Synthesis and Reactivity of 1-Sulfonylcyclooctatriazoles

Supporting Information

Matthew B. Williams, Ruaraidh J. Wells and Alistair Boyer

Contents

Contents	2
CAUTION	3
General Experimental Considerations	3
Experimental Protocols and Compound Data	4
General Procedure 1	7
General Procedure 2	10
Optimisation and ee Data	14
NMR Spectra	25
Optimised Structures and Thermochemical Analyses	54
GS1	55
GS2	56
GS3	57
GS4	
TS1	59
TS2	61
TS3	63
References	65

CAUTION

NITROGEN-RICH COMPOUNDS, SUCH AS AZIDES AND TRIAZOLES, CAN DECOMPOSE VIOLENTLY WITH THE LOSS OF NITROGEN GAS.

Although no problems were encountered in the course of this study, appropriate precautions should be taken.

General Experimental Considerations

NMR spectra were recorded on 400 and 500 MHz Bruker spectrometers. Chemical shifts are given in ppm and the spectra are calibrated to the residual ¹H and ¹³C signals of the solvents. ¹³C NMR spectra were collected with complete proton decoupling and assignments were made using COSY, HSQC, HMBC and NOESY experiments. Samples were melted directly from the procedures described.

High-resolution mass spectra were obtained on Agilent 6546 LC/Q-TOF and Bruker microTOFq instruments by Analytical Services at the University of Glasgow School of Chemistry.

IR spectra were recorded using spectrometers fitted with an ATR device.

CH₂Cl₂, THF and toluene were purified on a PureSolv PM500 and other reagents were used as received.

Reactions were monitored by thin layer chromatography (TLC) using Merck TLC silica gel 60 F254 aluminum-foil baked plates. Compounds were visualized by UV light at nm or by staining with potassium permanganate.

Column chromatography was performed using a Teledyne ISCO Combiflash Rf+ System using Redisep Rf silica cartridges.

Enantiomeric excess was determined by integration of HPLC traces using chiral stationary phase Daicel Chiralpak AD-H column (0.46 \emptyset × 25 cm) using a Shimadzu Prominence System (LC20AD) with Oven (CTO20AC, 25 °C) and diode array detector (SPDM20A).

Experimental Protocols and Compound Data

1,2-Dibromocyclooctane (S1)

cis-Cyclooctene (50.8 mL, 390 mmol, 1.0 equiv.) was dissolved in dichloromethane (200 mL) and cooled to –40 °C (acetone, dry ice). A solution of bromine (20.0 mL, 390 mmol, 1.0 equiv.) in dichloromethane (40 mL) was added dropwise until a persistent yellow colour was observed. The reaction was quenched by the addition of saturated aqueous sodium thiosulfate (80 mL) and the aqueous phase extracted with dichloromethane (3 × 80 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated *in vacuo* to give the title compound (97.2 g, 92%) as a colourless oil. The crude product was used without further purification. ¹H NMR (500 MHz, 25.0 °C, CDCl₃) δ 4.61–4.56 (2 H, m, CH), 2.45–2.38 (2 H, m, CH₂), 2.13–2.06 (2 H, m, CH₂), 1.90–1.81 (2 H, m, CH₂), 1.72–1.65 (2 H, m, CH₂), 1.64–1.55 (2 H, m, CH₂) and 1.51–1.41 (2 H, m, CH₂). Recorded data consistent with previous values.^[1]

(E)-1-Bromocyclooctene (S2)

In a flame-dried flask under argon, KOtBu (59.5 g, 531 mmol, 1.5 equiv.) was suspended in THF (200 mL) and the suspension was cooled to 0 °C (ice bath). A solution of 1,2-dibromocyclooctane **S1** (95.2 g, 353 mmol, 1.0 equiv.) in THF (40 mL) was added dropwise over 30 min. Then the reaction mixture was stirred at ambient temperature for 1 h and the reaction was quenched by the addition of ice-cold saturated aqueous ammonium chloride (160 mL). The THF was removed *in vacuo* and the aqueous phase extracted with dichloromethane (3 × 80 mL). The combined organic layers were dried (MgSO₄), filtered and concentrated *in vacuo*. The residue was purified by Kugelrohr bulb to bulb distillation (110 °C, 15.0 mbar) to afford the title compound (48.6 g, 73%) as an orange oil. ¹H NMR (500 MHz, 25.0 °C, CDCl₃) δ 6.03 (1 H, t, *J* = 8.5 Hz, =CH), 2.64–2.59 (2 H, m, CH₂), 2.12–2.07 (2 H, m, CH₂), 1.66–1.61 (2 H, m, CH₂) and 1.58–1.47 (6 H, m, CH₂); ¹³C{¹H} NMR (126 MHz, 25.0 °C, CDCl₃) δ 131.7 (=CH), 124.8 (=C), 35.1 (CH₂), 29.8 (CH₂), 28.6 (CH₂), 27.5 (CH₂), 26.4 (CH₂) and 25.5 (CH₂). Recorded data consistent with previous values.^[1]

Cyclooctyne (18)

In a flame-dried flask under argon, a solution of diisopropylamine (26.8 mL, 191 mmol, 1.0 equiv.) in THF (90 mL) was cooled to -25 °C (dry ice, acetone) and *n*BuLi (2.5 M solution in hexanes, 76.4 mL, 191 mmol, 1.0 equiv.) was added dropwise. 1-Bromocyclooct-1-ene **S2** (36.1 g, 191 mmol, 1.0 equiv.) was added in one portion and a dark orange colour was immediately observed. The reaction was allowed to warm up to 15 °C over 45 min and stirred at this temperature for a further 3 h by which point the reaction mixture had turned pale yellow. The reaction was quenched by the addition of ice-cold HCl (2 M aq., 95.0 mL) and the aqueous phase was extracted with pentane (5 × 20 mL). The combined organic layers were washed with water and brine; dried (MgSO₄) and carefully concentrated *in vacuo* (0 °C, ice bath, ~100 mbar). The residue was purified by distillation (Vigreux column) to afford the title compound (6.31 g, 31%) as a colourless oil. b.pt. 56 °C, 18 mbar; v_{max}(film) 2928 cm⁻¹; ¹H NMR (500 MHz, -3.3 °C, CDCl₃) δ 2.19–2.14 (4 H, m, 2 × CH₂), 1.89–1.83 (4 H, m, 2 × CH₂) and 1.65–1.60 (4 H, m, 2 × CH₂); ¹³C{¹H} NMR (126 MHz, 25.0 °C, CDCl₃) δ 94.7 (2 × C=C), 34.7 (2 × CH₂), 29.8 (2 × CH₂) and 21.0 (2 × CH₂). Recorded data consistent with previous values.^[1]

Ethyl (1R*,8S*,9r*,Z)-bicyclo[6.1.0]non-4-ene-9-carboxylate (S3)

In a flame-dried flask, cyclooctadiene (55.4 mL, 452 mmol, 8.0 equiv.) and Rh₂(OAc)₄ (1.00 g, 4 mol %) were dissolved in dichloromethane (40 mL). A solution of ethyl diazoacetate (85 wt% in dichloromethane, 7.58 g, 56.5 mmol, 1.0 equiv.) in dichloromethane (20 mL) was added dropwise over 6 h. The reaction mixture was concentrated in vacuo and filtered through a short pad of silica (eluting with hexane followed by 20% EtOAc in hexane). The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography (SiO₂, gradient from 1 to 3% EtOAc in petroleum ether) to give the (1R*,8S*,9s*,Z)-diastereomer (3.74 g, 34%) as a colourless oil (data not presented) followed by the (1R*,8S*,9r*,Z)-diastereomer (4.08 g, 37%) as a colourless oil. v_{max}(film) 2980, 2933, 1721, 1307, 1184 and 1153 cm⁻¹; ¹H NMR (400 MHz, 24.9 °C, CDCl₃) δ 5.68–5.59 (2.0 H, m, =CH), 4.10 (2 H, q, J = 7.1 Hz, Et CH₂), 2.35–2.25 (2 H, m, CH₂), 2.24–2.15 (2 H, m, CH₂), 2.13– 2.04 (2 H, m, CH₂), 1.60–1.52 (2 H, m, cyclopropane CH), 1.53–1.42 (2 H, m, CH₂), 1.25 (3 H, t, J = 7.1 Hz, Et CH₃) and 1.18 (1 H, t, J = 4.5 Hz, cyclopropane CH); ${}^{13}C{}^{1}H$ NMR (101 MHz, 24.9 °C, CDCl₃) δ 174.4 (C=O), 129.9 (2 × =CH), 60.2 (Et CH₂), 28.3 (2 × CH₂), 27.9 (cyclopropane CH), 27.7 (2 × cyclopropane CH), 26.6 (2 × CH₂) and 14.3 (Et CH₃); HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₂H₁₈NaO₂⁺ 217.1199; Found 217.1200. Recorded data consistent with previous values.^[2]

(1R*,8S*,9r*,Z)-Bicyclo[6.1.0]non-4-en-9-ylmethanol (S4)

