Synergistic Regulation of Coordination Sites of Co₃O₄ by Selective Doping for Efficient Water Oxidation

Zhiyu Shao, a Xia Gao, a Qian Zhu, a Weifeng Zhao, a Xiaotian Wu, a Keke Huang*, a and Shouhua Feng a

Experimental Section

Synthesis of Co₃O₄, Al-Co₃O₄, and In-Co₃O₄

Typically, 3 mmol of $Co(NO_3)_2 \cdot 6H_2O(0.87 \text{ g})$ was dissolved in 25 ml ethanol to produce a clear solution. Then dry SBA-15 (0.30 g) was added to the solution. After stirring for 24 h, the solution was dried by evaporation of the solvent at 40 °C. The dried powder was grounded and impregnation was repeated one more time to prepare Co- composites. The dry powder was sintered at 550 °C for 3 h and finally the silica template was removed by stirring two times with 2 M hot NaOH solution. The resultant meso- Co_3O_4 was collected after washing with deionized water and ethanol for three times.

The synthetic methods of the samples are basically the same, but the difference lies in the addition of $Al(NO_3)_2 \cdot 9H_2O$ or $In(NO_3)_2 \cdot 4.5H_2O$ were added in the impregnation process for $Al-Co_3O_4$ and $In-Co_3O_4$.

Catalyst characterization

Powder X-ray diffraction (XRD) data was obtained by using a Rigaku D/Max 2550 diffractometer with Cu-K α radiation testing at 40 kV and 200 mA by step scanning in the angel range of 15° to 80° with increments of 3°·min⁻¹. The morphology and structure of the samples were observed by scanning electron microscopy (SEM, JEM 7900F) and high-resolution transmission electron microscopy (HRTEM, FEI TecnaiG2 S-Twin) with a field emission gun operating at 200 kV. X-ray photoelectron spectroscopy (XPS, ESCALAB-250) was carried out with Thermo ESCA Lab 250 analyzer operating at constant analyzer power mode.

Electrochemical measurement

Electrochemical measurements were conducted at the CHI 660E electrochemical workstation (Shanghai Chenhua Apparatus, China) using a standard three-electrode system, with a rotating disk electrode (5 mm in diameter) as the working electrode, a platinum slice as the counter electrode, and a Hg/HgO as the reference electrode in 1 M KOH. The working electrode was prepared by polishing it with 50 nm α -Al₂O₃ on a polishing cloth, then dropping 20 µL of the catalyst ink and drying it naturally. The catalyst ink was made by mixing the sample and Ketjenblack in a ratio of 4 to 1 to improve the electrical conductivity of test samples, adding 1 ml of deionized water and 1 ml of isopropanol and 20 µL of

Nafion solution, and then the solution was treated with ultrasonic for half an hour to make sure samples were well dispersed. The electrode was activated and the surface bubbles of it were removed by running cyclic voltammetry (CV). The OER curve was scanned from 0.2 to 0.9 V (vs Hg/HgO) with a scan rate of 5 mV·s⁻¹ in 1 M KOH. Electrochemical impedance spectroscopy (EIS) was obtained at 0.7 V (vs Hg/HgO) with frequencies ranging from 100 kHz to 0.1 Hz within an AC voltage of 5 mV.

Density Functional Theory Calculations.

The density function calculations were performed using Vienna ab initio simulation package (VASP) with the projector augmented-wave (PAW) method. The generalized gradient approximation (GGA) functional parametrized by Perde Burke-Ernzerh of (PBE) was employed to describe the exchange correlation potential. A plane-wave energy cutoff of 400 eV was used and the energies and forces on each atom were converged to 10-4 eV and 0.05 eV/Å, respectively. A gamma-only point was used for the Brillouin zone integrations in geometry optimization, while other calculations employed a Γ -centered k-point mesh of 5×5×3.

 Co_3O_4 (311) surface model was built based on the exposed (311) surface of Co_3O_4 observed by TEM results. On the basis of pristine Co_3O_4 , Three Al atoms doped into octahedral sites to represent Al-Co₃O₄, and four In atoms doped into in octahedral and tetrahedral sites to represent $Al-Co_3O_4$ based on the EDX analysis. A vacuum layer of 1.5 nm was used along the c direction normal to the surface to avoid periodic interactions in all models.

