal 24 ($200 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.0$ equiv.) in anhydrous THF (5 mL). The final reaction mixture was stirred for 2.5 h at $-78^{\circ} \mathrm{C}$ until the TLC showed complete consumption of the aldehyde. The color of the mixture changed from dark orange to white. After completion, a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) was added to quench the
reaction at $0^{\circ} \mathrm{C}$. Diethyl ether (5 mL) and water (5 mL) were added. After separation of the layers the residual compound from aqueous layer was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated invacuo. Purification of crude product via a silica gel column chromatography (Hexanes/EA) provided the desired alkene $26(210.4 \mathrm{mg}, 0.72 \mathrm{mmol}, 96 \%)$ as colorless oil.
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ (dd, $J=8.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.59-5.39(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.12-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.48$ (s, 3H), $2.31-2.18$ (m, $2 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 2 \mathrm{H})$ and $1.00(\mathrm{td}, J=7.5,2.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 142.2,139.9,134.6,132.7,128.3,125.3,124.0,123.2,122.7$, $122.4,119.6,118.9,117.7,108.7,32.7,31.5,28.1,27.5,20.8,20.2$ and 14.5 ppm.
IR (ATR): 2917, 1486, 1485, 1330, 1229 and $742 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}$ 291.1987; found 291.1978.
TLC: $\mathrm{R}_{\mathrm{f}}=0.75$ ($9: 1$ Hexanes/EtOAc).
1-heptyl-2,9-dimethyl-9H-carbazole (27)

To a well stirred solution of (Z)-1-(hept-4-en-1-yl)-2,9-dimethyl-9H-carbazole 26 (200 mg , $0.69 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{EtOAc}(10 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(20 \mathrm{mg}, 10 \mathrm{wt} \%)$. The resulting reaction mixture was stirred under Hydrogen (1 atm) atmosphere for 2 h at room temperature. After completion the reaction mixture was filtered through a Celite ${ }^{\circledR}$ pad by washing with EtOAc. The filtrate was concentrated in-vacuo. Purification of crude product via a silica gel column chromatography ($19: 1$ Hexanes/EtOAc) provided the desired reduced product 27 ($200.6 \mathrm{mg}, 0.68 \mathrm{mmol}, 99.6 \%$) as colorless oil.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ (s, 3H), $3.14-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.43-$ $1.29(\mathrm{~m}, 6 \mathrm{H})$ and $0.90(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.2,139.9,134.5,125.3,124.3,123.2,122.7,122.4,119.6$, $118.9,117.6,108.7,32.6,32.0,31.7,30.1,29.3,28.5,22.8,20.3$ and 14.3 ppm .

IR (ATR): 3441, 2925, 2855, 1645, 1599, 1472, 1429, 1413, 1372, 1324, 1253, 1045, 866 and $737 \mathrm{~cm}^{-1}$.

HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}$ 293.2143; found 293.2129.
TLC: $\mathrm{R}_{\mathrm{f}}=0.3$ (Hexanes).

3-bromo-1-heptyl-2,9-dimethyl-9H-carbazole (28)

To a solution of 1-heptyl-2,9-dimethyl-9H-carbazole 27 ($150 \mathrm{mg}, 0.51 \mathrm{mmol}, 1.0$ equiv.) in chloroform $\left(\mathrm{CHCl}_{3}\right)(10 \mathrm{ml})$ at room temperature was added N-bromosuccinimide (91 mg , $0.51 \mathrm{mmol}, 1.0$ equiv.) under nitrogen atmosphere. The reaction mixture was stirred at same temperature for 4 min until the TLC showed complete consumption of the starting material. After completion, water (10 mL) was added. The residual compound from aqueous layer was extracted with $\mathrm{CHCl}_{3}(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in-vacuo. Purification of crude product via a silica gel column chromatography (19:1 Hexanes/EA) provided the desired 3-bromo carbazole 28 ($188.6 \mathrm{mg}, 0.51 \mathrm{mmol}, 99.3 \%$) as a white solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.03-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~s}$, $3 \mathrm{H}), 1.57(\mathrm{dt}, J=11.6,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 6 \mathrm{H})$ and $0.90(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 142.4,138.9,132.8,125.9,123.6,122.1,121.5,119.7,119.2$, $116.7,108.8,32.6,32.0,31.7,30.0,29.5,29.2,22.8,19.8$ and 14.3 ppm .

IR (ATR): 2924, 2858, 2385, 1469, 1404, 1274, 1138, 1014, 819, 770 and $739 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{BrN} 371.1249$; found 371.1265.
TLC: $\mathrm{R}_{\mathrm{f}}=0.42$ (Hexanes).
M.P.: $126-130{ }^{\circ} \mathrm{C}$.

1-heptyl-2,9-dimethyl-9H-carbazol-3-ol [N -methyl Carazostatin] (29)
Method A: Direct hydroxylation of $\mathbf{2 8}$ by combination of $\mathrm{Cu}(\mathrm{acac})_{2}$ and BHMPO. ${ }^{1}$

BHMPO - N, N^{\prime}-bis(4-hydroxyl-2,6-dimethylphenyl)oxalamide
Following the reported procedure, ${ }^{2}$ a reaction vial was charged with $28(25 \mathrm{mg}, 0.063 \mathrm{mmol}$, 1.0 equiv.), a solution of $\mathrm{Cu}(\mathrm{acac})_{2}(1.65 \mathrm{mg}, 6.3 \mu \mathrm{~mol}, 0.1 .0$ equiv.) and BHMPO (3.2 mg , $9.45 \mu \mathrm{~mol}, 0.15$ equiv.) in DMSO ($300 \mu \mathrm{~L}$) and a solution of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(8 \mathrm{mg}, 0.189 \mathrm{mmol}$, 3.0 equiv.) in degassed $\mathrm{H}_{2} \mathrm{O}(100 \mu \mathrm{~L})$ at room temperature. After stirring at $100{ }^{\circ} \mathrm{C}$ for 30 h , the cooled reaction mixture was quenched with $1 M \mathrm{HCl}(5 \mathrm{~mL})$. The residual compound from aqueous layer was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organic layers were
dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in-vacuo. Purification of crude product via a silica gel column chromatography (4:1 Hexanes/EA) provided the desired N methyl Carazostatin 29 ($9.7 \mathrm{mg}, 0.031 \mathrm{mmol}, 49.7 \%$) as a white waxy solid.

Method B: Synthesis of $\mathbf{2 9}$ from $\mathbf{2 8}$ employing sequential etherification-deprotection strategy
Step 1: Synthesis of 1-heptyl-3-methoxy-2,9-dimethyl-9H-carbazole (30)

A 15 mL Schlenk tube equipped with a magnetic stirrer was evacuated and then backfilled with nitrogen. This process was repeated three times. Next, 2 mL of anhydrous MeOH was added, and the reaction vessel was cooled down to $0{ }^{\circ} \mathrm{C}$. To this stirring MeOH solvent, sodium metal ($124 \mathrm{mg}, 5.4 \mathrm{mmol}$, 54 equiv.) was carefully added in portions under a positive nitrogen pressure to form a $\sim 2.7 \mathrm{M}$ solution of sodium methoxide (NaOMe) in MeOH . After complete dissolution of Na in MeOH , the solution became thick and light yellowish. Next, 3bromo carbazole 28 ($37 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.) dissolved in DMF (1.4 mL) was added to this freshly prepared NaOMe solution followed by successive addition of $\mathrm{CuI}(76.2 \mathrm{mg}, 0.4$ $\mathrm{mmol}, 4.0$ equiv.) under nitrogen atmosphere. The resulting reaction mixture was then transferred to a preheated oil bath and stirred at $115^{\circ} \mathrm{C}$ for 15 h . After complete consumption of starting material 28 as indicated by TLC, the crude reaction mixture was filtered through a short plug of Celite ${ }^{\circledR}$ and washed with EtOAc. The filtrate was sequentially washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL), water (10 mL) and brine (5 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ concentrated in-vacuo. Purification of crude product via a silica gel column chromatography (9:1 Hexanes/EtOAc) provided the desired 3-methoxy carbazole 30 (31.7 $\mathrm{mg}, 0.098 \mathrm{mmol}, 98 \%)$ as yellowish-white solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.16-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$, $1.72-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.28(\mathrm{~m}, 6 \mathrm{H})$ and $0.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.3,142.4,134.8,125.8,125.1,124.7,123.2,121.8,119.5$, $118.4,108.8,99.1,56.3,32.8,32.0,31.7,30.1,29.3,28.8,22.8,14.3$ and 12.1 ppm .

IR (ATR): 2925, 2859, 2382, 1461, 1414, 1283, 1210, 1146, 1109, 836 and $735 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M+H] ${ }^{+}$Calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}$ 324.2322; found 324.2314.
TLC: $\mathrm{R}_{\mathrm{f}}=0.23$ (Hexanes).
M.P.: $135-140{ }^{\circ} \mathrm{C}$.

Step 2: Synthesis of N-methyl Carazostatin (29)

To a stirred solution of $\mathbf{3 0}\left(27.5 \mathrm{mg}, 0.085 \mathrm{mmol}, 1.0\right.$ equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, was added a 1 M solution of boron tribromide $\left(\mathrm{BBr}_{3}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.26 \mathrm{~mL}, 0.26 \mathrm{mmol}$, 3 equiv.) dropwise. The reaction mixture was then allowed to warm up to room temperature and stirred for further 4.5 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic layer was separated, and the residual compound from aqueous layer was extracted with EtOAc ($3 \times$ $5 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in-vacuo. Purification of crude product via a silica gel column chromatography (4:1 Hexanes/EtOAc) provided the desired N-methyl Carazostatin 29 ($25 \mathrm{mg}, 0.081 \mathrm{mmol}$, 95\% yield) as a white semi-solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.28$ $(\mathrm{m}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.13-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$, $1.71-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.29(\mathrm{~m}, 6 \mathrm{H})$ and $0.90(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.7,142.6,135.1,125.7,125.4,122.8,122.5,122.2,119.7$, 118.4, 108.7, 103.1, 32.7, 32.0, 31.7, 30.1, 29.3, 28.7, 22.8, 14.2 and 12.1 ppm .

IR (ATR): 2956, 2924, 2853, 2360, 2341, 1495, 1459, 1267, 1230, 909, 772 and $731 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}$ 309.2093; found 309.2051.
TLC: $\mathrm{R}_{\mathrm{f}}=0.28$ (9:1, Hex/EtOAc).
1-heptyl-2,9-dimethyl-3H-carbazole-3,4(9H)-dione [N -methyl Carbazoquinocin C] (31)

To a solution of N-methyl Carazostatin 29 ($24 \mathrm{mg}, 0.077 \mathrm{mmol}$) in THF (4 mL) at RT under nitrogen atmosphere was added $(\mathrm{PhSeO})_{2} \mathrm{O}(56 . \mathrm{mg}, 0.154 \mathrm{mmol}, 2$ equiv.). The reaction mixture was then stirred at $50^{\circ} \mathrm{C}$ for 30 min . After bringing to room temperature the mixture was quenched with water, and the residual compound from aqueous layer was extracted with EtOAc $(3 \times 4 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in-vacuo. Purification of crude product via a silica gel column chromatography ($3: 1$ Hexanes/EtOAc) provided the desired N-methyl Carbazoquinocin C 31 ($24.8 \mathrm{mg}, 0.077 \mathrm{mmol}, 99 \%$ yield) as a dark brown glittering solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$, $2.73-2.64(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.29(\mathrm{~m}$, $6 \mathrm{H})$ and $0.90(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 183.1,173.5,144.9,142.6,139.5,134.4,125.7,124.8,124.8$, $121.7,113.6,110.9,33.0,31.8,29.9,29.8,29.1,28.3,22.7,14.2$ and 11.8 ppm .

