Supporting Information

An Aqueous Copper Battery Enabled by Cu²⁺/Cu⁺ and Cu³⁺/Cu²⁺ Redoxes Conversion Chemistry

Zeang Duan,^b Jiajin Zhao,^b Yadi Qi,^b Ruyue Li,^b Wenfeng Wang,^a Qiuming Peng,^a Shumin Han,*^{ab} and Lu Zhang*^{ab}

^a State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, PR China

^b School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China

* Corresponding author: zhanglu@ysu.edu.cn, hanshm@ysu.edu.cn

Experimental

Material preparation

The cathode was prepared with AC, Ketjen Black (KB), and Polytetrafluoroethylene (PTFE) binder in isopropanol with a weight ratio of 7:2:1. The mixed slurry was plated to a self-standing film and dried in an oven at 80°C for 12 hours. The loading mass of AC is controlled to ~ 5 mg cm⁻² with a round piece in a diameter of 10 mm. The cooper anode foil was 0.03 mm in thickness and 10 mm in diameter with a mass of ~19.5 mg. Glass fiber of Pall Corporation was used as the separator. All electrolyte samples were prepared by mixing the designated molality of copper chloride (CuCl₂, anhydrous, \geq 98%, Sigma Aldrich) and choline chloride (ChCl, TCI) with de-ionized water.

Material Characterization

The specific surface area and pore size distribution of the ac were analyzed by Brunauer-Emmett-Teller (BET) on NOVA 4000. Raman spectroscopy measurement was performed by Horiba LabRAM HR Evolution microscope. The morphology and elemental distribution of all samples were examined using the field-emission scanning electron microscopy (SEM) (HITAS-4800). X-ray diffraction (XRD) patterns of all samples were collected on a Rigaku Ultima IV Diffractometer with a Cu K α radiation ($\lambda = 1.5406$ Å).

Electrochemical measurements

The electrochemical performance was evaluated using a Swagelok® cell (a T-cell) configuration. Galvanostatic charge/discharge tests were carried out on a LAND-CT2001A system at room temperature. Cyclic voltammetry (CV) was carried out on a Bio-logic electrochemical workstation (SP-150). The galvanostatic of Cu plating/striping was measured in Cu||Cu symmetric cells, and the coulombic efficiency (CE) of Cu plating/striping was studied in Ti||Cu cells.

Figure S1 (a) Volume of gas adsorbed vs relative pressure and (b) BET pore size distribution of activated carbon.

Figure S2 CV curves of the AC cathode in a three-electrode cell with AC cathode as the counter electrode at the 1^{st} cycle in the 30 m ChCl + 1 m CuCl₂ electrolyte.

Figure S3 GCD potential profiles of AC in the 30 m ChCl + 1 m CuCl₂ electrolyte in a three-electrode cell with Ag/AgCl as a reference electrode with a charge capacity of 200 mAh g^{-1} within (a) -0.1–1.0 V.

Figure S4 SEM image of the plated Cu metal.

Figure S5 GCD potential curves of the AC||Cu cell in the 30 m ChCl + 1 m CuCl₂ electrolyte within 0.2-1.4 V, where Cu foil is used as a counter electrode.

Figure S6 Cycling performance of the AC||Cu cell in 30 m ChCl + 1 m CuCl₂ electrolyte within 0.2-1.4 V at 200 mA g⁻¹.

Figure S7 Cycling performance of the AC||Cu cell in 30 m ChCl + 1 m CuCl₂ electrolyte within 0.2-1.4 V at 400 mA g⁻¹.

Figure S8 GCD profiles of the AC||Cu cells in the electrolytes of (a) 30 m ChCl + 0.1 m CuCl₂, (b) 30 m ChCl + 0.5 m CuCl₂, (c) 30 m ChCl + 1 m CuCl₂ and (d) 30 m ChCl + 2 m CuCl₂ at a current density of 200 mA g^{-1} .

Figure S9 GCD profiles of the AC||Cu in the electrolytes of (a) 20 m ChCl + 1 m CuCl₂ and (b) 40 m ChCl + 1 m CuCl₂ at a current density of 200 mA g^{-1} .