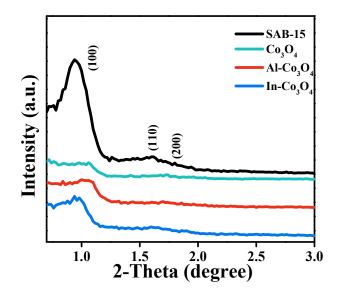


Fig. S1 Small-angle XRD patterns of SBA-15, Co₃O₄, Al-Co₃O₄, and In-Co₃O₄.

The mesoporous structures of the materials were further characterized by the small-angle XRD technique. Three well resolved diffraction peaks are observed in the XRD patterns of SBA-15. The peaks centered at $2\theta = 0.94$, 1.6, and 1.8° are indexed as (100), (110), (200) reflections. This is evidence of ordered two-dimensional hexagonal (p6mm) structures. The three characteristic peaks can be also detected in the patterns of the supported materials, further verifying the overall ordered mesopores of SBA-15 are well preserved after loading. Notably, the intensities of the three reflections of SBA-15 support decrease notably with loading

 Co_3O_4 atalysts, meaning a slight decrease in long-range periodicity order of the support pores. A careful observation of the (100) peak reveals a noticeable shift to higher 2 θ values in Al-Co₃O₄, which corresponding to shrinkage of the lattice parameter.

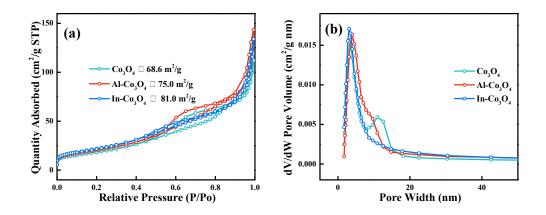


Fig. S2 (a) N₂ adsorption-desorption isotherms and (b) pore size distributions of Co₃O₄, Al-Co₃O₄,

and In-Co₃O₄.

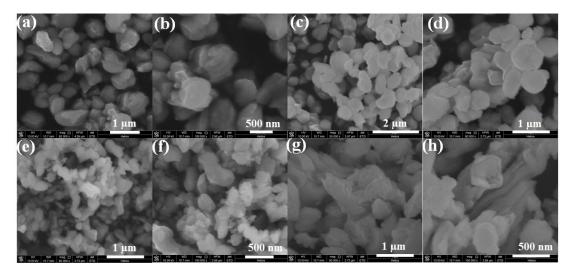


Fig. S3 SEM images of (a-b) SBA-15, (c-d) Co₃O₄, (e-f) Al- Co₃O₄, and (g-h) In- Co₃O₄.

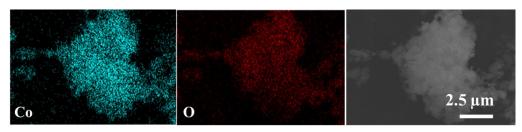


Fig. S4 EDS elemental mapping images of Co₃O₄.

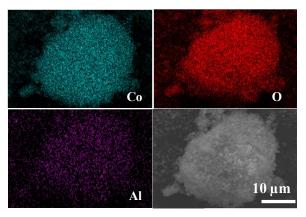


Fig. S5 EDS elemental mapping images of Al-Co₃O₄.

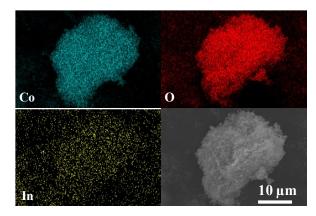


Fig. S6 EDS elemental mapping images of In-Co₃O₄.

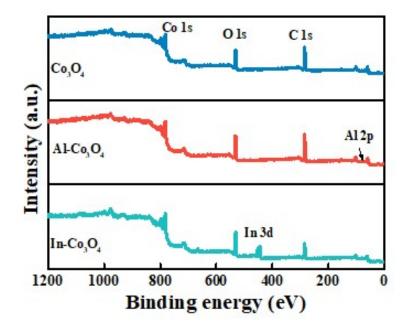


Fig. S7 XPS surface analysis of pure Co₃O₄, Al-Co₃O₄, and In-Co₃O₄.