In a flame-dried flask under argon, LiAlH₄ (1.48 g, 38.9 mmol, 1.0 equiv.) was suspended in diethyl ether (200 mL) and cooled to 0 °C (ice bath). A solution of ester **S3** (7.64 g, 38.9 mmol, 1.0 equiv.) in diethyl ether (20 mL) was added dropwise over 10 min. The reaction mixture was stirred for 15 min and then the reaction was quenched by the addition of water (1.5 mL), 1 M aqueous NaOH (1.5 mL) and water (4.5 mL). MgSO₄ was added and the reaction allowed to stir for 15 min before being filtrated and concentrated *in vacuo* to afford the title compound (5.92 g, >98%) as a colourless oil. The crude product was used without further purification. v_{max} (film) 3304, 2992, 2913, 2859 and 1026 cm⁻¹; ¹H NMR (400 MHz, 24.9 °C, CDCl₃) δ 5.99–5.68 (2 H, m, =CH), 3.47 (2 H, d, *J* = 7.0 Hz, CH₂OH), 2.34–2.24 (2 H, m, CH₂), 2.21–2.12 (2 H, m, CH₂), 2.11–2.02 (2 H, m, CH₂), 1.48–1.34 (2 H, m, CH₂), 1.28 (1 H, br s, OH), 0.83–0.73 (2 H, m, cyclopropane CH) and 0.69–0.63 (1 H, m, cyclopropane CH); ¹³C{¹H} NMR (101 MHz, 24.9 °C, CDCl₃) δ 130.2 (2 × =CH), 67.3 (CH₂OH), 29.0 (2 × CH₂), 28.9 (cyclopropane CH), 27.1 (2 × CH₂) and 22.1 (2 × cyclopropane CH); HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₀H₁₆NaO⁺ 175.1093; Found 175.1098. Recorded data consistent with previous values.^[2]

(1R*,8S*,9r*)-4,5-Dibromobicyclo[6.1.0]non-9-ylmethanol (**S5**)

A solution of alkene **S4** (5.92 g, 38.0 mmol, 1.0 equiv.) in dichloromethane (200 mL) was cooled to -40 °C. A solution of bromine (1.95 mL, 38.0 mmol, 1.0 equiv.) in dichloromethane (4 mL) was added dropwise until a yellow colour persisted. The reaction was quenched by the addition of saturated aqueous sodium thiosulfate (8.0 mL) and the aqueous phase extracted with dichloromethane (3 × 8.0 mL). The combined organic layers were dried (MgSO₄) filtered and concentrated *in vacuo* to give the title compound (11.5 g, 97%) as a colourless oil. The crude product was used without further purification. v_{max} (film) 3337, 2990, 2920, 2862, 1427 and 1026 cm⁻¹; ¹H NMR (400 MHz, 25.0 °C, CDCl₃) δ 4.87–4.76 (2 H, m, CHBr), 3.45 (2 H, dd, *J* = 7.1, 1.2 Hz, CH₂), 2.66–2.57 (1 H, m, CH₂), 2.56–2.50 (1 H, m, CH₂), 2.24–2.14 (1 H, m, CH₂), 2.06–1.95 (3 H, m, CH₂), 1.43–1.26 (2 H, m, CH₂), 0.90–0.76 (2 H, m, cyclopropane CH) and 0.65–0.57 (1 H, m, cyclopropane CH); ¹³C{¹H} NMR (101 MHz, 25.0 °C, CDCl₃) δ 66.6 (CH₂OH), 56.2 (CHBr), 53.2 (CHBr), 34.9 (CH₂), 34.8 (CH₂), 28.2 (cyclopropane CH), 24.4 (CH₂), 23.6 (CH₂), 22.5 (cyclopropane CH) and 19.8 (cyclopropane CH). Recorded data consistent with previous values.^[2]

(1R*,8S*,9r*)-4,5-Dibromobicyclo[6.1.0]non-9-ylmethoxytriisopropylsilane (S6)

Alcohol **S5** (3.00 g, 9.61 mmol, 1.0 equiv.), imidazole (1.31 g, 19.2 mmol, 2.0 equiv.) and N,Ndimethyl-4-aminopyridine (1.17 g, 9.61 mmol, 1.0 equiv.) were dissolved in dichloromethane (40 mL) and cooled to 0 °C (ice bath). Triisopropylsilylchloride (2.69 mL, 12.58 mmol, 1.3 equiv.) was added dropwise and the reaction allowed to warm to ambient temperature overnight. Saturated aqueous sodium bicarbonate (20 mL) was added and the aqueous phase extracted with dichloromethane (3 × 10 mL). The combined organic layers were washed with brine, dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash column chromatography (SiO₂, gradient from 2 to 10% EtOAc in petroleum ether) to afford the title compound (4.29 g, 95%) as a colourless oil. v_{max}(film) 2940, 2862, 1462, 1103 and 1065 cm⁻¹; ¹H NMR (400 MHz, 25.0 °C, CDCl₃) δ 4.85–4.76 (2 H, m, CHBr), 3.66–3.59 (2 H, m, CH₂OTIPS), 2.71–2.63 (1 H, m, CH₂), 2.62–2.55 (1 H, m, CH₂), 2.29–2.19 (2 H, m, CH₂), 2.12– 2.00 (2 H, m, CH₂), 1.49–1.29 (2 H, m, CH₂), 1.09–1.01 (21 H, m, 3 × *i*Pr), 0.96–0.81 (2 H, m, 2 × cyclopropane CH) and 0.58 (1 H, td, J = 6.1, 4.6 Hz, cyclopropane CH); ¹³C{¹H} NMR (101 MHz, 25.0 °C, CDCl₃) δ 66.1 (CH₂OH), 56.6 (CHBr), 53.5 (CHBr), 35.1 (2 × CH₂), 28.2 (cyclopropane CH), 24.5 (CH₂), 23.8 (CH₂), 22.0 (cyclopropane CH), 19.2 (cyclopropane CH), 18.0 (6 × *i*Pr) and 12.1 (3 × *i*Pr).

(1R*,8S*,9r*)-Bicyclo[6.1.0]non-4-yn-9-ylmethoxytriisopropylsilane (19)

In a flame-dried flask under argon, a solution of dibromobicycle S6 (4.00 g, 8.54 mmol, 1.0 equiv.) in THF (100 mL) was cooled to 0 °C (ice bath). KOtBu (2.30 g, 20.5 mmol, 2.4 equiv.) was added in one portion and the reaction vigorously stirred for 1 h. The reaction was heated under reflux for a further 2 h before being cooled to ambient temperature. The reaction was guenched by the addition of saturated agueous ammonium chloride (50 mL). THF was removed in vacuo and the aqueous phase was extracted with diethyl ether $(3 \times 15 \text{ mL})$. The combined organic layers were washed with brine, dried (MgSO₄), filtered and concentrated in vacuo. The residue was purified by flash column chromatography (SiO₂, gradient from 2 to 10% EtOAc in petroleum ether) to give the title compound (1.89 g, 72%) as a yellow oil. v_{max}(film) 2940, 2864, 1462, 1445, 1098 and 1067 cm⁻¹; ¹H NMR (400 MHz, 27.0 °C, CDCl₃) δ 3.65 (2 H, d, J = 6.0 Hz, CH₂OTIPS), 2.43–2.36 (2 H, m, CH₂), 2.33–2.23 (2 H, m, CH₂), 2.17–2.09 (2 H, m, CH₂), 1.44–1.31 (2 H, m, CH₂), 1.07–1.04 (21 H, m, 3 × *i*Pr), 0.74– 0.66 (2 H, m, cyclopropane CH) and 0.62–0.55 (1 H, m, cyclopropane CH); ¹³C{¹H} NMR $(101 \text{ MHz}, 27.0 \degree \text{C}, \text{ CDCl}_3) \delta 98.9 \quad (2 \times \text{C} \equiv \text{C}), 66.6 \quad (\text{CH}_2 \text{OTIPS}), 33.6 \quad (2 \times \text{CH}_2), 27.5$ (cyclopropane CH), 22.1 ($2 \times$ cyclopropane CH), 21.6 ($2 \times$ CH₂), 18.0 ($6 \times$ iPr) and 12.1 ($3 \times$ iPr); HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₁₉H₃₄NaOSi⁺ 329.2271; Found 329.2263.

General Procedure 1

Cyclic alkyne (1.0 equiv.) was dissolved in CH_2Cl_2 (0.4 M In a flame-dried vial under argon). Methanesulfonyl azide (1.0 equiv.) was added in one portion and the reaction stirred for 20 min. The reaction mixture was concentrated *in vacuo* to afford the triazole. Where required, purification was by flash column chromatography (silica gel, gradient of 10–30% EtOAc in petroleum ether).