IR (ATR): 2955, 2924, 2853, 1668, 1642, 1630, 1484, 1461, 1424, 1378, 1254 and $772 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M+H] Calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{2}$ 324.1958; found 324.1959.
TLC: $\mathrm{R}_{\mathrm{f}}=0.29$ (4:1, Hex/EtOAc).
M.P.: $150-152{ }^{\circ} \mathrm{C}$.
D. Experimental procedures and characterization data for total synthesis of N -MeLipocarbazole A4 (32).

1-(heptadec-4-en-1-yl)-2,9-dimethyl-9H-carbazole (33)

To a flame dried round bottom flask were added triphenyl(tridecyl)phosphonium bromide ($100 \mathrm{mg}, 0.19 \mathrm{mmol}, 2.5$ equiv.) and anhydrous THF (7 mL). After the mixture was cooled to $-78^{\circ} \mathrm{C}, n-\mathrm{BuLi}(0.1 \mathrm{~mL}, 0.16 \mathrm{mmol}$, 2.12 equiv., 1.6 M in hexane) was added dropwise over 5 min . The resulting mixture was then stirred for 1 h at the same temperature followed by addition of 4-(2,9-dimethyl-9H-carbazol-1-yl)butanal 24 ($20 \mathrm{mg}, 0.075 \mathrm{mmol}, 1.0$ equiv.) in anhydrous THF (3 mL). The final reaction mixture was stirred for 2.5 h at $-78^{\circ} \mathrm{C}$ until the TLC showed complete consumption of the aldehyde. The color of the mixture changed from dark orange to white. After completion a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL) was added to quench the reaction at $0{ }^{\circ} \mathrm{C}$. Diethyl ether (3 mL) and water (5 mL) were added. After separation of the layers the residual compound from aqueous layer was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in-vacuo. Purification of crude product via a silica gel column chromatography (Hexanes/EA) provided the desired alkene 33 ($Z: E \sim 2: 1$) ($26.3 \mathrm{mg}, 0.061 \mathrm{mmol}, 81 \%$) as colorless oil. ${ }^{3}$

Major isomer (Z):

${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.56$ $-5.43(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{dt}, J=11.3,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.23$ (m, $2 \mathrm{H}), 2.12-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 20 \mathrm{H})$ and $0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}$, 3H) ppm.

Minor isomer (E):

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.56$ $-5.43(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{dt}, J=11.3,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.16(\mathrm{~m}$, $2 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 20 \mathrm{H})$ and $0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.2,139.9,134.6,131.8,131.2,129.4,128.9,125.3,124.0$, 123.2, 122.7, 122.5, 119.6, 118.9, 117.7, 108.7, 33.0, 32.8, 32.7, 32.1, 31.8, 31.6, 31.4, 29.9, $29.8,29.8,29.7,29.5,29.4,28.1,27.9,27.6,27.5,22.8,20.2$ and 14.3 ppm .

IR (ATR): 2921, 2858, 1605, 1485, 1325, 1250, 1182, 1013 and $754 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] Calcd. for $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{~N} 431.3552$; found 431.3545 .
TLC: $\mathrm{R}_{\mathrm{f}}=0.3$ (Hexanes).

1-heptadecyl-2,9-dimethyl-9H-carbazole (34)

To a well stirred solution of Z, E isomeric mixture of 1-(heptadec-4-en-1-yl)-2,9-dimethyl$9 H$-carbazole 33 ($15 \mathrm{mg}, 0.035 \mathrm{mmol}, 1.0$ equiv.) in EtOAc (10 mL) was added $\mathrm{Pd} / \mathrm{C}(1.5$ $\mathrm{mg}, 10 \mathrm{wt} \%$). The resulting reaction mixture was stirred under Hydrogen (1 atm) atmosphere for 2 h at room temperature. After completion the reaction mixture was filtered through a small Celite ${ }^{\circledR}$ pad by washing with EtOAc. The filtrate was concentrated in-vacuo. Purification of crude product via a silica gel column chromatography (19:1 Hexanes/EtOAc) provided the desired reduced product $34(15 \mathrm{mg}, 0.035 \mathrm{mmol}, 99.8 \%)$ as colorless oil.
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ (s, 3H), $3.14-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.32-$ $1.25(\mathrm{~m}, 26 \mathrm{H})$ and $0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.2,139.9,134.5,125.3,124.3,123.2,122.7,122.4,119.6$, $118.9,117.6,108.7,32.6,32.1,31.7,30.2,29.8,29.7,29.5,28.5,22.8,20.3$ and 14.3 ppm .

IR (ATR): 3442, 2926, 2849, 1643, 1602, 1469, 1417, 1368, 1315, 1048, 859 and $736 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] Calcd. for $\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{~N} 433.3709$; found 433.3699 .
TLC: $\mathrm{R}_{\mathrm{f}}=0.3$ (Hexanes).

3-bromo-1-heptadecyl-2,9-dimethyl-9H-carbazole (35)

To a solution of 1-heptadecyl-2,9-dimethyl-9H-carbazole $\mathbf{3 4}$ ($15 \mathrm{mg}, 0.035 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CHCl}_{3}(3 \mathrm{ml})$ at room temperature was added N-bromosuccinimide ($6.2 \mathrm{mg}, 0.035 \mathrm{mmol}$, 1.0 equiv.) under nitrogen atmosphere. The reaction mixture was stirred at same temperature for 4 min until the TLC showed complete consumption of the starting material. After completion, water (4 mL) was added. The residual compound from aqueous layer was extracted with $\mathrm{CHCl}_{3}(3 \times 3 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in-vacuo. Purification of crude product via a silica gel column chromatography (19:1 Hexanes/EA) provided the desired 3-bromo carbazole 35 (17.8 $\mathrm{mg}, 0.51 \mathrm{mmol}, 99.4 \%$) as a white semi-solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~s}$, $3 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.26(\mathrm{~m}, 26 \mathrm{H})$ and $0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}$, 3H) ppm.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 142.5,139.4,133.0,126.1,123.7,122.2,121.7,119.9,119.3$, $116.8,114.2,108.9,34.0,32.8,32.1,31.7,31.6,30.0,29.8,29.6,29.5,29.3,29.1,22.8,19.9$ and 14.3 ppm .

IR (ATR): 2928, 2849, 2378, 1462, 1400, 1268, 1132, 1011, 815, 765 and $734 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] Calcd. for $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{BrN} 511.2814$; found 511.2805.
TLC: $\mathrm{R}_{\mathrm{f}}=0.42$ (Hexanes).
1-heptadecyl-3-methoxy-2,9-dimethyl-9H-carbazole (36)

A 10 mL Schlenk tube equipped with a magnetic stirrer was evacuated and then backfilled with nitrogen. This process was repeated three times. Next, 0.7 mL of anhydrous MeOH was added, and the reaction vessel was cooled down to $0^{\circ} \mathrm{C}$. To this stirring MeOH solvent, sodium metal ($42 \mathrm{mg}, 1.84 \mathrm{mmol}$, 54 equiv.) was carefully added in portions under a positive nitrogen pressure to form a $\sim 2.7 \mathrm{M}$ solution of NaOMe in MeOH . After complete dissolution of Na in MeOH , the solution became thick and light yellowish. Next, 3-bromo carbazole 35 ($17.5 \mathrm{mg}, 0.034 \mathrm{mmol}, 1.0$ equiv.) dissolved in DMF (0.7 mL) was added to this freshly prepared NaOMe solution followed by successive addition of $\mathrm{CuI}(25.8 \mathrm{mg}, 0.14 \mathrm{mmol}, 4.0$ equiv.) under nitrogen atmosphere. The resulting reaction mixture was then transferred to a
preheated oil bath and stirred at $115{ }^{\circ} \mathrm{C}$ for 15 h . After complete consumption of starting material 35 as indicated by TLC, the crude reaction mixture was filtered through a short plug of Celite ${ }^{\circledR}$ and washed with EtOAc. The filtrate was sequentially washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (3 mL), water (5 mL) and brine (5 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ concentrated in-vacuo. Purification of crude product via a silica gel column chromatography (9:1 Hexanes/EtOAc) provided the desired 3-methoxy carbazole 36 ($15 \mathrm{mg}, 0.032 \mathrm{mmol}$, 95\%) as yellowish white waxy solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=11.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.09(\mathrm{~m}, 2 \mathrm{H}), 2.37$ $(\mathrm{s}, 3 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.25(\mathrm{~m}, 26 \mathrm{H})$ and $0.88(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.3,142.4,134.8,125.8,125.1,124.7,123.2,121.8,119.5$, $118.4,108.8,99.1,56.3,32.8,32.1,31.8,31.7,30.1,29.8,29.7,29.5,28.8,22.8,14.3$ and 12.1 ppm .

IR (ATR): 2929, 2853, 1646, 1451, 1426, 1269, 1221, 1108, 1015, 836, 813 and $735 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M+H] ${ }^{+}$Calcd. for $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{NO} 464.3887$; found 464.3881.
TLC: $\mathrm{R}_{\mathrm{f}}=0.17$ (Hexanes).

1-heptadecyl-2,9-dimethyl-9H-carbazol-3-ol [N-methyl Lipocarbazole A4] (32)

To a stirred solution of $\mathbf{3 6}\left(7 \mathrm{mg}, 0.015 \mathrm{mmol}, 1.0\right.$ equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$, was added a 1 M solution of BBr_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.06 \mathrm{~mL}, 0.06 \mathrm{mmol}, 4$ equiv.) dropwise. The mixture was then allowed to warm up to room temperature and stirred for further 4.5 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic layer was separated, and the residual compound from aqueous layer was extracted with $\mathrm{EtOAc}(3 \times 3 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in-vacuo. Purification of crude product via a silica gel column chromatography (7:1 Hexanes/EtOAc) provided the desired N-methyl Lipocarbazole A4 $32(6.6 \mathrm{mg}, 0.015 \mathrm{mmol}, 97 \%$ yield) as a white semi-solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.39$ $(\mathrm{s}, 3 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.25(\mathrm{~m}, 26 \mathrm{H})$ and $0.88(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 147.8,142.7,135.1,125.7,125.4,122.8,122.4,119.7,118.5$, $108.8,103.1,32.8,32.1,31.7,30.1,29.8,29.7,29.5,28.7,22.8,14.3$ and 12.1 ppm .
IR (ATR): 3321, 2921, 2852, 2386, 1459, 12936, 1235, 1067 and $733 \mathrm{~cm}^{-1}$.

HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{NO} 449.3658$; found 449.3638 .
TLC: $\mathrm{R}_{\mathrm{f}}=0.4$ (9:1 Hexanes/EtOAc).

E. Experimental procedures and characterization data for the synthesis of substrates.

(i) General procedure 3: Procedure for Sonogashira reaction

To a solution of the corresponding (Z)-3-iodo-acrylate ${ }^{4}$ (1.0 equiv.) and the terminal alkyne S1-14 (1.0 equiv.) in tetrahydrofuran (THF) were added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(1.3 \mathrm{~mol} \%)$ and copper iodide (CuI) ($10 \mathrm{~mol} \%$) followed by addition of triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)(0.5 \mathrm{~mL} / \mathrm{mmol})$. The resulting mixture was stirred at room temperature until the TLC showed complete consumption of the (Z)-3-iodo-acrylate. After completion, the reaction was quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The residual compound from aqueous layer was extracted with EtOAc (3 times). The combined organic layers were dried over anhydrous sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in-vacuo. Purification of crude product via a silica gel column chromatography (Hexanes/EtOAc) provided the desired propargyl alcohols 5a-j and 18a-d.

Ethyl (Z)-6-hydroxy-6-methyl-8-(1-methyl-1H-indol-3-yl)oct-2-en-4-ynoate (5a)

According to the General Procedure 3, (Z)-3-iodo-acrylate ${ }^{4}$ ($226 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), 3-methyl-5-(1-methyl-1H-indol-3-yl)pent-1-yn-3-ol S1 ${ }^{5}$ ($227 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), CuI $(19 \mathrm{mg}, 0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(9 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.3 \mathrm{~mol} \%)$ and 0.5 mL of triethylamine were used in 15 mL THF, affording the desired propargylic alcohol $\mathbf{5 a}$ as brown oil ($305.9 \mathrm{mg}, 0.94 \mathrm{mmol}, 94 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.15-2.89(\mathrm{~m}, 3 \mathrm{H}), 2.22-2.07(\mathrm{~m}, 2 \mathrm{H})$, $1.63(\mathrm{~s}, 3 \mathrm{H})$ and $1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.8,137.2,128.8,127.9,126.2,122.9,121.6,119.2,118.7$, 114.7, 109.2, 105.5, 80.6, 68.9, 60.6, 44.0, 32.7, 29.7, 20.5 and 14.39 ppm.