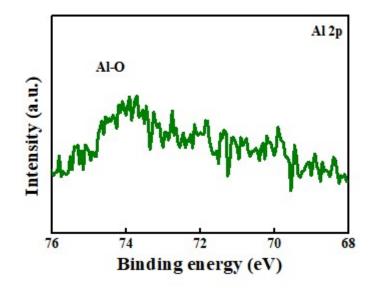


Fig. S8 XPS spectra of Al 2p of Al-Co₃O₄.

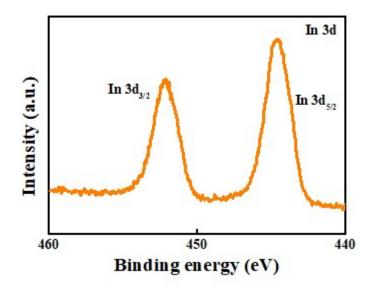


Fig. S9 XPS spectra of In 3d of $In-Co_3O_4$.

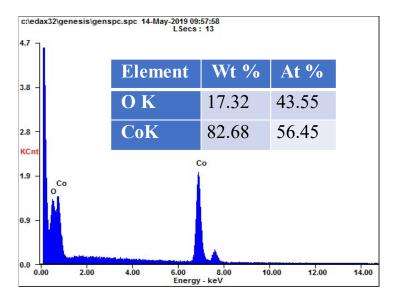


Fig. S10 EDX analysis for Co₃O₄.

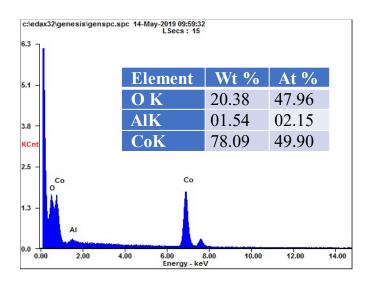


Fig. S11 EDX analysis for Al-Co₃O₄.

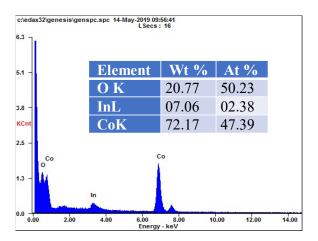


Fig. S12 EDX analysis for In-Co₃O₄.

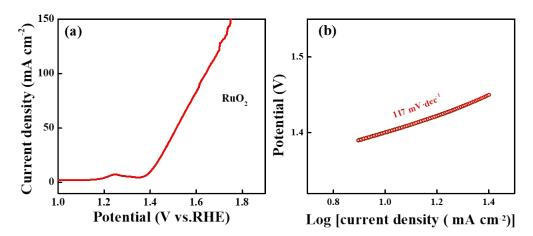


Fig. S13 (a) LSV curve and (b) corresponding Tafel plot of commercial RuO₂.

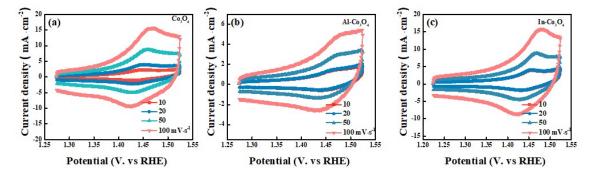


Fig. S14 CV curves with at different scanning rates of Co₃O₄, Al-Co₃O₄, and In-Co₃O₄.

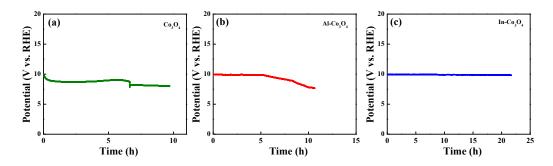


Fig. S15 Chronoamperometric curves for Co₃O₄, Al-Co₃O₄, and In-Co₃O₄.