N. M. M. O	1-Methanesulfonyl-4,5,6,7,8,9-hexahydrocycloocta[d][1,2,3]triazole (20a) Cyclooctyne 18 (324 mg, 3.0 mmol, 0.94 equiv.) and methanesulfonyl azide (386 mg, 3.2 mmol, 1.0 equiv.) were mixed in CH ₂ Cl ₂ (7.5 mL) according to General Procedure 1 to give the title compound 20a (725 mg, >98%) as a white solid. m.pt. 50–52 °C; v _{max} (film) cm ⁻¹ ; ¹ H NMR (500 MHz, 25.0 °C, CDCl ₃) δ 3.52 (3 H, s, CH ₃), 3.11–3.07 (2 H, m, α–CH ₂), 2.94–2.89 (2 H, m, α'–CH ₂), 1.89–1.83 (2 H, m, β–CH ₂), 1.79–1.73 (2 H, m, β'–CH ₂) and 1.52–1.40 (4 H, m, γ–CH ₂); ¹³ C{ ¹ H} NMR (126 MHz, 25.0 °C, CDCl ₃) δ 146.0 (triazole), 135.7 (triazole), 42.9 (CH ₃), 28.8 (β'–CH ₂), 26.9 (β–CH ₂), 25.7 (α'–CH ₂), 24.9 (α–CH ₂), 24.6 (γ'–CH ₂) and 21.7 (γ–CH ₂); HRMS (ESI-TOF) <i>m/z</i> : [M+Na] ⁺ Calcd for C ₉ H ₁₅ N ₃ NaO ₂ S ⁺ 252.0777; Found 252.0769.
N N N S	1-(4-Tolyl)sulfonyl-4,5,6,7,8,9-hexahydrocycloocta[d][1,2,3]triazole (20b) Cyclooctyne 18 (988 mg, 9.1 mmol, 1.7 equiv.) and 4-toluenesulfonyl azide (1.03 g, 5.2 mmol, 1.0 equiv.) were mixed in CH ₂ Cl ₂ (5.0 mL) according to General Procedure 1 to give the title compound 20b (1.56 g, 98%) as a white solid. m.pt. 159–161 °C; v _{max} (film) 2928, 2857, 1387 and 1194 cm ⁻¹ ; ¹ H NMR (500 MHz, 25.0 °C, CDCl ₃) δ 7.93 (2 H, d, <i>J</i> = 8.5 Hz, ArH), 7.36 (2 H, d, <i>J</i> = 8.5 Hz, ArH), 3.07–3.03 (2 H, m, α–CH ₂), 2.86–2.81 (2 H, m, α'–CH ₂), 2.44 (3 H, s, CH ₃), 1.84–1.78 (2 H, m, β–CH ₂), 1.72–1.67 (2 H, m, β'–CH ₂) and 1.44–1.36 (4 H, m, γ–CH ₂); ¹³ C{ ¹ H} NMR (126 MHz, 25.0 °C, CDCl ₃) δ 146.6 (Ar), 146.0 (triazole), 135.3 (triazole), 134.2 (Ar), 130.3 (2 × ArH), 128.3 (2 × ArH), 28.8 (β'–CH ₂), 27.0 (β–CH ₂), 25.7 (γ'–CH ₂), 24.9 (γ–CH ₂), 24.6 (α'–CH ₂), 21.9 (α–CH ₂) and 21.8 (CH ₃); HRMS (ESI-TOF) <i>m/z</i> : [M+Na] ⁺ Calcd for C ₁₅ H ₁₉ N ₃ NaO ₂ S ⁺ 328.1090; Found 328.1090.
NNN-S NN-S O	1-(4-Nitrobenzene)sulfonyl-4,5,6,7,8,9-hexahydrocycloocta[d][1,2,3]triazole (20c) Cyclooctyne 18 (324 mg, 3.0 mmol, 1.0 equiv.) and 4-nitrobenzenesulfonyl azide (685 mg, 3.0 mmol, 1.0 equiv.) were mixed in CH ₂ Cl ₂ (7.5 mL) according to General Procedure 1 to give the title compound 20c (1.00 g, >98%) as a white solid. m.pt. 121–122 °C; v _{max} (film) 3107, 2930, 2857, 1533, 1393, 1348, 1192 and 1173 cm ⁻¹ ; ¹ H NMR (500 MHz, 25.0 °C, CDCl ₃) δ 8.41 (2 H, d, <i>J</i> = 8.9 Hz, ArH), 8.27 (2 H, d, <i>J</i> = 8.9 Hz, ArH), 3.10–3.05 (2 H, m, α–CH ₂), 2.87–2.83 (2 H, m, α'–CH ₂), 1.88–1.82 (2 H, m, β–CH ₂), 1.75–1.68 (2 H, m, β'–CH ₂) and 1.46–1.37 (4 H, m, γ–CH ₂); ¹³ C{ ¹ H} NMR (126 MHz, 25.0 °C, CDCl ₃) δ 151.4 (Ar), 146.4 (triazole), 142.5 (Ar), 136.0 (triazole), 129.8 (2 × ArH), 124.8 (2 × ArH), 28.7 (β'–CH ₂), 27.1 (β–CH ₂), 25.6 (α'–CH ₂), 24.9 (α–CH ₂), 24.6 (γ'–CH ₂) and 22.0 (γ–CH ₂); HRMS (ESI-TOF) <i>m/z</i> : [M+Na] ⁺ Calcd for C ₁₄ H ₁₆ N ₄ NaO ₄ S ⁺ 359.0784; Found 359.0775.
N N N N N N N N N N N N N N N N N N N	1-(4-Methoxybenzene)sulfonyl-4,5,6,7,8,9-hexahydrocycloocta[d][1,2,3]triazole (20d) Cyclooctyne 18 (324 mg, 3.0 mmol, 1.0 equiv.) and 4-methoxybenzenesulfonyl azide (640 mg, 3.0 mmol, 1.0 equiv.) were mixed in CH ₂ Cl ₂ (7.5 mL) according to General Procedure 1 to give the title compound 20d (961 mg, >98%) as a white solid. m.pt. 113–114 °C; v _{max} (film) 2928, 2855, 1593, 1576, 1497, 1385, 1265, 1196, 1163 and 1090 cm ⁻¹ ; ¹ H NMR (500 MHz, 25.0 °C, CDCl ₃) δ 7.99 (2 H, d, <i>J</i> = 9.0 Hz, SO ₂ Ar), 7.01 (2 H, d, <i>J</i> = 9.0 Hz, SO ₂ Ar), 3.88 (3 H, s, CH ₃), 3.06 (2 H, br t, <i>J</i> = 6.3 Hz, α–CH ₂), 2.84 (2 H, br t, <i>J</i> = 6.4 Hz, α'–CH ₂), 1.84–1.78 (2 H, m, β–CH ₂), 1.72–1.66 (2 H, m, β'–CH ₂) and 1.44–1.35 (4 H, m, γ–CH ₂); ¹³ C{ ¹ H} NMR (126 MHz, 25.0 °C, CDCl ₃) δ 164.9 (SO ₂ Ar), 145.9 (triazole), 135.2 (triazole), 130.8 (2 × SO ₂ Ar), 128.2 (SO ₂ Ar), 114.9 (2 × SO ₂ Ar), 55.9 (OMe), 28.8 (β'–CH ₂), 27.0 (β–CH ₂), 25.7 (γ'–CH ₂), 24.9 (γ– CH ₂), 24.6 (α'–CH ₂) and 21.9 (α–CH ₂); HRMS (ESI-TOF) <i>m/z</i> : [M+Na] ⁺ Calcd for

 $C_{15}H_{19}N_3NaO_3S^+$ 344.1039; Found 344.1039.

1-(2,4,6-Triisopropylbenzene)sulfonyl-4,5,6,7,8,9-hexahydrocycloocta[d][1,2,3]triazole (**20e**) Cyclooctyne **18** (216 mg, 2.0 mmol, 1.0 equiv.) and 2,4,6-triisopropylbenzenesulfonyl azide (619 mg, 2.0 mmol, 1.0 equiv.) were mixed in CH₂Cl₂ (5.0 mL) according to General Procedure 1 to give the title compound **20e** (743 mg, 89%) as a white solid. m.pt. 89–92 °C; v_{max} (film) cm⁻¹; ¹H NMR (500 MHz, 25.0 °C, CDCl₃) δ 7.22 (2 H, s, ArH), 4.02 (2 H, sept., *J* = 6.7 Hz, *i*Pr), 3.07–3.03 (2 H, m, α–CH₂), 2.94 (1 H, sept., *J* = 6.9 Hz, *i*Pr), 2.90–2.86 (2 H, m, α'– CH₂), 1.76–1.70 (4 H, m, β–CH₂), 1.49–1.39 (4 H, m, γ–CH₂), 1.26 (6 H, d, *J* = 6.9 Hz, *i*Pr) and 1.18 (12 H, d, *J* = 6.9 Hz, *i*Pr); ¹³C{¹H} NMR (126 MHz, 25.0 °C, CDCl₃) δ 155.9 (Ar), 152.7 (2 × Ar), 145.8 (triazole), 134.5 (triazole), 129.8 (Ar), 124.3 (2 × ArH), 34.4 (*i*Pr), 29.8 (2 × *i*Pr), 28.7 (β'–CH₂), 26.5 (β–CH₂), 25.7 (α–CH₂), 25.0 (α'–CH₂), 24.6 (γ'–CH₂), 24.4 (4 × *i*Pr), 23.4 (2 × *i*Pr) and 21.7 (γ–CH₂); HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₃H₃₅N₃NaO₂S⁺ 440.2342; Found 440.2332. Recorded data consistent with previous values.^[3]

1-(4-Biphenyl)sulfonyl-4,5,6,7,8,9-hexahydrocycloocta[d][1,2,3]triazole (**20f**)

Cyclooctyne **18** (324 mg, 3.0 mmol, 1.0 equiv.) and 4-phenylbenzenesulfonyl azide (779 mg, 3.0 mmol, 1.0 equiv.) were mixed in CH₂Cl₂ (7.5 mL) according to General Procedure 1 to give the title compound **20f** (798 mg, 72%) as a white solid. m.pt. 109–113 °C; v_{max} (film) 3067, 2928, 2857, 1591, 1389 and 1171 cm⁻¹; ¹H NMR (500 MHz, 25.1 °C, CDCl₃) δ 8.12 (2 H, d, *J* = 8.6 Hz, ArH), 7.76 (2 H, d, *J* = 8.6 Hz, ArH), 7.60–7.56 (2 H, m, ArH), 7.51–7.41 (3 H, m, ArH), 3.10 (2 H, br t, *J* = 6.3 Hz, α –CH₂), 2.86 (2 H, br t, *J* = 6.4 Hz, α' –CH₂), 1.87–1.81 (2 H, m, β –CH₂), 1.75–1.68 (2 H, m, β' –CH₂) and 1.46–1.37 (4 H, m, γ –CH₂); ¹³C{¹H} NMR (126 MHz, 25.0 °C, CDCl₃) δ 148.2 (Ar), 146.1 (triazole), 138.5 (Ar), 135.5 (Ar), 135.5 (triazole), 129.2 (2 × ArH), 129.1 (Ar), 128.8 (2 × ArH), 128.2 (2 × ArH), 127.4 (2 × ArH), 28.8 (β' –CH₂), 27.1 (β –CH₂), 25.7 (γ' –CH₂), 25.0 (γ –CH₂), 24.6 (α' –CH₂) and 22.0 (α –CH₂); HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₀H₂₁N₃NaO₂S⁺ 390.1247; Found 390.1235.