IR (ATR): 3434, 2979, 2930, 1710, 1610, 1474, 1375, 1183, 1124, 1021, 818 and $741 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3}$ 325.1678; found 325.1625.
TLC: $\mathrm{R}_{\mathrm{f}}=0.18$ (4:1 Hexanes/EtOAc).

Ethyl (Z)-8-(1-butyl-1H-indol-3-yl)-6-hydroxy-6-methyloct-2-en-4-ynoate (5b)

According to the General Procedure 3, (Z)-3-iodo-acrylate ${ }^{4}$ ($226 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), 5-(1-butyl-1H-indol-3-yl)-3-methylpent-1-yn-3-ol S2 ($269 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), CuI (19 $\mathrm{mg}, 0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(9 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.3 \mathrm{~mol} \%)$ and 0.5 mL of triethylamine were used in 15 mL THF, affording the desired propargylic alcohol $\mathbf{5 b}$ as brown oil ($334.4 \mathrm{mg}, 0.91 \mathrm{mmol}, 91 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 3.13-2.96(\mathrm{~m}$, $2 \mathrm{H}), 2.22-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.26(\mathrm{~m}, 5 \mathrm{H})$ and $0.92(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 164.8,136.5,128.7,128.0,125.1,122.9,121.4,119.3,118.5$, $114.5,109.4,105.6,80.6,68.9,60.6,45.9,43.9,32.5,29.7,20.6,20.3,14.4$ and 13.8 ppm .
IR (ATR): 3438, 2931, 2867, 1713, 1610, 1462, 1405, 1372, 1188, 1091, 818 and $742 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{3} 367.2147$; found 367.2112.
TLC: $\mathrm{R}_{\mathrm{f}}=0.2$ (4:1 Hexanes/EtOAc).

Ethyl (Z)-8-(6-butyl-1-methyl-1H-indol-3-yl)-6-hydroxy-6-methyloct-2-en-4-ynoate (5c)

According to the General Procedure 3, (Z)-3-iodo-acrylate ${ }^{4}$ ($226 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), 5-(6-butyl-1-methyl- 1 H -indol-3-yl)-3-methylpent-1-yn-3-ol $\mathbf{S 3}$ ($283.4 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{CuI}(19 \mathrm{mg}, 0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(9 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.3 \mathrm{~mol} \%)$ and 0.5 mL of triethylamine were used in 15 mL THF, affording the desired propargylic alcohol $\mathbf{5 c}$ as brown oil ($328 \mathrm{mg}, 0.86 \mathrm{mmol}, 86 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}$, 2H), $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.11-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 2.76-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.07(\mathrm{~m}$, $2 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.39(\mathrm{dt}, J=14.9,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$ and $0.94(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.8,137.5,136.8,128.7,126.0,125.7,122.9,119.9,118.9$, $114.5,108.6,105.5,80.6,69.0,60.6,44.0,36.3,34.6,32.6,29.7,22.6,20.6,14.4$ and 14.2 ppm.
IR (ATR): 3438, 2929, 2863, 1714, 1613, 1469, 1412, 1378, 1329, 1187, 1026 and $813 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{3} 381.2304$; found 381.2260.
TLC: $\mathrm{R}_{\mathrm{f}}=0.2$ (4:1 Hexanes/EtOAc).

Ethyl (Z)-8-(1-decyl-1H-indol-3-yl)-6-hydroxy-6-methyloct-2-en-4-ynoate (5d)

According to the General Procedure 3, (Z)-3-iodo-acrylate ${ }^{4}$ ($226 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), 5-(1-decyl-1 H -indol-3-yl)-3-methylpent-1-yn-3-ol $\mathbf{S 4}$ ($353.5 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), CuI $(19 \mathrm{mg}, 0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(9 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.3 \mathrm{~mol} \%)$ and 0.5 mL of triethylamine were used in 15 mL THF, affording the desired propargylic alcohol 5d as brown oil ($383.9 \mathrm{mg}, 0.85 \mathrm{mmol}, 85 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 3.13-2.96(\mathrm{~m}$, $2 \mathrm{H}), 2.23-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 17 \mathrm{H})$ and $0.87(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 164.8,136.5,128.6,128.0,125.1,123.0,121.4,119.3,118.5$, $114.6,109.3,105.7,80.5,68.8,60.6,46.2,43.9,31.9,30.4,29.6,29.62$, 29.59, 29.4, 27.1, $22.8,20.5,14.3$ and 14.2 ppm .
IR (ATR): 3436, 2928, 2870, 1711, 1608, 1466, 1403, 1376, 1193, 1090, 816 and $740 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{NO}_{3} 452.3159$; found 452.3151.
TLC: $\mathrm{R}_{\mathrm{f}}=0.3$ (4:1 Hexanes/EtOAc).
Ethyl (Z)-8-(5-chloro-1-methyl-1H-indol-3-yl)-6-hydroxy-6-methyloct-2-en-4-ynoate (5e)

According to the General Procedure 3, (Z)-3-iodo-acrylate ${ }^{4}$ ($226 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), 5-(1-decyl-1H-indol-3-yl)-3-methylpent-1-yn-3-ol S5 ($262 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), CuI (19 $\mathrm{mg}, 0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(9 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.3 \mathrm{~mol} \%)$ and 0.5 mL of triethylamine were used in 15 mL THF, affording the desired propargylic alcohol $\mathbf{5 e}$ as brown oil ($341.8 \mathrm{mg}, 0.95 \mathrm{mmol}, 95 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~d}, \mathrm{~J}=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.26$ (br-s, $1 \mathrm{H}), 3.09-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H})$ and $1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.8,135.6,129.0,128.8,127.5,124.5,122.9,121.8,118.7$, $114.5,110.2,105.2,68.8,60.7,44.0,32.8,29.7,20.3$ and 14.4 ppm .

IR (ATR): 2980, 2931, 2379, 2350, 1709, 1610, 1478, 1422, 1218, 1186, 821 and $793 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ClNO}_{3} 360.1361$; found 360.1348.
TLC: $\mathrm{R}_{\mathrm{f}}=0.2$ (4:1 Hexanes/EtOAc).
Ethyl (Z)-8-(5-bromo-1-methyl-1H-indol-3-yl)-6-hydroxy-6-methyloct-2-en-4-ynoate (5f)

According to the General Procedure 3, (Z)-3-iodo-acrylate ${ }^{4}$ ($226 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), 5-(5-bromo-1-methyl-1H-indol-3-yl)-3-methylpent-1-yn-3-ol $\mathbf{S 6}^{5}$ ($306 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{CuI}(19 \mathrm{mg}, 0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(9 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.3 \mathrm{~mol} \%)$ and 0.5 mL of triethylamine were used in 15 mL THF, affording the desired propargylic alcohol 5 as brown oil ($384 \mathrm{mg}, 0.95 \mathrm{mmol}, 95 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 3.09-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.63$ ($\mathrm{s}, 3 \mathrm{H}$) and $1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.8,135.7,129.6,128.7,127.3,124.3,123.0,121.8,114.5$, $112.1,110.7,105.4,80.6,68.7,60.7,43.9,32.7,29.7,20.3$ and 14.3 ppm .

IR (ATR): 2927, 2861, 1712, 1611, 1476, 1377, 1293, 1187, 1093, 1032, 932 and $786 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrNO}_{3}$ 404.0856; found 404.0845.
TLC: $\mathrm{R}_{\mathrm{f}}=0.4$ (2:1 Hexanes/EtOAc).
Ethyl (Z)-6-hydroxy-8-(5-methoxy-1-methyl-1H-indol-3-yl)-6-methyloct-2-en-4-ynoate (5g)

According to the General Procedure 3, (Z)-3-iodo-acrylate ${ }^{4}$ ($226 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), 5-(5-methoxy-1-methyl-1H-indol-3-yl)-3-methylpent-1-yn-3-ol S7 ${ }^{5}$ ($257 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{CuI}(19 \mathrm{mg}, 0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(9 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.3 \mathrm{~mol} \%)$ and
0.5 mL of triethylamine were used in 15 mL THF, affording the desired propargylic alcohol $\mathbf{5 g}$ as brown oil ($291.5 \mathrm{mg}, 0.82 \mathrm{mmol}, 82 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (dd, J $=8.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 3.09-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.07$ $(\mathrm{m}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H})$ and $1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.8,153.7,132.6,128.6,128.1,126.8,123.0,114.1,111.7$, $109.9,105.7,101.2,80.5,68.8,60.6,56.1,43.7,32.8,29.7,20.5$ and 14.3 ppm.

IR (ATR): 2927, 1713, 1614, 1491, 1456, 1297, 1223, 1184, 1030, 765 and $730 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4}$ 355.1784; found 355.1748.
TLC: $\mathrm{R}_{\mathrm{f}}=0.2$ (4:1 Hexanes/EtOAc).

Ethyl (Z)-6-hydroxy-8-(4-methoxy-1-methyl-1H-indol-3-yl)-6-methyloct-2-en-4-ynoate

 (5h)

According to the General Procedure 3, (Z)-3-iodo-acrylate ${ }^{4}$ ($226 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), 5-(4-methoxy-1-methyl-1 H -indol-3-yl)-3-methylpent-1-yn-3-ol $\mathbf{S 8}$ ($257 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{CuI}(19 \mathrm{mg}, 0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(9 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.3 \mathrm{~mol} \%)$ and 0.5 mL of triethylamine were used in 15 mL THF, affording the desired propargylic alcohol $\mathbf{5 h}$ as brown oil ($312.8 \mathrm{mg}, 0.88 \mathrm{mmol}, 88 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.09(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H})$, $6.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.89 (s, 3H), $3.66(\mathrm{~s}, 3 \mathrm{H}), 3.14-3.07(\mathrm{~m}, 2 \mathrm{H}), 3.01$ (br-s, 1H), $2.17-2.11$ (m, 2H), $1.61(\mathrm{~s}, 3 \mathrm{H})$ and $1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.8,154.8,139.0,128.4,125.3,123.0,122.4,117.7,115.1$, 106.0, 102.7, 99.0, 80.3, 68.9, 60.6, 55.2, 45.5, 32.8, 29.4, 22.2 and 14.4 ppm .

IR (ATR): 3443, 2979, 2936, 1711, 1610, 1496, 1462, 1256, 1184, 1091, 1026 and $732 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] Calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4}$ 355.1784; found 355.1732.
TLC: $\mathrm{R}_{\mathrm{f}}=0.17$ (4:1 Hexanes/EtOAc).
Ethyl (Z)-6-(2-(1-allyl-4-(allyloxy)-1H-indol-3-yl)ethyl)-6-hydroxydec-2-en-4-ynoate (5i)

According to the General Procedure 3, (Z)-3-iodo-acrylate ${ }^{4}$ ($226 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), 3-(2-(1-allyl-4-(allyloxy)-1H-indol-3-yl)ethyl)hept-1-yn-3-ol $\mathbf{S 9}$ ($351.5 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{CuI}(19 \mathrm{mg}, 0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(9 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.3 \mathrm{~mol} \%)$ and 0.5 mL of triethylamine were used in 15 mL THF, affording the desired propargylic alcohol $5 \mathbf{i}$ as brown oil ($337 \mathrm{mg}, 0.75 \mathrm{mmol}, 75 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.03(\mathrm{dd}, J=18.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.20-6.09(\mathrm{~m}, 2 \mathrm{H}), 6.05(\mathrm{dd}, J=11.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{ddt}, J=15.7$, $10.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{dd}, J=17.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dd}, J=10.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J$ $=10.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=16.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{~d}, J=5.3$ $\mathrm{Hz}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{dd}, J=8.7,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.76$ (br-s, 1H), $2.20-2.08$ $(\mathrm{m}, 2 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{dd}, J=14.7,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H})$ and $0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 164.7,153.8,138.5,133.9,133.7,128.3,124.3,122.9,122.3$, $118.0,117.4,117.1,115.8,105.4,103.1,100.3,81.3,72.1,68.9,60.5,48.8,43.6,41.8,26.4$, 23.0, 21.9, 14.4 and 14.1 ppm .