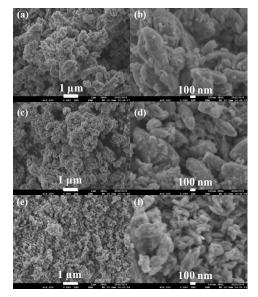


Fig. S16 SEM images of (a & b) Co_3O_4 , (c & d) Al- Co_3O_4 , and (e & f) In- Co_3O_4 at two different magnifications.

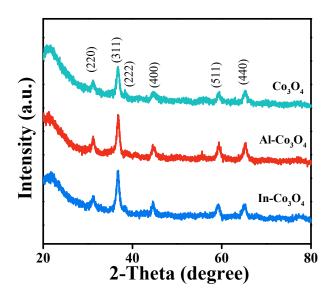


Fig. S17 XRD patterns of the electrocatalysts Co₃O₄, Al-Co₃O₄, and In-Co₃O₄.

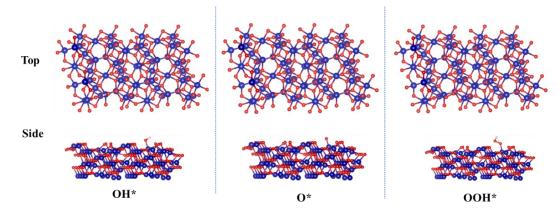


Fig. S18 The optimized configurations of Co_3O_4 chemisorption of OH*, O*, and OOH* intermediates.

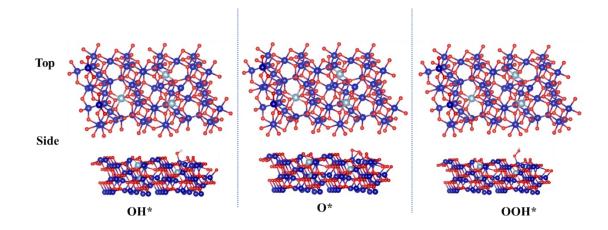


Fig. S19 The optimized configurations of $Al-Co_3O_4$ chemisorption of OH^* , O^* , and OOH^* intermediates.

Catalyst	Current density (mA·cm ⁻²)	Overpotential (mV)	Tafel slope (mV∙dec ⁻¹)	Electrolyte	Reference
In-Co ₃ O ₄	10	340	74	1 M KOH	This work
CoCo ₂ O ₄ /NCNTs	10	350	104	0.1 M KOH	Angew. Chem. Int. Ed.2022,61, e2021146
Zn _x Ni _{1-x} Co ₂ O ₄ /NCNTS	10	410	118	0.1 M KOH	Angew. Chem. Int. Ed. 2020 , 59, 6492-6499
$\begin{array}{c} La_{0.5}Sr_{0.5}MnO_3+20\\ ALD \text{ cycles of}\\ Co_3O_4 \end{array}$	10	470	82	0.1 M KOH	Nano Energy. 2020 , 71, 104564
MnCo ₂ O ₄	10	400	90	0.1 M KOH	Angew. Chem. Int. Ed. 2017, 56, 14977- 14981
CoFe ₂ O ₄ @N-CNF	10	349	80	0.1 M KOH	Adv. Sci. 2017 , 4, 1700226
Co/Co ₃ O ₄ @PGS	10	350	76	0.1 M KOH	<i>Adv. Energy Mater.</i> 2018 , 8, 1702900
Co _{2.25} Fe _{0.75} O ₄	10	350	50	1.0 M KOH	J. Mater. Chem. A 2021, 9,25381-25390.
Fe ₃ C/CoFe ₂ O ₄ @CN Fs-1.5	10	340	83	0.1 M KOH	<i>Chem. Eng. J.</i> 2021 , <i>424</i> , 130460.
V-LCO/Co ₃ O ₄	10	354	73	1.0 M KOH	Nano Lett. 2021 , 21, 8166-8174
V-LCO	10	371	148	1.0 M KOH	Nano Lett. 2021 , 21, 8166-8174
Co ₃ O ₄	10	522	192	1.0 M KOH	Nano Lett. 2021 , 21, 8166–8174
LCO	10	500	219	1.0 M KOH	Nano Lett. 2021 , 21, 8166–8174

Table S1 Comparison of the OER activity of as-prepared catalyst with that of some recently reported electrocatalysts.