1-(5-Dimethylaminonaphth-1-yl)sulfonyl-4,5,6,7,8,9-hexahydrocycloocta[d][1,2,3]triazole (**20g**)

Cyclooctyne **18** (324 mg, 3.0 mmol, 1.0 equiv.) and 4-biphenylsulfonyl azide (829 mg, 3.0 mmol, 1.0 equiv.) were mixed in CH₂Cl₂ (7.5 mL) according to General Procedure 1 to give the title compound **20g** (1.08 g, 94%) as a yellow solid. m.pt. 116–118 °C; v_{max}(film) 2928, 2857, 2791, 1568, 1454, 1381, 1202, 1186, 1171 and 1153 cm⁻¹; ¹H NMR (500 MHz, 25.1 °C, CDCl₃) δ 8.68 (1 H, dt, *J* = 8.5, 1.0 Hz, Dansyl Ar), 8.51 (1 H, dd, *J* = 7.5, 1.3 Hz, Dansyl Ar), 8.40 (1 H, d, *J* = 8.7 Hz, Dansyl Ar), 7.61 (1 H, dd, *J* = 8.5, 7.5 Hz, Dansyl Ar), 7.55 (1 H, dd, *J* = 8.7, 7.6 Hz, Dansyl Ar), 7.17 (1 H, dd, *J* = 7.6, 1.0 Hz, Dansyl Ar), 2.95 (2 H, br t, *J* = 6.3 Hz, α –CH₂), 2.85 (6 H, s, NMe₂), 2.80 (2 H, br t, *J* = 6.4 Hz, α' –CH₂), 1.70–1.62 (4 H, m, β –CH₂) and 1.37–1.30 (4 H, m, γ –CH₂); ¹³C{¹H} NMR (126 MHz, 25.0 °C, CDCl₃) δ 152.0 (Dansyl Ar), 146.0 (triazole), 135.0 (triazole), 133.5 (Dansyl Ar), 132.1 (Dansyl Ar), 131.3 (Dansyl Ar), 129.8 (Dansyl Ar), 129.6 (Dansyl Ar), 122.9 (Dansyl Ar), 118.3 (Dansyl Ar), 116.0 (Dansyl Ar), 45.4 (2 × CH₃), 28.5 (β' –CH₂), 26.6 (β –CH₂), 25.6 (γ' –CH₂), 24.9 (γ –CH₂), 24.5 (α' –CH₂) and 22.0 (α –CH₂); HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₂₀H₂₄N₄NaO₂S⁺ 407.1512; Found 407.1512.

(5aS*,6S*,6aR*)-1-Methanesulfonyl-6-triisopropylsilyloxymethyl-1,4,5,5a,6,6a,7,8-octahydrocyclopropa[5,6]cycloocta[1,2-d][1,2,3]triazole (**21a**)

Bicyclononyne 19 (50 mg, 0.16 mmol, 1.0 equiv.) and methanesulfonyl azide (20 mg, 0.16 mmol, 1.0 equiv.) were mixed in CH₂Cl₂ (410 µL) according to General Procedure 1 to give the title compound **21a** (69 mg, >98%) as a colourless oil. v_{max}(film) 2941, 2864, 1379, 1193, 1179, 1103 and 1066 cm⁻¹; ¹H NMR (400 MHz, 20.7 °C, CDCl₃) δ 3.65–3.56 (2 H, m, CH₂OTIPS), 3.55 (3 H, s, CH₃), 3.32 (1 H, ddd, J = 16.7, 7.1, 3.6 Hz, CH₂), 3.08–2.99 (2 H, m, CH₂), 2.92 (1 H, ddd, J = 15.9, 9.2, 4.2 Hz, CH₂), 2.50–2.41 (1 H, m, CH₂), 2.40–2.32 (1 H, m, CH₂), 1.56–1.42 (2 H, m, CH₂), 1.08–1.01 (21 H, m, 3 × *i*Pr), 0.81–0.74 (2 H, m, cyclopropane CH) and 0.71–0.64 (1 H, m, cyclopropane CH); ${}^{13}C{}^{1}H{}$ NMR (101 MHz, 21.4 °C, CDCl₃) δ 146.1 (triazole), 136.0 (triazole), 65.9 (CH₂OTIPS), 42.9 (CH₃), 28.1 (cyclopropane CH), 27.2 (CH₂), 26.6 (CH₂), 25.1 (CH₂), 22.8 (CH₂), 21.3 (cyclopropane CH), 20.6 (cyclopropane CH), 18.0 12.0 HRMS (6 × *i*Pr) and (3 × *i*Pr); (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₂₀H₃₇N₃NaO₃SSi⁺ 450.2217; Found 450.2206.

(5aS*,6S*,6aR*)-1-(4-Tolyl)sulfonyl-6-triisopropylsilyloxymethyl-1,4,5,5a,6,6a,7,8-octahydrocyclopropa[5,6]cycloocta[1,2-d][1,2,3]triazole (**21b**)

Bicyclononyne 19 (50 mg, 0.16 mmol, 1.0 equiv.) and 4-toluenesulfonyl azide (32 mg, 0.16 mmol, 1.0 equiv.) were mixed in CH_2CI_2 (410 μ L) according to General Procedure 1 to give the title compound **21b** (81 mg, >98%) as a colourless oil. v_{max}(film) 2941, 2864, 1389, 1196, 1177, 1092 and 1065 cm⁻¹; ¹H NMR (400 MHz, 25.5 °C, CDCl₃) δ 7.92 (2 H, d, J = 8.2 Hz, Ts Ar), 7.36 (2 H, d, J = 8.2 Hz, Ts Ar), 3.59 (1 H, dd, J = 10.5, 5.5 Hz, CH_AOTIPS), 3.53 (1 H, dd, J = 10.5, 5.7 Hz, CH_BOTIPS), 3.30 (1 H, dd, J = 7.2, 3.7 Hz, CH_A), 3.03–2.92 (2 H, m, CH₂), 2.85 (1 H, ddd, J = 15.8, 9.2, 4.2 Hz, CH_B), 2.44 (3 H, s, CH₃), 2.43–2.27 (2 H, m, CH₂), 1.48–1.30 $(2 \text{ H}, \text{ m}, \text{CH}_2), 1.10-0.98 (21 \text{ H}, \text{ m}, 3 \times i\text{Pr}) \text{ and } 0.77-0.59 (3 \text{ H}, \text{ m}, \text{cyclopropane CH}); {}^{13}\text{C}{}^{1}\text{H}}$ NMR (101 MHz, 24.8 °C, CDCl₃) δ 146.6 (Ts Ar), 146.2 (triazole), 135.8 (triazole), 134.2 (Ts Ar), 130.3 (2 × Ts Ar), 128.4 (2 × Ts Ar), 65.9 (CH₂OTIPS), 28.2 (cyclopropane CH), 27.3 (CH₂), 26.8 (CH₂), 25.1 (CH₂), 22.7 (CH₂), 21.8 (CH₃), 21.4 (cyclopropane CH), 20.7 (cyclopropane CH), 18.0 (3 × *i*Pr); HRMS (ESI-TOF) m/z: (6 × *i*Pr) and 12.0 [M+Na]⁺ Calcd for $C_{26}H_{41}N_3NaO_3SSi^+$ 526.2530; Found 526.2526.

(5aS*,6S*,6aR*)-1-(4-Nitrobenzene)sulfonyl-6-triisopropylsilyloxymethyl-1,4,5,5a,6,6a,7,8-octahydrocyclopropa[5,6]cycloocta[1,2-d][1,2,3]triazole (**21c**)

Bicyclononyne **19** (50 mg, 0.16 mmol, 1.0 equiv.) and 4-nitrobenzenesulfonyl azide (37 mg, 0.16 mmol, 1.0 equiv.) were mixed in CH₂Cl₂ (410 μL) according to General Procedure 1 to give the title compound **21c** (84 mg, 96%) as a white waxy solid. m.pt. 136 °C dec. v_{max}(film) 2941, 2864, 1537, 1406, 1349, 1198, 1184, 1090 and 1067 cm⁻¹; ¹H NMR (400 MHz, 27.0 °C, CDCl₃) δ 8.41 (2 H, d, *J* = 9.1 Hz, Ns Ar), 8.26 (2 H, d, *J* = 9.1 Hz, Ns Ar), 3.62 (1 H, dd, *J* = 10.6, 5.5 Hz, CH_AOTIPS), 3.55 (1 H, dd, *J* = 10.6, 5.8 Hz, CH_BOTIPS), 3.30 (1 H, ddd, *J* = 16.7, 7.1, 3.7 Hz, CH_A), 3.07–2.94 (2 H, m, CH₂), 2.93–2.82 (1 H, m, CH_B), 2.50–2.40 (1 H, m, CH₂), 2.39–2.28 (1 H, m, CH₂), 1.52–1.37 (2 H, m, CH₂), 1.07–0.98 (21 H, m, 3 × *i*Pr) and 0.79–0.61 (3 H, m, cyclopropane CH); ¹³C{¹H} NMR (101 MHz, 27.0 °C, CDCl₃) δ 151.4 (Ns Ar), 146.5 (triazole), 142.5 (Ns Ar), 136.4 (triazole), 129.9 (2 × Ns Ar), 124.8 (2 × Ns Ar), 65.7 (CH₂OTIPS), 28.2 (cyclopropane CH), 27.1 (CH₂), 26.7 (CH₂), 25.1 (CH₂), 22.9 (CH₂), 21.2 (cyclopropane CH), 20.5 (cyclopropane CH), 18.0 (6 × *i*Pr) and 12.0 (3 × *i*Pr); HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₅H₃₈N₄NaO₅SSi⁺ 557.2224; Found 557.2204.