IR (ATR): 2955, 2920, 1710, 1609, 1496, 1257, 1233, 1181, 1028, 992, 921 and $731 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NO}_{4} 449.2566$; found 449.2464 .
TLC: $\mathrm{R}_{\mathrm{f}}=0.25$ ($6: 1$ Hexanes/EtOAc).

Ethyl (Z)-6-hydroxy-6-(2-(5-methoxy-1-methyl-1H-indol-3-yl)ethyl)-8-methylnon-2-en-4-ynoate (5j)

According to the General Procedure 3, (Z)-3-iodo-acrylate ${ }^{4}$ ($226 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), 3-(2-(5-methoxy-1-methyl-1 H -indol-3-yl)ethyl)-5-methylhex-1-yn-3-ol $\quad \mathbf{S 1 0} \quad$ (299 mg, 1 $\mathrm{mmol}, 1.0$ equiv. $)$, $\mathrm{CuI}(19 \mathrm{mg}, 0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(9 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.3$ $\mathrm{mol} \%$) and 0.5 mL of triethylamine were used in 15 mL THF, affording the desired propargylic alcohol $\mathbf{5 j}$ as brown oil ($318 \mathrm{mg}, 0.80 \mathrm{mmol}, 80 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J$ $=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.10-2.84(\mathrm{~m}, 3 \mathrm{H}), 2.14-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.77-$ $1.67(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$ and $1.06-1.02(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 164.7,153.7,132.6,128.6,128.1,126.8,122.8,114.2,111.8$, $109.9,105.3,101.2,82.0,71.9,60.5,56.1,50.3,43.2,32.8,24.9,24.4,24.3,20.1$ and 14.3 ppm.

IR (ATR): 2951, 2921, 1709, 1611, 1491, 1454, 1224, 1178, 1035, 792 and $736 \mathrm{~cm}^{-1}$.

HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{4} 397.2253$; found 397.2208.
TLC: $\mathrm{R}_{\mathrm{f}}=0.25$ (4:1 Hexanes/EtOAc).

Ethyl (E)-6-hydroxy-6-methyl-8-(1-methyl-1H-indol-3-yl)oct-2-en-4-ynoate (5a-E)

According to the General Procedure 3, ethyl (E)-3-iodoacrylate $\mathbf{S 3 7}$ ($226 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), 3-methyl-5-(1-methyl-1 H-indol-3-yl)pent-1-yn-3-ol $\mathbf{S 1}^{5} \quad(227 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{CuI}(19 \mathrm{mg}, 0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(9 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.3 \mathrm{~mol} \%)$ and 0.5 mL of triethylamine were used in 15 mL THF, affording the desired propargylic alcohol 5a- \boldsymbol{E} as brown oil ($305.9 \mathrm{mg}, 0.94 \mathrm{mmol}, 94 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.23(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.06-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 2.18-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.58$ $(\mathrm{s}, 3 \mathrm{H})$ and $1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ppm.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0,137.2,130.6,127.8,126.1,124.9,121.72,121.68$, $119.0,118.8,114.2,109.3,102.2,80.6,68.8,60.9,43.9,32.6,29.7,20.5$ and 14.3 ppm.

IR (ATR): 3434, 2978, 2929, 1708, 1612, 1469, 1375, 1185, 1117, 1024, 821 and $736 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3} 325.1678$; found 325.1639.
TLC: $\mathrm{R}_{\mathrm{f}}=0.2$ (4:1 Hexanes/EtOAc).
1-ethyl 6,6-dimethyl (Z)-7-(1-methyl-1H-indol-3-yl)hept-1-en-3-yne-1,6,6-tricarboxylate (16)

According to the General Procedure 3, (Z)-3-iodo-acrylate ${ }^{4}$ ($226 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), dimethyl 2-((1-methyl-1H-indol-3-yl)methyl)-2-(prop-2-yn-1-yl)malonate $\mathbf{S 1 1}$ ($313 \mathrm{mg}, 1$ $\mathrm{mmol}, 1.0$ equiv. $)$, $\mathrm{CuI}(19 \mathrm{mg}, 0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(9 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.3$ $\mathrm{mol} \%$) and 0.5 mL of triethylamine were used in 15 mL THF, affording the desired propargylic alcohol 16 as brown oil ($329 \mathrm{mg}, 0.8 \mathrm{mmol}, 80 \%$) by using Hexane/EtOAc (9:1) as eluent.
${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.17(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$
$(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 2 \mathrm{H})$ and $1.29(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,164.6,136.8,128.8,128.5,123.0,121.5,119.0,119.0$, $109.25,107.7,98.2,80.6,60.4,58.3,52.9,32.8,27.7,24.4$ and 14.3 ppm .

IR (ATR): 2952, 1736, 1722, 1612, 1473, 1436, 1288, 1178, 1065, 1041, 819 and $741 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NNaO}_{6}$ 434.1574; found 434.1570.
TLC: $\mathrm{R}_{\mathrm{f}}=0.4$ (4:1 Hexanes/EtOAc).
Ethyl (Z)-6-hydroxy-6-methyl-8-(1-tosyl-1H-indol-3-yl)oct-2-en-4-ynoate (18a)

According to the General Procedure 3, (Z)-3-iodo-acrylate ${ }^{4}$ ($226 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), 3-methyl-5-(1-tosyl-1H-indol-3-yl)pent-1-yn-3-ol $\mathbf{S 1 2}$ ($367.4 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), CuI $(19 \mathrm{mg}, 0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%), \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(9 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.3 \mathrm{~mol} \%)$ and 0.5 mL of triethylamine were used in 15 mL THF, affording the desired propargylic alcohol 18a as brown oil ($372.5 \mathrm{mg}, 0.80 \mathrm{mmol}, 80 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=12.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J$ $=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 3.05-$ $2.90(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 1 \mathrm{H}), 2.16-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 1 \mathrm{H})$ and $1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 164.8,144.8,135.4,131.2,129.8,128.9,126.8,124.7$, 123.1, $123.0,122.9,122.7,119.7,113.8,105.0,80.7,68.5,60.7,42.6,29.8,21.6,20.4$ and 14.3 ppm.

IR (ATR): 2927, 1711, 1610, 1489, 1253, 1224, 1176, 1041, 995, 911 and $734 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ 483.1948; found 483.1936.
TLC: $\mathrm{R}_{\mathrm{f}}=0.2$ (4:1 Hexanes/EtOAc).
Ethyl (Z)-6-hydroxy-8-(5-methoxy-1-tosyl-1H-indol-3-yl)-6-methyloct-2-en-4-ynoate (18b)

According to the General Procedure 3, (Z)-3-iodo-acrylate ${ }^{4}$ ($226 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), 5-(5-methoxy-1-tosyl-1 H-indol-3-yl)-3-methylpent-1-yn-3-ol S13 (397.5 mg, $1 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{CuI}(19 \mathrm{mg}, 0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(9 \mathrm{mg}, 0.013 \mathrm{mmol}, 1.3 \mathrm{~mol} \%)$ and
0.5 mL of triethylamine were used in 15 mL THF, affording the desired propargylic alcohol $\mathbf{1 8 b}$ as brown oil ($406.4 \mathrm{mg}, 0.82 \mathrm{mmol}, 82 \%$) by using Hexane/EtOAc ($4: 1$) as eluent.
${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~s}$, $1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~d}$, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.21$ (br-s, $1 \mathrm{H}), 3.00-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.16-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H})$ and $1.27(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.8,156.4,144.7,135.4,132.2,130.2,129.8,129.0,126.8$, $123.5,123.2,122.8,114.7,113.4,104.9,102.5,80.8,68.5,60.7,55.8,42.4,29.8,21.6,20.4$ and 14.3 ppm .

IR (ATR): 2924, 2360, 2340, 1708, 1611, 1474, 1367, 1216, 1170, 1119, 812 and $735 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M+NH4] ${ }^{+}$Calcd. for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ 513.2054; found 513.2034.
TLC: $\mathrm{R}_{\mathrm{f}}=0.15$ (4:1 Hexanes/EtOAc).
Ethyl (Z)-8-(5-bromo-1-tosyl-1H-indol-3-yl)-6-hydroxy-6-methyloct-2-en-4-ynoate (18c)

According to the General Procedure 3, (Z)-3-iodo-acrylate ${ }^{4}$ ($226 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), ethyl (Z)-8-(5-bromo-1-tosyl-1 H -indol-3-yl)-6-hydroxy-6-methyloct-2-en-4-ynoate S14 (445 $\mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{CuI}(19 \mathrm{mg}, 0.1 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(9 \mathrm{mg}, 0.013 \mathrm{mmol}$, $1.3 \mathrm{~mol} \%$) and 0.5 mL of triethylamine were used in 15 mL THF , affording the desired propargylic alcohol 18c as brown oil ($477.9 \mathrm{mg}, 0.88 \mathrm{mmol}, 88 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J=$ $5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 3.03-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.00(\mathrm{~m}$, $2 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H})$ and $1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 164.8,145.1,135.2,134.1,133.0,130.0,129.1,127.6,126.8$, $123.9,122.8,122.6,116.7,115.2,104.7,80.8,68.4,60.8,42.5,29.8,21.6,20.2$ and 14.3 ppm.
IR (ATR): 2929, 2360, 2335, 1716, 1611, 1443, 1371, 1293, 1188, 1173 and $736 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{~S}$ 561.1053; found 561.1049.
TLC: $\mathrm{R}_{\mathrm{f}}=0.22$ (4:1 Hexanes/EtOAc).

Ethyl (Z)-6-hydroxy-6-(2-(1-(phenylsulfonyl)-1H-indol-3-yl)ethyl)dec-2-en-4-ynoate (18d)

According to the General Procedure 3, (Z)-3-iodo-acrylate ${ }^{4}$ ($56.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ equiv.), 3-(2-(1-(phenylsulfonyl)-1H-indol-3-yl)ethyl)hept-1-yn-3-ol S15 ($99 \mathrm{mg}, 0.25 \mathrm{mmol}$, 1.0 equiv.), $\mathrm{CuI}(4.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(2.3 \mathrm{mg}, 0.003 \mathrm{mmol}, 1.3 \mathrm{~mol}$ $\%$) and 0.13 mL of triethylamine were used in 7 mL THF, affording the desired propargylic alcohol 18 d as brown oil ($111 \mathrm{mg}, 0.22 \mathrm{mmol}, 90 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} H \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=13.6,6.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.30(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.05-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.59$ $-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{dq}, J=14.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$ and $0.93(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 164.7,138.5,135.5,133.7,131.2,129.3,129.1,126.8,124.8$, $123.5,123.2,122.7,122.6,119.9,113.8,104.2,81.9,71.8,60.6,42.1,41.0,26.5,23.0,20.1$, 14.4 and 14.2 ppm .

IR (ATR): 2955, 2926, 1709, 1447, 1369, 1175, 1120, 781 and $724 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{~S}$ 493.1923; found 493.1884.
TLC: $\mathrm{R}_{\mathrm{f}}=0.2$ (4:1 Hexanes/EtOAc).
(ii) General procedure 4: Preparation of the terminal propargylic alcohols

To the stirred solution of appropriate ketone $\mathbf{S 1 7 - 2 0}$, $\mathbf{S 2 3 - 2 5}$ and $\mathbf{S 2 7 - 3 0}$ (1.0 equiv.) in anhydrous THF was added ethynyl magnesium bromide (2.0 equiv., 0.5 M in THF) dropwise at $0{ }^{\circ} \mathrm{C}$ under nitrogen. The mixture was stirred at same temperature for 2 h . The reaction mixture was then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The residual compound from aqueous layer was extracted with EtOAc (3 times). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in-vacuo. Purification of crude product via silica gel column chromatography (Hexanes/EA) provided the desired propargyl alcohol S2-5, S8-10, and S12-15.