(5aS*,6S*,6aR*)-1-(4-Methoxybenzene)sulfonyl-6-triisopropylsilyloxymethyl-1,4,5,5a,6,6a,7,8-octahydrocyclopropa[5,6]cycloocta[1,2-d][1,2,3]triazole (**21d**) Bicyclononyne 19 (50 mg, 0.16 mmol, 1.0 equiv.) and 4-methoxybenzenesulfonyl azide (35 mg, 0.16 mmol, 1.0 equiv.) were mixed in CH₂Cl₂ (410 µL) according to General Procedure 1 to give the title compound 21d (84 mg, >98%) as a colourless oil. v_{max}(film) 2941, 2864, 1593, 1578, 1389, 1267, 1198, 1169, 1094, 1065 and 1020 cm⁻¹; ¹H NMR (400 MHz, 20.8 °C, CDCl₃) δ 7.98 (2 H, d, J = 9.0 Hz, SO₂Ar), 7.01 (2 H, d, J = 9.0 Hz, SO₂Ar), 3.80 (3 H, s, OMe), 3.59 (1 H, dd, J = 10.5, 5.6 Hz, CH_AOTIPS), 3.53 (1 H, dd, J = 10.5, 5.9 Hz, CH_BOTIPS), 3.29 (1 H, ddd, J = 16.5, 7.2, 3.6 Hz, CH_A), 3.03–2.92 (2 H, m, CH₂), 2.84 (1 H, ddd, J = 15.9, 9.2, 4.1 Hz, CH_B), 2.46–2.36 (1 H, m, CH₂), 2.37–2.36 (1 H, m, CH₂), 1.47–1.30 (2 H, m, CH₂), 1.09–0.98 (21 H, m, 3 × *i*Pr) and 0.77–0.59 (3 H, m, cyclopropane CH); ${}^{13}C{}^{1}H{}$ NMR (101 MHz, 21.4 °C, CDCl₃) δ 164.9 (SO₂Ar), 146.2 (triazole), 135.6 (triazole), 130.9 (2 × SO₂Ar), 128.1 (SO₂Ar), 114.9 (2 × SO₂Ar), 65.9 (CH₂OTIPS), 55.9 (OMe), 28.2 (cyclopropane CH), 27.3 (CH₂), 26.8 (CH₂), 25.1 (CH₂), 22.7 (CH₂), 21.4 (cyclopropane CH), 20.8 (cyclopropane CH), 18.0 (6 × *i*Pr) and 12.0 (3 × *i*Pr); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₂₆H₄₁N₃NaO₄SSi⁺ 542.2479; Found 542.2470.

General Procedure 2

Sulfonyl triazole (1.0 equiv.) was dissolved in PhMe (0.04 M) in a flame dried vial under argon. Rh₂(OAc)₄ (5 mol%) was added and the vial sealed with a Teflon cap and heated to 50 °C (aluminium block) until complete conversion of starting material was observed by TLC (0.5 - 2 h). The reaction mixture was cooled to ambient temperature and diluted with THF (0.5 reaction volumes). LiAlH₄ (1.5 equiv.) was added in one portion and the reaction stirred at this temperature for 15 min. The reaction was quenched by consecutive addition of water, 1 M aqueous NaOH, a further portion of water and stirred for 5 min. Anhydrous MgSO₄ was added and the reaction mixture filtered, concentrated *in vacuo* and purified by flash column chromatography (silica gel, gradient 5–30% EtOAc in petroleum ether) to afford the sulfonamide.

(1*R**,3*a*S*,6*a*S*)-1-Methanesulfonylaminooctahydropentalene (**22***a*). Triazole **20a** (46 mg, 0.20 mmol, 1.0 equiv.) was treated was treated according to General Procedure 2 with Rh₂(OAc)₄ (4 mg, 10 µmol, 5.0 mol %) in PhMe (10 mL) at 50 °C then LiAlH₄ (15 mg, 0.40 mmol, 2.0 equiv.) and THF (5.0 mL) to give the title compound **22a** (18 mg, 44%) as a colourless wax. m.pt. 64–67 °C; v_{max} (film) 3275, 2945, 2864, 1312, 1153 and 1132 cm⁻¹; ¹H NMR (500 MHz, 25.0 °C, CDCl₃) δ 4.28 (1 H, d, *J* = 8.3 Hz, NH), 3.73–3.61 (1 H, m, CH), 2.91 (3 H, s, CH₃), 2.56–2.46 (1 H, m, CH), 2.44–2.34 (1 H, m, CH), 1.95–1.85 (1 H, m, CH₂), 1.85–1.78 (1 H, m, CH₂), 1.68–1.54 (2 H, m, CH₂), 1.44–1.15 (5 H, m, CH₂) and 1.11–1.00 (1 H, m, CH₂); ¹³C{¹H} NMR (126 MHz, 25.0 °C, CDCl₃) δ 57.3 (CH), 45.9 (CH), 41.4 (CH), 41.4 (Ms CH₃), 35.6 (CH₂), 31.0 (CH₂), 29.5 (CH₂), 28.2 (CH₂) and 27.4 (CH₂); HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₉H₁₇NNaO₂S⁺ 226.0872; Found 226.0872.

 $(1R^*, 3aS^*, 6aS^*)$ -1-(4-Tolyl)sulfonylaminooctahydropentalene (22b). Triazole 20b (61 mg, 0.20 mmol, 1.0 equiv.) was treated was treated according to General Procedure 2 with Rh₂(OAc)₄ (4 mg, 10 µmol, 5.0 mol %) in PhMe (10 mL) at 50 °C then LiAlH₄ (15 mg, 0.40 mmol, 2.0 equiv.) and THF (5.0 mL) to give the title compound 22b (34 mg, 61%) as a colourless oil. v_{max}(film) 3277, 2943, 2862, 1319, 1306, 1288, 1157 and 1094 cm⁻¹; ¹H NMR (400 MHz, 24.9 °C, CDCl₃) δ 7.77 (2 H, d, *J* = 7.9 Hz, ArH), 7.29 (2 H, d, *J* = 7.9 Hz, ArH), 4.52 (1 H, d, *J* = 8.2 Hz, NH), 3.59–3.50 (1 H, m, CH), 2.43 (3 H, s, CH₃), 2.37–2.28 (2 H, m, CH), 1.90–1.82 (1 H, m, CH₂), 1.66–1.39 (4 H, m, CH₂), 1.31–1.14 (4 H, m, CH₂) and 1.08–1.00 (1 H, m, CH₂); ¹³C{¹H} NMR (101 MHz, 25.0 °C, CDCl₃) δ 143.2 (Ar), 138.0 (Ar), 129.6 (2 × ArH), 127.1 (2 × ArH), 57.1 (CH), 45.5 (CH), 41.3 (CH), 35.5 (CH₂), 30.6 (CH₂), 29.4 (CH₂), 28.1 (CH₂), 27.3 (CH₂) and 21.5 (CH₂); HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₅H₂₁NNaO₂S⁺ 302.1185; Found 302.1180. Recorded data consistent with previous values.^[4]

(1*R**,3*a*S*,6*a*S*)-1-(4-Nitrobenzene)sulfonylaminooctahydropentalene (22*c*). Triazole 20*c* (67 mg, 0.20 mmol, 1.0 equiv.) was treated was treated according to General Procedure 2 with Rh₂(OAc)₄ (4 mg, 10 µmol, 5.0 mol %) in PhMe (10 mL) at 50 °C then LiAlH₄ (15 mg, 0.40 mmol, 2.0 equiv.) and THF (5.0 mL) to give the title compound 22*c* (5 mg, 8%) as a yellow oil. v_{max} (film) 3277, 2947, 2866, 1530, 1348, 1312, 1163 and 1094 cm⁻¹; ¹H NMR (500 MHz, 25.0 °C, CDCl₃) δ 8.29 (2 H, d, *J* = 8.9 Hz, Ns Ar), 8.01 (2 H, d, *J* = 8.9 Hz, Ns Ar), 4.64 (1 H, d, *J* = 8.4 Hz, NH), 3.61–3.52 (1 H, m, CH), 2.36–2.24 (2 H, m, CH), 1.87–1.78 (1 H, m, CH₂), 1.64–1.58 (1 H, m, CH₂), 1.56–1.46 (2 H, m, CH₂), 1.41–1.33 (1 H, m, CH₂), 1.33–1.12 (3 H, m, CH₂) and 1.10–0.96 (2 H, m, CH₂); ¹³C{¹H} NMR (126 MHz, 25.0 °C, CDCl₃) δ 150.0 (Ns Ar), 147.0 (Ns Ar), 128.3 (2 × Ns Ar), 124.4 (2 × Ns Ar), 57.4 (CH), 45.6 (CH), 41.3 (CH), 35.5 (CH₂), 30.7 (CH₂), 29.3 (CH₂), 28.1 (CH₂) and 27.3 (CH₂); HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₄H₁₈N₂NaO₄S⁺ 333.0879; Found 333.0879.