5-(1-butyl-1H-indol-3-yl)-3-methylpent-1-yn-3-ol (S2)

According to the General Procedure 4, 4-(1-butyl-1H-indol-3-yl)butan-2-one S17 (243 mg, $1 \mathrm{mmol}, 1.0$ equiv.) was reacted with ethynyl magnesium bromide ($4 \mathrm{~mL}, 2.0 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF) in 15 mL anhydrous THF to afford the desired propargylic alcohol $\mathbf{S} 2$ as colorless oil ($237 \mathrm{mg}, 0.88 \mathrm{mmol}, 88 \%$) by using Hexane/EtOAc ($4: 1$) as eluent.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.16$ $(\mathrm{m}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.07-2.93(\mathrm{~m}, 2 \mathrm{H})$, $2.51(\mathrm{~s}, 1 \mathrm{H}), 2.25(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 2.15-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{dt}$, $J=15.1,7.5 \mathrm{~Hz}, 2 \mathrm{H})$ and $0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 136.5,127.9,125.1,121.5,119.1,118.7,114.3,109.5,87.7$, $71.8,68.3,46.0,43.9,32.5,30.0,20.5,20.3$ and 13.8 ppm .
IR (ATR): 2929, 2861, 1618, 1468, 1372, 1330, 1245, 1182, 1094, 908 and $739 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}$ 269.1780; found 269.1765 .
TLC: $\mathrm{R}_{\mathrm{f}}=0.5$ (4:1 Hexanes/EtOAc).

5-(6-butyl-1-methyl-1H-indol-3-yl)-3-methylpent-1-yn-3-ol (S3)

According to the General Procedure 4, 4-(6-butyl-1-methyl-1H-indol-3-yl)butan-2-one S18 $(257 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.) was reacted with ethynyl magnesium bromide ($4 \mathrm{~mL}, 2.0$ mmol, 0.5 M in THF) in 15 mL anhydrous THF to afford the desired propargylic alcohol S3 as colorless oil ($252 \mathrm{mg}, 0.89 \mathrm{mmol}, 89 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.04-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 1 \mathrm{H})$, $2.34-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.13-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{dt}, J=$ $14.9,7.3 \mathrm{~Hz}, 2 \mathrm{H})$ and $0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.5,136.8,125.9,125.6,120.0,118.7,114.2,108.7,87.7$, $71.8,68.3,44.0,36.3,34.5,32.5,30.0,22.6,20.5$ and 14.1 ppm .
IR (ATR): 2927, 2862, 1619, 1469, 1375, 1328, 1241, 1180, 1093, 905 and $800 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}$ 283.1936; found 283.1919.
TLC: $\mathrm{R}_{\mathrm{f}}=0.23$ ($4: 1$ Hexanes/EtOAc).

5-(1-decyl-1H-indol-3-yl)-3-methylpent-1-yn-3-ol (S4)

According to the General Procedure 4, 4-(1-decyl-1H-indol-3-yl)butan-2-one S19 (327.5 $\mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.) was reacted with ethynyl magnesium bromide ($4 \mathrm{~mL}, 2.0 \mathrm{mmol}, 0.5$ M in THF) in 15 mL anhydrous THF to afford the desired propargylic alcohol $\mathbf{S 4}$ as colorless oil ($289.9 \mathrm{mg}, 0.82 \mathrm{mmol}, 82 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.07-2.94(\mathrm{~m}$, $2 \mathrm{H}), 2.52(\mathrm{~s}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 1 \mathrm{H}), 2.13-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.30-$ $1.23(\mathrm{~m}, 14 \mathrm{H})$ and $0.88(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) δ 136.5, 127.9, 125.1, 121.5, 119.2, 118.7, 114.3, 109.5, 87.7, $71.8,68.4,46.3,43.9,32.0,30.4,30.0,29.6,29.6,29.4,27.2,22.8,20.5$ and 14.2 ppm .
IR (ATR): 2923, 2852, 2359, 2340, 1468, 1370, 1333 and $737 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{NO} 353.2719$; found 353.2682.
TLC: $\mathrm{R}_{\mathrm{f}}=0.6$ (4:1 Hexanes/EtOAc).
5-(5-chloro-1-methyl-1H-indol-3-yl)-3-methylpent-1-yn-3-ol (S5)

According to the General Procedure 4, 4-(5-chloro-1-methyl-1H-indol-3-yl)butan-2-one $\mathbf{S 2 0}{ }^{6}$ ($235 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.) was reacted with ethynyl magnesium bromide ($4 \mathrm{~mL}, 2.0$ mmol, 0.5 M in THF) in 15 mL anhydrous THF to afford the desired propargylic alcohol S5 as colorless oil ($220 \mathrm{mg}, 0.84 \mathrm{mmol}, 84 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H})$, $3.00-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 1 \mathrm{H}), 2.09-1.96(\mathrm{~m}, 2 \mathrm{H})$ and $1.56(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.5,128.8,127.4,124.6,121.9,118.5,114.2,110.3,87.5$, $72.0,68.2,43.8,32.8,30.0$ and 20.3 ppm .
IR (ATR): 2923, 2852, 2359, 2340, 1468, 1370, 1333 and $737 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrNO}$ 305.0415; found 305.0385.
TLC: $\mathrm{R}_{\mathrm{f}}=0.3$ (4:1 Hexanes/EtOAc).

5-(4-methoxy-1-methyl-1H-indol-3-yl)-3-methylpent-1-yn-3-ol (S8)

According to the General Procedure 4, 4-(4-methoxy-1-methyl-1H-indol-3-yl)butan-2-one $\mathbf{S 2 3}$ ($231 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.) was reacted with ethynyl magnesium bromide ($4 \mathrm{~mL}, 2.0$ mmol, 0.5 M in THF) in 15 mL anhydrous THF to afford the desired propargylic alcohol S8 as colorless oil ($203 \mathrm{mg}, 0.79 \mathrm{mmol}, 79 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.11(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H})$, $6.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{dd}, J=9.5,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~s}$, $1 \mathrm{H}), 2.32(\mathrm{~s}, 1 \mathrm{H}), 2.10-2.05(\mathrm{~m}, 2 \mathrm{H})$ and $1.56(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.8$, 139.1, 125.1, 122.5, 117.6, 115.1, 102. 8, 99.1, 88.0, 71.3, 68.4, 55.2, 45.6, 32.9, 29.9 and 22.2 ppm .

IR (ATR): 2934, 1577, 1499, 1461, 1325, 1258, 1090, 909 and $733 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$ 257.1416; found 257.1408.
TLC: $\mathrm{R}_{\mathrm{f}}=0.28$ (4:1 Hexanes/EtOAc).

3-(2-(1-allyl-4-(allyloxy)-1H-indol-3-yl)ethyl)hept-1-yn-3-ol (S9)

According to the General Procedure 4, 1-(1-allyl-4-(allyloxy)-1H-indol-3-yl)heptan-3-one S24 ($325.4 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.) was reacted with ethynyl magnesium bromide ($4 \mathrm{~mL}, 2.0$ mmol, $0.5 M$ in THF) in 15 mL anhydrous THF to afford the desired propargylic alcohol S9 as colorless oil ($291.7 \mathrm{mg}, 0.83 \mathrm{mmol}, 83 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.05(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H})$, 6.46 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.16 (dtd, $J=15.9,10.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.93$ (dtd, $J=15.6,10.5,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=10.2,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.05(\mathrm{dd}, J=17.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=4.0,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.20-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 1 \mathrm{H}), 2.14-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.56$ $-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 2 \mathrm{H})$ and $0.93(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.8,138.5,134.0,133.7,124.2,122.4,117.9,117.5,117.1$, 115.7, 103.2, 100.3, 87.2, 72.4, 71.4, 68.9, 48.8, 43.8, 42.0, 26.4, 23.0, 21.9 and 14.2 ppm .

IR (ATR): 2924, 2861, 1610, 1578, 1496, 1454, 1328, 1234, 1058, 991, 920 and $727 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{2} 351.2198$; found 351.2185.

TLC: $\mathrm{R}_{\mathrm{f}}=0.3$ (9:1 Hexanes/EtOAc).

3-(2-(5-methoxy-1-methyl-1H-indol-3-yl)ethyl)-5-methylhex-1-yn-3-ol (S10)

According to the General Procedure 4, 1-(5-methoxy-1-methyl-1H-indol-3-yl)-5-methylhexan-3-one $\mathbf{S} \mathbf{2 5}$ ($273 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.) was reacted with ethynyl magnesium bromide ($4 \mathrm{~mL}, 2.0 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF) in 15 mL anhydrous THF to afford the desired propargylic alcohol S10 as colorless oil ($182.6 \mathrm{mg}, 0.61 \mathrm{mmol}, 61 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J$ $=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.03-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 1 \mathrm{H})$, $2.14(\mathrm{~s}, 1 \mathrm{H}), 2.09-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 3 \mathrm{H})$ and $1.02(\mathrm{~d}, J$ $=3.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 153.7, 132.7, 128.1, 126.8, 114.0, 111.9, 110.1, 101.1, 87.1, $73.2,71.5,56.1,50.5,43.2,32.8,25.0,24.5,24.3$ and 20.1 ppm .
IR (ATR): 2951, 2920, 1491, 1454, 1423, 1222, 1174, 1062, 1037, 1037, 899 and $793 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{2}$ 299.1885; found 299.1850.
TLC: $\mathrm{R}_{\mathrm{f}}=0.2$ (9:1 Hexanes/EtOAc).
Procedure for synthesis of dimethyl 2-((1-methyl-1H-indol-3-yl)methyl)-2-(prop-2-yn-1yl)malonate (S11)

To the stirred solution of dimethyl 2-((1-methyl-1H-indol-3-yl)methyl)malonate $\mathbf{S 2 6}^{7}$ (370 $\mathrm{mg}, 1.35 \mathrm{mmol}$, 1.0 equiv.) in anhydrous DMF (7 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.01 \mathrm{~g}, 7.8 \mathrm{mmol}$, 6.0 equiv.) at room temperature under nitrogen atmosphere. The reaction mixture was stirred for 10 mins followed by sequential addition of propargyl bromide $(0.23 \mathrm{~mL}, 2.43 \mathrm{mmol}, 1.8$ equiv., $80 \% \mathrm{w} / \mathrm{w}$ in toluene) and $\mathrm{NaI}(40.5 \mathrm{mg}, 0.27 \mathrm{mmol}, 0.2$ equiv.). The reaction mixture was stirred at same temperature until the TLC showed complete consumption of the starting material. After completion, the reaction was quenched by addition of water. The residual compound from aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine (3 times), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in-vacuo. Purification of crude product via a silica gel column chromatography by using Hexane/EtOAc (9:1) as eluent provided the desired terminal alkyne S11 (397.6 mg , $1.27 \mathrm{mmol}, 94 \%)$ as a brownish-yellow oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 3.72-3.67(\mathrm{~m}, 9 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 2.83-$ $2.76(\mathrm{~m}, 2 \mathrm{H})$ and $2.20-2.13(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.5,136.7,128.5,128.2,121.6,119.1,118.9,109.2,107.8$, $79.8,72.0,58.3,52.8,32.7,27.4$ and 22.8 ppm .

IR (ATR): 3287, 2952, 1733, 1473, 1436, 1325, 1290, 1200, 1181, 1058, 855 and $736 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4}$ 313.1314; found 313.1306.
TLC: $\mathbf{R}_{\mathrm{f}}=0.65$ (4:1 Hexanes/EtOAc).
3-methyl-5-(1-tosyl-1H-indol-3-yl)pent-1-yn-3-ol (S12)

According to the General Procedure 4, 4-(1-tosyl-1 H -indol-3-yl)butan-2-one $\mathbf{S 2 7}^{8}$ (341.5 $\mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.) was reacted with ethynyl magnesium bromide ($4 \mathrm{~mL}, 2.0 \mathrm{mmol}, 0.5$ M in THF) in 15 mL anhydrous THF to afford the desired propargylic alcohol $\mathbf{S 1 2}$ as colorless oil ($301.3 \mathrm{mg}, 0.82 \mathrm{mmol}, 82 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 3 \mathrm{H}), 2.98-2.84(\mathrm{~m}$, $2 \mathrm{H}), 2.52(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 2.11-1.97(\mathrm{~m}, 2 \mathrm{H})$ and $1.58(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.9,135.4,131.0,129.9,126.8,124.8,123.1,122.8,122.6$, $119.58,113.9,87.2,72.2,67.9,42.5,30.2,21.6$ and 20.3 ppm .

IR (ATR): 2935, 1614, 1599, 1468, 1218, 1792, 1120, 1016, 978, 805 and $736 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$ 367.1242; found 367.1218.
TLC: $\mathrm{R}_{\mathrm{f}}=0.16$ (4:1 Hexanes/EtOAc).

5-(5-methoxy-1-tosyl-1H-indol-3-yl)-3-methylpent-1-yn-3-ol (S13)

According to the General Procedure 4, 4-(5-methoxy-1-tosyl-1H-indol-3-yl)butan-2-one $\mathbf{S 2 8}(371.5 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.) was reacted with ethynyl magnesium bromide ($4 \mathrm{~mL}, 2.0$ $\mathrm{mmol}, 0.5 \mathrm{M}$ in THF) in 15 mL anhydrous THF to afford the desired propargylic alcohol $\mathbf{S 1 3}$ as colorless oil ($290.0 \mathrm{mg}, 0.73 \mathrm{mmol}, 73 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~s}$, $1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.96-6.88(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.93-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{~s}$, $1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 2.09-1.96(\mathrm{~m}, 2 \mathrm{H})$ and $1.58(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.4,144.7,135.2,132.1,130.1,129.8,126.7,123.3,123.0$, 114.7, 113.5, 102.2, 87.3, 72.0, 67.8, 55.7, 42.2, 30.1, 21.5 and 20.2 ppm .

IR (ATR): 2929, 1611, 1597, 1473, 1364, 1215, 1168, 1117, 1032, 976, 811 and $737 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S} 397.1348$; found 397.1346.
TLC: $\mathrm{R}_{\mathrm{f}}=0.15$ (4:1 Hexanes/EtOAc).

5-(5-bromo-1-tosyl-1H-indol-3-yl)-3-methylpent-1-yn-3-ol (S14)

According to the General Procedure 4, 4-(5-bromo-1-tosyl-1H-indol-3-yl)butan-2-one S29 ($419 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.) was reacted with ethynyl magnesium bromide ($4 \mathrm{~mL}, 2.0$ $\mathrm{mmol}, 0.5 \mathrm{M}$ in THF) in 15 mL anhydrous THF to afford the desired propargylic alcohol S14 as colorless oil ($387.2 \mathrm{mg}, 0.87 \mathrm{mmol}, 87 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~s}$, $1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.93-2.81(\mathrm{~m}, 2 \mathrm{H})$, $2.53(\mathrm{~s}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.93(\mathrm{~m}, 3 \mathrm{H})$ and $1.58(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.2,135.1,134.1,132.8,130.0,127.7,126.8,123.8,122.4$, $122.3,116.7,115.3,87.1,72.3,67.8,42.3,30.2,21.6$ and 20.2 ppm .
IR (ATR): 2925, 1596, 1442, 1368, 1169, 1120, 1092, 969, 809, 796 and $735 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrNNaO}_{3} \mathrm{~S} 468.0239$; found 468.0233.
TLC: $\mathrm{R}_{\mathrm{f}}=0.15$ (4:1 Hexanes/EtOAc).

3-(2-(1-(phenylsulfonyl)-1H-indol-3-yl)ethyl)hept-1-yn-3-ol (S15)

According to the General Procedure 4, 1-(1-(phenylsulfonyl)-1H-indol-3-yl)heptan-3-one $\mathbf{S 3 0}$ ($369.5 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.) was reacted with ethynyl magnesium bromide ($4 \mathrm{~mL}, 2.0$ $\mathrm{mmol}, 0.5 \mathrm{M}$ in THF) in 15 mL anhydrous THF to afford the desired propargylic alcohol $\mathbf{S 1 5}$ as colorless oil ($284.7 \mathrm{mg}, 0.72 \mathrm{mmol}, 72 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=14.0,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H})$,
$2.93(\mathrm{dd}, J=10.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 1 \mathrm{H}), 2.13-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.57-$ $1.48(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.33(\mathrm{~m}, 2 \mathrm{H})$ and $0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 138.4,135.5,133.8,131.1,129.3,126.8,124.9,123.2,122.5$, $119.7,113.9,86.4,73.2,71.1,42.2,41.0,26.4,22.9,20.0$ and 14.2 ppm .

IR (ATR): 2925, 2361, 2340, 1286, 1269, 1250, 775, 758 and $737 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S} 395.1555$; found 395.1509 .
TLC: $\mathrm{R}_{\mathrm{f}}=0.18$ (4:1 Hexanes/EtOAc).
(iii) General procedure 5: Nucleophilic addition of N-alkylindole to alkylvinyl ketones

To the stirred solution of appropriate N-alkylindole (1.0 equiv.) and vinylketone (1.5 equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{BF}_{3} . \mathrm{OEt}_{2}\left(10 \mathrm{~mol} \%, \sim 45-50 \% \mathrm{BF}_{3}\right)$ dropwise under nitrogen. The mixture was stirred at same temperature until the TLC showed complete consumption of the N-alkylindole. After completion, the reaction was quenched by addition of saturated NaHCO_{3} solution. The residual compound from aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in-vacuo. Purification of crude product via a silica gel column chromatography (Hexanes/EA) provided the desired ketone S16-19 and S23-25.

4-(1-butyl-1H-indol-3-yl)butan-2-one (S16)

According to the General Procedure 5, a mixture of commercially available 1-methyl-1 H indole ($262 \mathrm{mg}, 2 \mathrm{mmol}, 1.0$ equiv.) and methyl vinyl ketone ($0.25 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.5$ equiv.) was reacted with $\mathrm{BF}_{3} . \mathrm{OEt}_{2}\left(\sim 45-50 \% \mathrm{BF}_{3}\right)(25 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in 15 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ for 4 mins to afford the desired methyl ketone $\mathbf{S 1 6}$ as brown oil ($386 \mathrm{mg}, 1.9$ mmol, 96%) by using Hexane/EtOAc (4:1) as eluent. The spectroscopic data matched with the literature report. ${ }^{9}$

4-(1-butyl-1H-indol-3-yl)butan-2-one (S17)

According to the General Procedure 5, a mixture of 1-butyl-1H-indole ${ }^{10}$ ($346 \mathrm{mg}, 2 \mathrm{mmol}$, 1.0 equiv.) and methyl vinyl ketone ($0.25 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.5$ equiv.) was reacted with $\mathrm{BF}_{3} . \mathrm{OEt}_{2}\left(\sim 45-50 \% \mathrm{BF}_{3}\right)(25 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in 15 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$
for 6 mins to afford the desired methyl ketone $\mathbf{S 1 7}$ as brown oil ($462.4 \mathrm{mg}, 1.9 \mathrm{mmol}, 95 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.27(\mathrm{~m}, 2 \mathrm{H})$ and $0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 208.9,136.4,127.7,125.4,121.5,118.9,118.7,113.6,109.5$, $46.0,44.4,32.5,30.2,20.3,19.4$ and 13.8 ppm .

IR (ATR): 3410, 2953, 2929, 1712, 1640, 1625, 1462, 1362, 1190, 1158 and $740 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO} 243.1623$; found 243.1605.
TLC: $\mathrm{R}_{\mathrm{f}}=0.53$ (7:1 Hexanes/EtOAc).

4-(6-butyl-1-methyl-1H-indol-3-yl)butan-2-one (S18)

According to the General Procedure 5, a mixture of 6-butyl-1-methyl-1H-indole S31 (374.6 $\mathrm{mg}, 2 \mathrm{mmol}, 1.0$ equiv.) and methyl vinyl ketone ($0.25 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.5$ equiv.) was reacted with $\mathrm{BF}_{3} . \mathrm{OEt}_{2}\left(\sim 45-50 \% \mathrm{BF}_{3}\right)(25 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in 15 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ for 4 mins to afford the desired methyl ketone $\mathbf{S 1 8}$ as brown oil (437.2 mg , $1.7 \mathrm{mmol}, 85 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{dt}, J=15.3,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 2 \mathrm{H})$ and $0.94(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 209.0,137.5,136.9,125.9,125.8,120.0,118.5,113.6,108.7$, $44.5,36.3,34.6,32.6,30.1,22.6,19.5$ and 14.1 ppm .
IR (ATR): 2926, 2862, 1713, 1620, 1556, 1469, 1430, 1368, 1328, 1163 and $801 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}$ 257.178; found 257.1769.
TLC: $\mathrm{R}_{\mathrm{f}}=0.3$ (4:1 Hexanes/EtOAc).

4-(1-decyl-1H-indol-3-yl)butan-2-one (S19)

According to the General Procedure 5, a mixture of 1-decyl-1H-indole ${ }^{11}$ ($514.8 \mathrm{mg}, 2$ $\mathrm{mmol}, 1.0$ equiv.) and methyl vinyl ketone ($0.25 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.5$ equiv.) was reacted with $\mathrm{BF}_{3} . \mathrm{OEt}_{2}\left(\sim 45-50 \% \mathrm{BF}_{3}\right)(25 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in 15 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$
for 15 mins to afford the desired methyl ketone $\mathbf{S 1 9}$ as brown oil $(628.3 \mathrm{mg}, 1.92 \mathrm{mmol}$, 96%) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 14 \mathrm{H})$ and $0.87(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 208.9,136.4,127.7,125.4,121.5,118.9,118.7,113.6,109.5$, $46.3,44.4,32.0,30.4,30.2,29.6,29.4,27.1,22.8,19.4$ and 14.2 ppm .

IR (ATR): 2925, 2857, 1714, 1639, 1623, 1462, 1361, 1238, 1158, 789 and $735 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO} 327.2562$; found 327.2575 .
TLC: $\mathrm{R}_{\mathrm{f}}=0.2$ (19:1 Hexanes/EtOAc).

4-(4-methoxy-1-methyl-1H-indol-3-yl)butan-2-one (S23)

According to the General Procedure 5, a mixture of 4-methoxy-1-methyl-1H-indole ${ }^{12}$ (322 $\mathrm{mg}, 2 \mathrm{mmol}, 1.0$ equiv.) and methyl vinyl ketone ($0.25 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.5$ equiv.) was reacted with $\mathrm{BF}_{3} . \mathrm{OEt}_{2}\left(\sim 45-50 \% \mathrm{BF}_{3}\right)(25 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in 15 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ for 30 mins to afford the desired methyl ketone $\mathbf{S 2 3}$ as brown oil (407 mg , $1.76 \mathrm{mmol}, 88 \%$) by using Hexane/EtOAc (13:1) as eluent.
${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.10(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H})$, $6.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H})$ and $2.12(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.7,154.8,138.9,125.3,122.4,117.4,114.3,102.7,99.0$, $55.2,46.0,32.8,30.1$ and 21.4 ppm .

IR (ATR): 2939, 1711, 1578, 1501, 1463, 1430, 1361, 1322, 1258, 1170, 1093 and $734 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$ 231.1259, found 231.1260.
TLC: $\mathrm{R}_{\mathrm{f}}=0.3$ (4:1 Hexanes/EtOAc).