(1R*,3aS*,6aS*)-1-(4-Methoxybenzene)sulfonylaminooctahydropentalene

Triazole **20d** (64 mg, 0.20 mmol, 1.0 equiv.) was treated was treated according to General Procedure 2 with Rh₂(OAc)₄ (4 mg, 10 µmol, 5.0 mol %) in PhMe (10 mL) at 50 °C then LiAlH₄ (15 mg, 0.40 mmol, 2.0 equiv.) and THF (5.0 mL) to give the title compound **22d** (45 mg, 77%) as a colourless oil. v_{max} (film) 3257, 2945, 2864, 1597, 1499, 1302, 1258, 1153 and 1096 cm⁻¹; ¹H NMR (500 MHz, 25.0 °C, CDCl₃) δ 7.82 (2 H, d, *J* = 8.9 Hz, ArH), 6.96 (2 H, d, *J* = 8.9 Hz, ArH), 4.52 (1 H, d, *J* = 8.3 Hz, NH), 3.87 (3 H, s, CH₃), 3.57–3.47 (1 H, m, CH), 2.38–2.27 (2 H, m, 2 × CH), 1.90–1.82 (1 H, m, CH₂), 1.65–1.59 (1 H, m, CH₂), 1.59–1.48 (2 H, m, CH₂), 1.47–1.40 (1 H, m, CH₂), 1.58–1.11 (4 H, m, CH₂) and 1.08–1.00 (1 H, m, CH₂); 1³C{¹H} NMR (126 MHz, 25.0 °C, CDCl₃) δ 162.7 (Ar), 132.6 (Ar), 129.2 (2 × ArH), 114.1 (2 × Ar), 57.1 (CH), 55.6 (CH), 45.5 (CH₃), 41.3 (CH), 35.5 (CH₂), 30.6 (CH₂), 29.4 (CH₂), 28.1 (CH₂) and 27.3 (CH₂); HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₅H₂₁NNaO₃S⁺ 318.1134; Found 318.1134.

(22d).

(1*R**,3*a*S*,6*a*S*)-1-(2,4,6-Triisopropylbenzene)sulfonylaminooctahydropentalene (**22e**) Triazole **20e** (84 mg, 0.20 mmol, 1.0 equiv.) was treated was treated according to General Procedure 2 with Rh₂(OAc)₄ (4 mg, 10 µmol, 5.0 mol %) in PhMe (10 mL) at 50 °C then LiAlH₄ (15 mg, 0.40 mmol, 2.0 equiv.) and THF (5.0 mL) to give the title compound **22e** (28 mg, 36%) as a colourless oil. v_{max} (film) 3271, 2953, 2866 and 1152 cm⁻¹; ¹H NMR (500 MHz, 24.9 °C, CDCl₃) δ 7.15 (2 H, s, ArH), 4.36 (1 H, d, *J* = 8.1 Hz, NH), 4.18 (2 H, sept., *J* = 6.7 Hz, *i*Pr), 3.60–3.50 (1 H, m, CH), 2.88 (1 H, sept., *J* = 6.7 Hz, *i*Pr), 2.53–2.45 (1 H, m, CH), 2.42–2.32 (1 H, m, CH), 1.94–1.86 (1 H, m, CH₂), 1.68–1.49 (4 H, m, CH₂), 1.36–1.30 (2 H, m, CH₂), 1.27 (6 H, d, *J* = 6.7 Hz, 2 × *i*Pr), 1.25 (12 H, d, *J* = 6.7 Hz, 4 × *i*Pr) and 1.11–1.03 (3 H, m, CH₂); ¹³C{¹H} NMR (126 MHz, 25.0 °C, CDCl₃) δ 152.5 (Ar), 150.2 (2 × Ar), 133.1 (Ar), 123.7 (2 × ArH), 56.7 (CH), 46.1 (CH), 41.1 (CH), 35.6 (CH₂), 34.1 (*i*Pr), 30.6 (CH₂), 29.6 (2 × *i*Pr), 29.5 (CH₂), 28.2 (CH₂), 27.4 (CH₂), 24.9 (2 × *i*Pr), 24.8 (2 × *i*Pr) and 23.6 (2 × *i*Pr); HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₃H₃₇NNaO₂S⁺ 414.2437; Found 414.2425.

(*1R**,*3aS**,*6aS**)-1-(*4*-*Biphenyl*)sulfonylaminooctahydropentalene (**22f**) Triazole **20f** (74 mg, 0.20 mmol, 1.0 equiv.) was treated was treated according to General Procedure 2 with Rh₂(OAc)₄ (4 mg, 10 µmol, 5.0 mol %) in PhMe (10 mL) at 50 °C then LiAlH₄ (15 mg, 0.40 mmol, 2.0 equiv.) and THF (5.0 mL) to give the title compound **22f** (38 mg, 55%) as a colourless wax. m.pt. 146–149 °C; v_{max} (film) 3277, 2947, 2864, 1321, 1159 and 1098 cm⁻¹; ¹H NMR (500 MHz, 25.0 °C, CDCl₃) δ 7.95 (2 H, d, *J* = 8.4 Hz, ArH), 7.65–7.60 (2 H, m, ArH), 7.51–7.46 (2 H, m, ArH), 7.42 (2 H, d, *J* = 8.4 Hz, ArH), 7.43– 7.39 (1 H, m, ArH), 4.57 (1 H, d, *J* = 8.3 Hz, NH), 3.65–3.58 (1 H, m, CH), 2.41–2.31 (2 H, m, 2 × CH), 1.92–1.85 (1 H, m, CH₂), 1.72–1.65 (1 H, m, CH₂), 1.62–1.44 (3 H, m, CH₂), 1.38–1.14 (4 H, m, CH₂) and 1.11–0.98 (1 H, m, CH₂); ¹³C{¹H} NMR (126 MHz, 25.0 °C, CDCl₃) δ 145.4 (Ar), 139.5 (Ar), 139.3 (Ar), 129.0 (2 × ArH), 128.4 (Ar), 127.6 (2 × ArH), 127.6 (2 × ArH), 127.3 (2 × ArH), 57.2 (CH), 45.6 (CH), 41.3 (CH), 35.5 (CH₂), 30.7 (CH₂), 29.4 (CH₂), 28.1 (CH₂) and 27.3 (CH₂); HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₀H₂₃NNaO₂S⁺ 364.1342; Found 364.1342.

(1R*,3aS*,6aS*)-1-(5-Dimethylaminonaphth-1-yl)sulfonylaminooctahydropentalene (22g) Triazole 20g (77 mg, 0.20 mmol, 1.0 equiv.) was treated was treated according to General Procedure 2 with $Rh_2(OAc)_4$ (4 mg, 10 μ mol, 5.0 mol %) in PhMe (10 mL) at 50 °C then 0.40 mmol, 2.0 equiv.) and THF (5.0 mL) to give the title LiAlH₄ (15 mg, compound 22g (54 mg, 76%) as a yellow oil. v_{max}(film) 3288, 2943, 2864, 2787, 1452, 1310, 1159 and 1144 cm⁻¹; ¹H NMR (500 MHz, 25.0 °C, CDCl₃) δ 8.53 (1 H, d, J = 8.5 Hz, Dansyl Ar), 8.32–8.24 (2 H, m, Dansyl Ar), 7.56 (1 H, dd, J = 8.6, 7.5 Hz, Dansyl Ar), 7.52 (1 H, dd, J = 8.5, 7.3 Hz, Dansyl Ar), 7.18 (1 H, d, J = 7.5 Hz, Dansyl Ar), 4.68 (1 H, d, J = 8.3 Hz, NH), 3.55–3.47 (1 H, m, CH), 2.89 (6 H, s, CH₃), 2.31–2.23 (1 H, m, CH), 2.22–2.13 (1 H, m, CH), 1.84–1.75 (1 H, m, CH₂), 1.54–1.41 (4 H, m, CH₂), 1.30–1.04 (4 H, m, CH₂) and 1.02–0.96 (1 H, m, CH₂); ¹³C{¹H} NMR (126 MHz, 25.0 °C, CDCl₃) δ 152.0 (Dansyl Ar), 135.6 (Dansyl Ar), 130.3 (Dansyl Ar), 129.8 (Dansyl Ar), 129.7 (Dansyl Ar), 129.4 (Dansyl Ar), 128.2 (Dansyl Ar), 123.2 (Dansyl Ar), 118.8 (Dansyl Ar), 115.1 (Dansyl Ar), 57.3 (CH), 45.5 (2 × CH₃), 45.4 (CH), 41.1 (CH), 35.5 (CH₂), 30.5 (CH₂), 29.3 (CH₂), 27.9 (CH₂) and 27.2 (CH₂); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for $C_{20}H_{26}N_2NaO_2S^+$ 381.1607; Found 381.1601. (3aS,6aS)-1-Oxohexahydropentalene (23) In a flame-dried flask under argon, triazole 20c (750 mg, 2.23 mmol, 1.0 equiv.) was dissolved in C_6F_6 (55.8 mL). $Rh_2(S-NTTL)_4$ (162 mg, 5 mol %) was added and the reaction heated to 50 °C (oil bath) for 1 h. The reaction was cooled to ambient temperature and basic alumina (22.3 g, pH 9.5, Brockmann activity III, i.e. 6 wt % H₂O) was added and the mixture vigorously stirred for 15 min. Filtration through celite and concentration in vacuo afforded a residue that was purified by flash column chromatography (silica, gradient from 2-10% ethyl acetate in petrol) to give the title compound (238 mg, 1.92 mmol, 86%) as a volatile colourless oil. $\alpha_D^{23.5}$ +159 (c 1.1, EtOH), Lit. $\alpha_D^{23.0}$ +116 (c 1.3, EtOH); ν_{max} (film) 2951, 2870 and 1732 cm⁻¹; ¹H