1-(1-allyl-4-(allyloxy)-1H-indol-3-yl)heptan-3-one (S24)

According to the General Procedure 5, a mixture of 1-allyl-4-(allyloxy)-1H-indole S32 (426 $\mathrm{mg}, 2 \mathrm{mmol}, 1.0$ equiv.) and hept-1-en- 3 -one ${ }^{13}(336.5 \mathrm{mg}, 3.0 \mathrm{mmol}, 1.5$ equiv.) was reacted with $\mathrm{BF}_{3} . \mathrm{OEt}_{2}\left(\sim 45-50 \% \mathrm{BF}_{3}\right)(25 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in 15 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 0
${ }^{\circ} \mathrm{C}$ for 15 mins to afford the desired methyl ketone $\mathbf{S} 24$ as brown oil ($449 \mathrm{mg}, 1.38 \mathrm{mmol}$, 69%) by using Hexane/EtOAc (13:1) as eluent.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.06(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H})$, $6.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.11$ (ddt, $J=17.1,10.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.93$ (dtd, $J=15.6,10.5,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.47-5.41(\mathrm{~m}, 1 \mathrm{H}), 5.29-5.25(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.13(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.01(\mathrm{~m}, 1 \mathrm{H})$, $4.65-4.62(\mathrm{~m}, 2 \mathrm{H}), 4.61-4.58(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 2 \mathrm{H})$ and $0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 211.8,153.7,138.5,133.8,133.7,124.5,122.4,117.8,117.2$, $117.1,114.9,103.2,100.2,68.7,48.8,45.1,42.8,26.0,22.5,21.5$ and 14.0 ppm.
IR (ATR): 2928, 2870, 1709, 1578, 1496, 1455, 1255, 990, 920, 776 and $727 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{2}$ 325.2042; found 325.2033.
TLC: $\mathrm{R}_{\mathrm{f}}=0.26$ ($6: 1$ Hexanes/EtOAc).
1-(5-methoxy-1-methyl-1H-indol-3-yl)-5-methylhexan-3-one (S25)

According to the General Procedure 5, a mixture of 5-methoxy-1-methyl-1H-indole ${ }^{14}$ (322 $\mathrm{mg}, 2 \mathrm{mmol}, 1.0$ equiv.) and 5 -methylhex-1-en-3-one ${ }^{14}(336.5 \mathrm{mg}, 3.0 \mathrm{mmol}, 1.5$ equiv.) was reacted with $\mathrm{BF}_{3} . \mathrm{OEt}_{2}\left(\sim 45-50 \% \mathrm{BF}_{3}\right)(25 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in 15 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ for 30 mins to afford the desired methyl ketone $\mathbf{S 2 5}$ as brown oil (459.3 mg , $1.68 \mathrm{mmol}, 84 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J$ $=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.08(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H})$ and $0.88(\mathrm{~s}, 3 \mathrm{H})$ ppm.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.8,153.8,132.5,127.9,127.0,113.3,111.8,110.0,100.8$, 56.1, 52.1, 43.9, 32.8, 24.7, 22.7 and 19.2 ppm.

IR (ATR): 2954, 2871, 1710, 1492, 1455, 1424, 1367, 1225, 1173, 1058, 1037 and $793 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] Calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2}$ 273.1729; found 273.1711.
TLC: $\mathrm{R}_{\mathrm{f}}=0.4$ (4:1 Hexanes/EtOAc).

4-(5-methoxy-1H-indol-3-yl)butan-2-one (S33)

According to the General Procedure 5, a mixture of 5-methoxy- 1 H -indole ($294.5 \mathrm{mg}, 2$ $\mathrm{mmol}, 1.0$ equiv.) and methyl vinyl ketone ($0.25 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.5$ equiv.) was reacted with $\mathrm{BF}_{3} . \mathrm{OEt}_{2}\left(\sim 45-50 \% \mathrm{BF}_{3}\right)(25 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in 15 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ for 30 mins to afford 4-(5-methoxy-1H-indol-3-yl)butan-2-one $\mathbf{S 3 3}$ as brown oil (404 mg , $1.86 \mathrm{mmol}, 93 \%$) by using Hexane/EtOAc (4:1) as eluent. The spectroscopic data of the product matched with the literature report. ${ }^{16}$

4-(5-bromo-1H-indol-3-yl)butan-2-one (S34)

According to the General Procedure 5, a mixture of 5-bromo- $1 H$-indole ($390 \mathrm{mg}, 2 \mathrm{mmol}$, 1.0 equiv.) and methyl vinyl ketone ($0.25 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.5$ equiv.) was reacted with $\mathrm{BF}_{3} . \mathrm{OEt}_{2}\left(\sim 45-50 \% \mathrm{BF}_{3}\right)(25 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in 15 mL anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ for 30 mins to afford 4-(5-methoxy-1H-indol-3-yl)butan-2-one $\mathbf{S 3 4}$ as brown oil (482 mg , $1.82 \mathrm{mmol}, 91 \%$) by using Hexane/EtOAc (4:1) as eluent. The spectroscopic data of the product matched with the literature report. ${ }^{15}$
(iv) General procedure 6: N -Tosylation of the derivatives of 4-(1 H -indol-3-yl)butan-2-one

To the stirred solution of indole S33-34 (1.0 equiv.) in anhydrous DMF at $0{ }^{\circ} \mathrm{C}$ was added NaH (1.2 equiv., $55-60 \%$ dispersion in mineral oil) under nitrogen. The mixture was stirred at same temperature for 20 mins followed by addition of p-toluenesulfonyl chloride (1.5 equiv.). The reaction mixture was allowed to slowly warm up to room temperature and stirred for 12 h. After completion, the reaction was quenched by slow addition of ice-cold water. The residual compound from aqueous layer was extracted with EtOAc (3 times). The combined organic layers were washed with brine (4 times) dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in-vacuo. Purification of crude product via a silica gel column chromatography (Hexanes/EA) provided the desired N-tosylated indole S28-29.

4-(5-methoxy-1-tosyl-1H-indol-3-yl)butan-2-one (S28)

According to the General Procedure 6, 4-(5-methoxy-1H-indol-3-yl)butan-2-one S33 (434 $\mathrm{mg}, 2 \mathrm{mmol}, 1.0$ equiv.) was reacted with NaH ($55-60 \%$ dispersion in mineral oil) (101 mg , $2.4 \mathrm{mmol}, 1.2$ equiv.) and p-toluenesulfonyl chloride ($572 \mathrm{mg}, 3.0 \mathrm{mmol}, 1.5$ equiv.) in 10
mL anhydrous DMF to afford the desired N-tosylated indole $\mathbf{S 2 8}$ as brown waxy solid (682.6 $\mathrm{mg}, 1.84 \mathrm{mmol}, 92 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~s}$, $1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94-6.86(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.91-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.83-$ $2.76(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$ and $2.15(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 207.6,156.4,144.7,135.1,131.8,130.0,129.8,126.7,123.6$, $122.2,114.7,113.6,101.9,55.7,42.4,30.1,21.5$ and 18.8 ppm.

IR (ATR): 2921, 1714, 1611, 1597, 1474, 1438, 1364, 1219, 1170, 1119, 982 and $795 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M+H] ${ }^{+}$Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S} 372.1264$; found 372.1256.
TLC: $\mathrm{R}_{\mathrm{f}}=0.25$ (4:1 Hexanes/EtOAc).
4-(5-bromo-1-tosyl-1H-indol-3-yl)butan-2-one (S29)

According to the General Procedure 6, 4-(5-bromo-1H-indol-3-yl)butan-2-one S34 (530 mg, 2 mmol, 1.0 equiv.) was reacted with NaH ($55-60 \%$ dispersion in mineral oil) ($101 \mathrm{mg}, 2.4$ mmol, 1.2 equiv.) and p-toluenesulfonyl chloride ($572 \mathrm{mg}, 3.0 \mathrm{mmol}, 1.5$ equiv.) in 10 mL anhydrous DMF to afford the desired N-tosylated indole $\mathbf{S 2 9}$ as brown waxy solid (695.5 mg , $1.66 \mathrm{mmol}, 83 \%$) by using Hexane/EtOAc (4:1) as eluent.
${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~s}$, $1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.90-2.84(\mathrm{~m}, 2 \mathrm{H})$, $2.83-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$ and $2.14(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 207.2,145.2,134.9,134.0,132.5,130.0,127.6,126.8,124.2$, $122.2,121.4,116.7,115.3,42.5,30.1,21.6$ and 18.6 ppm .

IR (ATR): 2922, 1714, 1442, 1369, 1170, 1123, 1100, 800 and $737 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M+Na] ${ }^{+}$Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BrNNaO}_{3} \mathrm{~S} 442.0083$; found 442.0079.
TLC: $\mathrm{R}_{\mathrm{f}}=0.24$ (4:1 Hexanes/EtOAc).
(v) Synthesis of 1-(1-(phenylsulfonyl)-1H-indol-3-yl)heptan-3-one (S30)

3-(1-((4-bromophenyl)sulfonyl)-1H-indol-3-yl)- N -methoxy- N -methylpropanamide (S36)

To the stirred solution of Weinreb amide $\mathbf{S 3 5}{ }^{17}$ ($464 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0$ equiv.) in anhydrous DMF at $0{ }^{\circ} \mathrm{C}$ was added NaH ($55-60 \%$ dispersion in mineral oil) ($101 \mathrm{mg}, 2.4 \mathrm{mmol}, 1.2$ equiv.) under nitrogen. The mixture was stirred at same temperature for 20 mins followed by addition of p-bromobenzenesulfonyl chloride ($766.5 \mathrm{mg}, 3.0 \mathrm{mmol}, 1.5$ equiv.). The reaction mixture was allowed to slowly warm up to room temperature and stirred for 6 h . After completion, the reaction was quenched by slow addition of ice-cold water. The residual compound from aqueous layer was extracted with EtOAc (3 times). The combined organic layers were washed with brine (4 times) dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in-vacuo. Purification of crude product via a silica gel column chromatography (2:1 Hexanes/EA) provided the desired N-brosylated indole $\mathbf{S 3 6}$ as off-white solid (882 mg , $1.96 \mathrm{mmol}, 98 \%)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=$ $6.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.18$ $(\mathrm{s}, 3 \mathrm{H}), 3.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$ and $2.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.0,135.2,132.5,131.0,128.9,128.2,125.0,123.5,123.1$, $122.8,119.6,113.7,61.3,31.2$ and 19.9 ppm .

IR (ATR): 2925, 1657, 1574, 1447, 1389, 1371, 1266, 1174, 1119, 1093, 978 and $733 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}$ 451.0322; found 451.0319.
M.P.: $114-116^{\circ} \mathrm{C}$.

1-(1-(phenylsulfonyl)-1H-indol-3-yl)heptan-3-one (S30)

S30

To the stirred solution of Weinreb amide $\mathbf{S 3 6}(450 \mathrm{mg}, 1 \mathrm{mmol}, 1.0$ equiv.) in anhydrous THF (15 mL) at $-78{ }^{\circ} \mathrm{C}$ was added n-butyllithium ($1.25 \mathrm{~mL}, 2 \mathrm{mmol}$, 2.0 equiv., 1.6 M in hexanes) dropwise under nitrogen. The mixture was stirred at same temperature for 2.5 h . The reaction mixture was then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The residual compound from aqueous layer was extracted with EtOAc (3 x 7 mL). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated invacuo. Purification of crude product via silica gel column chromatography (6:1 Hexanes/EA) provided the ketone $\mathbf{S 3 0}$ ($214.3 \mathrm{mg}, 0.58 \mathrm{mmol}, 58 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{dd}, J$ $=15.8,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{dd}, J=12.0,4.8 \mathrm{~Hz}$,

1H), $2.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1.49$ $(\mathrm{m}, 2 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 3 \mathrm{H})$ and $0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.0,138.3,135.4,133.8,130.8,129.3,126.8,124.9,123.3$, $122.9,122.4,119.5,113.9,42.8,41.8,26.0,22.4,18.9$ and 13.9 ppm .
IR (ATR): 2958, 2922, 1712, 1447, 1367, 1174, 1120, 1098, 1089, 975 and $736 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M] ${ }^{+}$Calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S} 369.1399$; found 369.1401.
(vi) Procedure for the synthesis of N -alkylated indoles.

6-butyl-1-methyl-1H-indole (S31)

To the stirred solution of 6-bromo-1-methyl- 1 H -indole ${ }^{18}$ ($530 \mathrm{mg}, 2.54 \mathrm{mmol}, 1.0$ equiv.) in anhydrous THF was added n - BuLi ($2.38 \mathrm{~mL}, 1.5$ equiv., $\sim 1.6 \mathrm{M}$ in hexane) dropwise at $0^{\circ} \mathrm{C}$ under nitrogen. The mixture was stirred at same temperature for 4 h . The reaction mixture was then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The organic layer was separated and the residual compound from aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in-vacuo. Purification of crude product via silica gel column chromatography (19:1 Hexanes/EA) provided the desired indole $\mathbf{S 3 1}$ ($308.7 \mathrm{mg}, 1.65 \mathrm{mmol} \mathrm{mmol}, 65 \%$).
${ }^{1}{ }^{1}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.99-6.93(\mathrm{~m}, 2 \mathrm{H})$, $6.42(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.44-$ $1.34(\mathrm{~m}, 2 \mathrm{H})$ and $0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 137.1,136.7,128.4,126.6,120.6,120.6,108.6,100.8,36.34$, 34.6, 32.9, 22.6 and 14.2 ppm .

IR (ATR): 2925, 2856, 2312, 1849, 1725, 1575, 1480, 1347, 1237, 1009, 876 and $738 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M+H] ${ }^{+}$Calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N} 188.1434$; found 188.1425.
TLC: $\mathrm{R}_{\mathrm{f}}=0.78$ ($9: 1$ Hexanes/EtOAc).

1-allyl-4-(allyloxy)-1H-indole (S32)

To the stirred solution of 4-hydroxyindole ($400.5 \mathrm{mg}, 3 \mathrm{mmol}, 1.0$ equiv.) in anhydrous DMF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(303 \mathrm{mg}, 7.2 \mathrm{mmol}, 2.4$ equiv.) under nitrogen. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 mins and then allyl bromide ($0.8 \mathrm{~mL}, 9.0 \mathrm{mmol}, 3.0$ equiv.) and NaI ($90 \mathrm{mg}, 0.6 \mathrm{mmol}, 0.2$ equiv.) were added sequentially. The reaction mixture was allowed to stir for 2 h . After completion, the reaction was quenched by slow addition of ice-cold water.

The residual compound from aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine (4 times) dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in-vacuo. Purification of crude product via a silica gel column chromatography (2:1 Hexanes/EA) provided $\mathbf{S 3 2}$ as brownish-yellow oil ($550 \mathrm{mg}, 2.58$ mmol, 86\%).
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.09(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.63(\mathrm{~m}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{ddd}, J=22.4,10.5,5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.96$ (ddd, $J=22.4,10.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.47$ (dd, $J=17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28$ (dd, $J=$ $10.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, J=10.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=17.1,1.1 \mathrm{~Hz}, 1 \mathrm{H})$ and $4.70-$ 4.65 ($\mathrm{m}, 4 \mathrm{H}$) ppm.
${ }^{13}$ C NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 152.5,137.8,133.9,133.6,126.4,122.4,119.6,117.2,103.3$, 100.8, 98.9, 68.9 and 49.1 ppm .

IR (ATR): 2918, 1578, 1493, 1357, 1299, 1252, 1223, 1154, 1052, 1025, 989 and $730 \mathrm{~cm}^{-1}$.
HRMS (ESI) m/z: [M+H] ${ }^{+}$Calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}$ 214.1226; found 214.1219.
TLC: $\mathrm{R}_{\mathrm{f}}=0.8$ (9:1 Hexanes/EtOAc).
(vii) Procedure for isomerization of ethyl (Z)-3-iodoacrylate.

Ethyl (E)-3-iodoacrylate (S37)

To a well stirred solution of ethyl (Z)-3-iodo-acrylate ${ }^{4}(600 \mathrm{mg}, 2.65 \mathrm{mmol}$) in toluene (3 mL) was added a 57% aqueous solution of hydroiodic acid (0.1 mL) under nitrogen. The resulting mixture was heated to $80^{\circ} \mathrm{C}$ for 20 h , whereupon the dark brown solution was cooled to room temperature and diluted with diethyl ether (10 mL). The organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL}), 10 \%$ aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(0.9$ mL) and brine (10 mL). The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was evaporated under reduced pressure to afford $\mathbf{S 3 7}(551.4 \mathrm{mg}, 2.44 \mathrm{mmol}$, 92%) as a pale-yellow oil. [The spectroscopic data was consistent with the data reported in the literature. ${ }^{19}$]
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H})$ and $1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.3,136.7,99.3,61.1$ and 14.3 ppm .

F. References:

1. S. Xia, L. Gan, K. Wang, Z. Li and D. Ma, J. Am. Chem. Soc., 2016, 138, 13493-13496.
2. F. Li and H. Renata, J. Am. Chem. Soc., 2021, 143, 18280-18286.
3. P. A. Byrnea and D. G. Gilheany, Chem. Soc. Rev., 2013, 42, 6670-6696
4. A. Kremsmair, J. Skotnitzki and P. Knochel, Chem. Eur. J., 2020, 26, 11971-11973.
5. P. Tharra and B. Baire, Org. Lett., 2018, 20, 1118-1121.
6. L. Huang, J. Qi, X. Wu and H. Jiang, Chem. - Eur. J., 2013, 19, 15462-15466.
7. X. Mu, S. Chen, X. Zhen and G. Liu, Chem. - Eur. J., 2011, 17, 6039-6042.
8. H. H. San, J. Huang, S. Lei Aye and X.-Y. Tang, Adv. Synth. Catal., 2021, 363, 2386-2391.
9. G. Zhang, F. Jia and L. J. Gooßen, Chem. Eur. J., 2018, 24, 4537-4541.
10. X. Hong, Q. Tan, B. Liu and B. Xu, Angew. Chem., Int. Ed., 2017, 56, 3961-3965.
11. E. G. Pérez, B. K. Cassels, C. Eibl and D. Gündisch, Bioorg. Med. Chem., 2012, 20, 3719-3727.
12. R. Guan, H. Zhao and M. Zhang, Org. Lett., 2022, 24, 3048-3052.
13. S. Luo, N. Zhang, Z. Wang and H. Yan, Org. Biomol. Chem., 2018, 16, 2893-2901.
14. B. Jiang, J. Jia, Y. Sun, Y. Wang, J. Zeng, X. Bu, L. Shi, X. Sun and X. Yang, Chem. Commun., 2020, 56, 13389-13392.
15. Y. Wada, R. Murata, Y. Fujii, K. Asano and S. Matsubara, Org. Lett., 2020, 22, 4710-4715.
16. F. Portela-Cubillo, B. A. Surgenor, R. A. Aitken and J. C. Walton, J. Org. Chem., 2008, 73, 8124-8127.
17. Q. A. Huchet, B. Kuhn, B. Wagner, N. A. Kratochwil, H. Fischer, M. Kansy, D. Zimmerli, E. M. Carreira and K. Meller, J. Med. Chem., 2015, 58, 9041-9060.
18. J. Jeon, H. Ryu, C. Lee, D. Cho, M. Baik and S. Hong, J. Am. Chem. Soc., 2019, 141, 1004810059.
19. B. M. Trost, J. P. N. Papillon and T. Nussbaumer, J. Am. Chem. Soc., 2005, 127, 17921-17937.
G. Copy of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of all new compounds
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 a}$.
(

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $7 \mathbf{7 a}$.
(

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 8a

Full and zoomed view of NOESY NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8 a}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 b}$.
(

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{7 b}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8 b}$.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 c}$.

(
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{7 c}$.

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8 c}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 d}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7d.

(
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 8d.

(

Full and zoomed view of NOESY NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8 d}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 e}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{7 e}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8 e}$.
(

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 f}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{7 f}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8 f}$.

Full and zoomed view of NOESY NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8 f}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 g}$.

(10)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{7 g}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8 g}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 h}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{7 h}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8} \mathbf{h}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 i}$.

Stacked ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of (A) mixture of $\mathbf{6 i}$ and $\mathbf{7 i}$ and (B) pure $\mathbf{6 i}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of mixture of $\mathbf{6 i}$ and $\mathbf{7 i}$.

Stacked ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of (A) mixture of $\mathbf{6 i}$ and $\mathbf{7 i}$ and (B) pure $\mathbf{6 i}$.

Γ	1	1	1	1	1	1	1	1	1 ,	1	1	1	1	1	1	1	1	1
180	170	160	150	140	130	120	110	100	$\stackrel{90}{\mathrm{f} 1(\mathrm{ppm})}$	80	70	60	50	40	30	20	10	0

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of mixture of $\mathbf{6} \mathbf{i}$ and $\mathbf{7 i}$.

T	1	1	1	1	1	1		1	1	1 '	1		1	1	1	1	1	1		1
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 j}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{7 j}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 17.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 19a.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 9 b}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) of $\mathbf{1 9 c}$.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 9 d}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 5}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 24.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 6}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 27.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 8}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 0}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of N -methyl Carazostatin 29.
(

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of N -methyl Carbazoquinocin C 31.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 33 .
(
(
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 34 .

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 5}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 6}$.
(
(
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of N-methyl Lipocarbazole A4 32.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 a}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 b}$.

(
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 c}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 d}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5e.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 f}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 g}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 h}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 i}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 j}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 a}-\boldsymbol{E}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 6}$.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 8} \mathbf{a}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 8 b}$.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 8 c}$.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 8 d}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 2}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 3}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 4}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 5}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 8}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 9}$.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 1 0}$.

(10)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 1 1}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 1 2}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 1 3}$.
(

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) of $\mathbf{S 1 4}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 1 5}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 1 7}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) of $\mathbf{S 1 8}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 1 9 .}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 2 3}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S} 24$.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 2 5}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 2 8}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 2 9 .}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 3 6}$.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 3 0}$.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{S 3 1}$.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 3 2}$.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S 3 7}$.

H. Crystallographic Data and Structure Refinements Summary of Compound 17

Molecular Structure (ORTEP Diagram) For compound 17	
CCDC number	CCDC2176803
Formula	$\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{6}$
Formula weight	411.44
Colour of the crystal	Bright yellow
Temperature	296 (2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
a	8.3160 (3) Å
b	10.2395 (5) A
c	12.7297 (6) Å
α	83.941 (2) ${ }^{\circ}$
β	$84.824(2)^{\circ}$
γ	74.004 (2) ${ }^{\circ}$
Volume	$1034.04(8) \AA^{3}$
Z	2

Calculated density	$1.321 \mathrm{mg} / \mathrm{m}^{3}$
Absorption coefficient, μ	$0.096 \mathrm{~mm}^{-1}$
F (000)	436
Crystal size	$0.180 \times 0.120 \times 0.100 \mathrm{~mm}$
θ range for data collection	2.076 to 24.998°
Limiting indices	$-7<=\mathrm{h}<=9,-12=\mathrm{k}<=12,-15<=\mathrm{l}<=15$
Reflections collected / unique	$14629 / 3630[\mathrm{R}(\mathrm{int})=0.0347]$
Completeness to $\theta=24.998$	None
Absorption correction	Full-matrix least-squares on F^{2}
Refinement method	$3630 / 0 / 276$
Data / restraints / parameters	1.026
Goodness-of-fit on F^{2}	$\mathrm{R} 1=0.0403, \mathrm{wR} 2=0.0977$
Final R indices [I>2sigma(I)]	R1 = 0.0611, wR2 $=0.1103$
R indices (all data)	$0.014(2)$
Extinction coefficient	0.204 and $-0.189 \mathrm{e} . \AA^{-3}$
Largest diff. peak and hole	

[^0]: ${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J$ $=8.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dt}, J=15.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.9$