NMR (500 MHz, 25.0 °C, CDCl₃) δ 2.81–2.73 (1 H, m, CH), 2.54 (1 H, td, J = 9.4, 4.4 Hz, CH), 2.29-2.24 (2 H, m, CH₂), 2.16-2.07 (1 H, m, CH₂), 1.90-1.76 (3 H, m, CH₂), 1.64-1.49 (3 H, m, CH₂) and 1.45–1.38 (1 H, m, CH₂); ¹³C{¹H} NMR (101 MHz, 25.0 °C, CDCl₃) δ 223.5 (C=O), 52.0 (CH), 40.9 (CH), 37.9 (CH₂), 33.4 (CH₂), 29.8 (CH₂), 26.3 (CH₂) and 26.1 (CH₂); HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₈H₁₃O⁺ 125.0961; Found 125.0961. Recorded data consistent with previous values.^[5]

(1R,3aS,6aS)-1-Hydroxy-1-phenyloctahydropentalene (24)

In a flame-dried flask under argon, triazole 20c (168 mg, 0.50 mmol, 1.0 equiv.) was dissolved in C_6F_6 (25.0 mL). $Rh_2(S-NTTL)_4$ (72 mg, 0.05 mmol, 5 mol %) was added and the reaction heated to 50 °C (oil bath) for 1 h. The reaction was cooled to ambient temperature and basic alumina (2.5 g, pH 9.5, Brockmann activity III, *i.e.* 6 wt % H₂O) was added and the mixture vigorously stirred for 30 min and filtered through a short pad of Celite, cooled to 0 °C and diluted with diethyl ether (12.5 mL). PhMgBr (3.0 M solution in diethyl ether, 0.5 mL, 1.5 mmol, 3.0 equiv.) was added dropwise and the reaction allowed to warm to rt overnight (ca. 16 h). The reaction was quenched by the addition of saturated aqueous ammonium chloride (30.0 mL) and the aqueous phase extracted with diethyl ether (3 \times 40 mL). The combined organics were washed with brine, dried MgSO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (silica, gel, 5–30% ethyl acetate in petrol) to afford the title compound (79.0 mg, 78%) as a colourless oil. $\alpha_D^{22.6}$ +56.7 (c 1.0, CHCl₃); v_{max}(film) 3458, 2943, 2862, 1445 and 1034 cm⁻¹; ¹H NMR (400 MHz, 25.6 °C, CDCl₃) δ 7.52–7.47 (2 H, m, ArH), 7.37–7.32 (2 H, m, ArH), 7.25–7.21 (1 H, m, ArH), 2.76–2.58 (2 H, m, 2 × CH), 2.14–1.90 (3 H, m, CH₂), 1.86–1.68 (3 H, m, CH₂), 1.64–1.48 (3 H, m, CH₂) and 1.47–1.38 (1 H, m, CH₂); ¹³C{¹H} NMR (101 MHz, 25.0 °C, CDCl₃) δ 147.7 (Ar), 128.2 (2 × ArH), 126.7 (ArH), 125.2 (2 × ArH), 83.1 (C–OH), 54.5 (CH), 44.6 (CH), 43.6 (CH₂), 34.0 (CH₂), 30.9 28.0 (CH₂) and 26.5 (CH₂); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd (CH₂), for C₁₄H₁₈NaO⁺ 225.1250; Found 225.1254.

(1R*,8S*,9r*)-5-Oxo-bicyclo[6.1.0]non-3-en-9-ylmethoxytriisopropylsilane (25)

In a flame-dried vial under argon, triazole 21 (0.40 mmol, 1.0 equiv.) was dissolved in PhMe (20.0 mL). Rh₂(OAc)₄ (8.8 mg, 5 mol %) was added and the vial sealed with a Teflon cap. The reaction was heated to 120 °C (aluminium block) for 15 min after which time the reaction was cooled to ambient temperature. Basic alumina (4.20 g, pH 9.5, Brockmann activity III, i.e. 6 wt % H₂O) was added and the mixture vigorously stirred for 15 min. Filtration through Celite and concentration in vacuo afforded a residue that was purified by flash column chromatography (silica gel, gradient from 5 to 30% ethyl acetate in petrol) to afford the title compound as a colourless oil. v_{max}(film) 2941, 2864, 1686, 1462, 1105, 1083, 1065 and 1013 cm⁻¹; ¹H NMR (400 MHz, 27.0 °C, CDCl₃) δ 5.99 (1 H, ddd, J = 12.9, 7.1, 4.1 Hz, =CH), 5.83 (1 H, dd, J = 12.9, 2.9 Hz, =CH), 9.95–0.88 (1 H, m, cyclopropane CH), 3.64–3.48 (2 H, m, CH₂OTIPS), 2.80–2.65 (2 H, m, CH₂), 2.54 (1 H, ddd, J = 13.5, 11.4, 5.3 Hz, CH₂), 2.19–2.11 (1 H, m, CH₂), 1.93 (1 H, dddd, J = 17.8, 10.6, 4.1, 3.0 Hz, CH₂), 1.63 (1 H, dddd, J = 14.4, 11.5, 10.2, 5.2 Hz, CH₂), 1.11–0.96 (21 H, m, 3 × *i*Pr) and 0.87–0.75 (2 H, m, cyclopropane CH); ${}^{13}C{}^{1}H{}$ NMR (101 MHz, 27.0 °C, CDCl₃) δ 209.2 (C=O), 135.5 (=CH), 130.3 (=CH), 65.7 (CH₂OTIPS), 45.3 (CH₂), 30.3 (CH₂), 29.1 (cyclopropane CH), 22.6 (CH₂), 20.9 (cyclopropane CH), 20.0 (cyclopropane CH), 17.9 ($6 \times iPr$) and 12.0 ($3 \times iPr$); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₉H₃₄NaO₂Si⁺ 345.2220; Found 345.2221.

21a (128 mg) gave enone 25 (61 mg) in 63% yield.

21b (151 mg) gave enone 25 (53 mg) in 55% yield.

21c (160 mg) gave enone 25 (54 mg) in 56% yield.

21d (156 mg) gave enone 25 (54 mg) in 56% yield.

Optimisation and ee Data

Entry	R	Catalyst ^[a]	Solvent ^[b]	T[c]	Workup	Yield ^[d]	ee ^[e]
1	<i>p</i> Tol	Rh ₂ (OAc) ₄	CH_2Cl_2	90	LiAlH ₄	61%	0%
2	<i>p</i> Tol	Rh ₂ (S-DOSP) ₄	CH_2Cl_2	90	LiAlH ₄	-	-8% ^[f]
3	<i>p</i> Tol	Rh ₂ (S-PTAD) ₄	CH_2Cl_2	90	LiAlH ₄	-	-8% ^[f]
4	<i>p</i> Tol	Rh ₂ (S-NTTL) ₄	CH_2Cl_2	90	LiAlH ₄	29%	18%
5	<i>p</i> Tol	Rh ₂ (S-NTTL) ₄	CH_2Cl_2	20	LiAlH ₄	N.R	[g]
6	<i>p</i> Tol	Rh ₂ (S-NTTL) ₄	PhMe	20	LiAlH ₄	N.R	[g]
7	<i>p</i> Tol	Rh ₂ (S-NTTL) ₄	PhMe	50	LiAlH ₄	43%	68%
8	<i>p</i> Tol	Rh ₂ (S-NTTL) ₄	PhMe ^[h]	50	LiAlH ₄	-	69%
9	<i>p</i> Tol	Rh ₂ (S-tPTTL) ₄	PhMe	50	LiAlH ₄	-	23%
10	<i>p</i> Tol	Rh ₂ (S-NTTL) ₄	CH_2Cl_2	50	LiAlH ₄	36%	29%
11	<i>p</i> Tol	Rh₂(S-NTTL)₄	C_6H_6	50	LiAlH ₄	72%	56%
12	<i>p</i> Tol	Rh ₂ (S-NTTL) ₄	PhCl	50	LiAlH ₄	43%	31%
13	<i>p</i> Tol	Rh ₂ (S-NTTL) ₄	<i>t</i> BuOMe	50	LiAlH ₄	-	46%
14	<i>p</i> Tol	Rh ₂ (S-NTTL) ₄	cyclohexane	50	LiAlH ₄	-	71%
15	<i>p</i> Tol	Rh ₂ (S-NTTL) ₄	C_6F_6	50	LiAlH ₄	72%	93%
16	<i>p</i> Tol	Rh ₂ (S-NTTL) ₄	nC_7F_{16}	50	LiAlH ₄	insc	ol. ^[i]
17	$pNO_2C_6H_4$	Rh₂(OAc)₄	PhMe	50	LiAlH ₄	8%	0%
18	$pNO_2C_6H_4$	Rh ₂ (S-NTTL) ₄	PhMe	50	LiAlH ₄	-	58%
19	$pNO_2C_6H_4$	Rh ₂ (<i>S-t</i> PTTL) ₄	PhMe	50	LiAlH ₄	-	47%
20	pMeOC ₆ H ₄	Rh ₂ (OAc) ₄	PhMe	50	LiAlH ₄	77%	0%
21	pMeOC ₆ H ₄	Rh ₂ (S-NTTL) ₄	PhMe	50	LiAlH ₄	36%	24%
22	<i>p</i> PhC ₆ H₄	Rh₂(OAc)₄	PhMe	50	LiAlH ₄	55%	10%
23	<i>p</i> PhC ₆ H₄	Rh ₂ (S-NTTL) ₄	PhMe	50	LiAlH ₄	53%	35%
24	<i>p</i> Tol	Rh₂(OAc)₄	CH_2CI_2	90	Hydrolysis/Grignard	-	1%
25	Me	Rh ₂ (S-NTTL) ₄	PhMe	50	Hydrolysis/Grignard	80%	32%
26	2,4,6-(<i>i</i> Pr)₃C ₆ H₂	Rh ₂ (S-NTTL) ₄	PhMe	50	Hydrolysis/Grignard	64%	12%
27	Dansyl ^[j]	Rh ₂ (S-NTTL) ₄	PhMe	50	Hydrolysis/Grignard	17%	9%
28	$pNO_2C_6H_4$	Rh₂(S-NTTL)₄	PhMe	50	Hydrolysis/Grignard	57%	69%
29	pNO ₂ C ₆ H ₄	Rh ₂ (S-NTTL) ₄	C_6F_6	50	Hydrolysis/Grignard	78%	94%

[a] 5 mol % catalyst employed; [b] 0.02 M concentration of 1-ST; [c] sealed vial in aluminium heating block; [d] isolated yield following column chromatography; where no yield is reported, ee was determined on crude reaction mixture; [e] determined by chiral solid phase HPLC; [f] opposite selectivity observed to $Rh_2(S-NTTL)_4$; [g] no consumption of starting material detected; [h] syringe pump addition of triazole to solution of catalyst; [i] total insolubility of reagents and catalyst; [j] Dansyl, R = 5-dimethylaminonaphthalen-1-yl. DOSP = *N*-(4-*n*dodecylbenzenesulfonyl)prolinate; PTAD = 2-adamantyl-2-(1,3-dioxoisoindolin-2-yl)ethanoate; NTTL = 2-(1,3dioxobenzo[*de*]isoquinolin-2-yl)-3,3-dimethyl-butanoate; *t*PTTL = 3,3-dimethyl-2-(5-*tert*-butyl-1,3-dioxoisoindolin-2yl)butanoate. R = pTol, Rh₂(OAc)₄, 90 °C, CH₂Cl₂, LiAlH₄ workup AD-H, 7% *i*PrOH in hexane, 1 cm³ min⁻¹

PDA Ch1 2				
Peak#	Ret. Time	Height	Area	Area %
1	16.47	328290	11409010	49.944
2	23.04	235032	11434799	50.056
Total		563322	22843810	100.000

Entry 2 R = pTol, Rh₂(S-DOSP)₄, 90 °C, CH₂Cl₂, LiAlH₄ workup AD-H, 7% *i*PrOH in hexane, 1 cm³ min⁻¹

PDA Ch1 204nm 4nm					
Peak#	Ret. Time	Height	Area	Area %	
1	16.69	788109	28417142	46.030	
2	23.16	666393	33318880	53.970	
Total		1454502	61736021	100.000	

Entry 3 R = pTol, Rh₂(S-PTAD)₄, 90 °C, CH₂Cl₂, LiAlH₄ workup AD-H, 7% *i*PrOH in hexane, 1 cm³ min⁻¹

PDA Ch1 2	204nm 4nm			
Peak#	Ret. Time	Height	Area	Area %
1	16.64	454609	16748482	46.089
2	23.12	399983	19591168	53.911
Total		854592	36339650	100.000

Entry 7

 $R = pTol, Rh_2(S-NTTL)_4, 90 °C, CH_2Cl_2, LiAlH_4 workup$ AD-H, 7% *i*PrOH in hexane, 1 cm³ min⁻¹

PDA Chl 2				
Peak#	Ret. Time	Height	Area	Area %
1	16.07	1124451	38842213	58.805
2	22.27	600179	27209965	41.195
Total		1724630	66052177	100.000

'DA Ch1 204nm 1nm						
Peak#	Ret. Time	Height	Area	Area %		
1	15.92	740105	23811827	83.932		
2	22.13	105852	4558450	16.068		
Total		845956	28370277	100.000		

Entry 8

R = *p*Tol, Rh₂(S-NTTL)₄, 50 °C, PhMe, syringe pump, LiAlH₄ workup AD-H, 7% *i*PrOH in hexane, 1 cm³ min⁻¹

R = pTol, Rh₂(S- tPTTL)₄, 50 °C, PhMe, LiAlH₄ workup AD-H, 7% *i*PrOH in hexane, 1 cm³ min⁻¹

Entry 11 R = pTol, Rh₂(S-NTTL)₄, 50 °C, C₆H₆, LiAlH₄ workup AD-H, 7% *i*PrOH in hexane, 1 cm³ min⁻¹

Entry 12 R = pTol, Rh₂(S-NTTL)₄, 50 °C, C₆H₆, LiAlH₄ workup AD-H, 7% *i*PrOH in hexane, 1 cm³ min⁻¹

PDA Ch1 2	204nm 4nm			
Peak#	Ret. Time	Height	Area	Area %
1	16.47	424241	14600490	65.499
2	22.94	165095	7690543	34.501
Total		589336	22291033	100.000

Entry 13 R = pTol, Rh₂(S-NTTL)₄, 50 °C, *t*BuOMe, LiAlH₄ workup AD-H, 7% *i*PrOH in hexane, 1 cm³ min⁻¹

PDA Ch1 204nm 4nm						
Peak#	Ret. Time	Height	Area	Area %		
1	16.64	786182	27837788	73.225		
2	23.17	214192	10178796	26.775		
Total		1000374	38016583	100.000		

Entry 14 R = pTol, Rh₂(S-NTTL)₄, 50 °C, cyHex, LiAlH₄ workup AD-H, 7% *i*PrOH in hexane, 1 cm³ min⁻¹

196 7946477	85.527
976 1344678	14.473
171 9291155	100.000
	190 7940477 976 1344678 171 9291155

Entry 15 R = pTol, Rh₂(S-NTTL)₄, 50 °C, C₆F₆, LiAlH₄ workup AD-H, 7% *i*PrOH in hexane, 1 cm³ min⁻¹

Entry 17 R = $pNO_2C_6H_4$, Rh₂(OAc)₄, 50 °C, PhMe, LiAlH₄ workup

AD-H, 15% *i*PrOH in hexane, 1 cm³ min⁻¹

PDA Ch1 204nm 1nm								
	Peak#	Ret. Time	Height	Area	Area %			
	1	14.94	755750	25843143	49.950			
	2	27.02	433979	25894635	50.050			
	Total		1189729	51737778	100.000			

Entry 18 R = $pNO_2C_6H_4$, Rh₂(S-NTTL)₄, 50 °C, PhMe, LiAlH₄ workup AD-H, 15% *i*PrOH in hexane, 1 cm³ min⁻¹

PDA Ch1 268nm 4nm					
Peak#	Ret. Time	Height	Area	Area %	
1	14.96	1436823	48007626	78.907	
2	27.12	213350	12832865	21.093	
Total		1650173	60840490	100.000	

Entry 19 R = $pNO_2C_6H_4$, Rh₂(S-tPTTL)₄, 50 °C, PhMe, LiAlH₄ workup AD-H, 15% *i*PrOH in hexane, 1 cm³ min⁻¹

PDA Ch1 2	68nm 4nm				
Peak#	Ret. Time	Height	Area	Area %	
1	14.99	203636	6271089	73.431	
2	27.17	40759	2269075	26.569	
Total		244395	8540164	100.000	
mAU 300-					
-					
250-				95	

Entry 20 R = pMeOC₆H₄, Rh₂(OAc)₄, 50 °C, PhMe, LiAlH₄ workup AD-H, 15% *i*PrOH in hexane, 1 cm³ min⁻¹

PDA Ch1 238nm 4nm					
Peak#	Ret. Time	Height	Area	Area %	
1	12.47	585829	15659518	49.962	
2	17.77	415360	15683564	50.038	
Total		1001190	31343082	100.000	

Entry 21 R = pMeOC₆H₄, Rh₂(S-NTTL)₄, 50 °C, PhMe, LiAlH₄ workup AD-H, 15% *i*PrOH in hexane, 1 cm³ min⁻¹

PDA Ch1 238nm 4nm					
Peak#	Ret. Time	Height	Area	Area %	
1	12.51	2027105	76618292	62.133	
2	17.78	1188906	46694981	37.867	
Total		3216011	123313273	100.000	

Entry 22 R = $pPhC_6H_4$, Rh₂(OAc)₄, 50 °C, PhMe, LiAlH₄ workup AD-H, 15% *i*PrOH in hexane, 1 cm³ min⁻¹

PDA Ch1 2	209nm 4nm			
Peak#	Ret. Time	Height	Area	Area %
1	12.16	303388	7462161	45.244
2	15.57	270643	9030949	54.756
Total		574031	16493110	100.000

Entry 23 $R = pPhC_6H_4$, $Rh_2(S-NTTL)_4$, 50 °C, PhMe, LiAlH₄ workup AD-H, 15% *i*PrOH in hexane, 1 cm³ min⁻¹

PDA Ch1 2	209nm 4nm			
Peak#	Ret. Time	Height	Area	Area %
1	12.19	454658	13176524	67.655
2	15.67	188482	6299615	32.345
Total		643140	19476139	100.000

Entry 24 R = *p*Tol, Rh₂(OAc)₄, 90 °C, CH₂Cl₂, hydrolysis/Grignard workup AD-H, 0.25% *i*PrOH in hexane, 1 cm³ min⁻¹

PDA Ch1 204nm 4nm						
Peak#	Ret. Time	Height	Area	Area %		
1	37.27	52211	3989917	50.305		
2	43.85	40812	3941578	49.695		
Total		93022	7931495	100.000		

Entry 25 R = Me, Rh₂(S-NTTL)₄, 50 °C, PhMe, hydrolysis/Grignard workup AD-H, 0.25% *i*PrOH in hexane, 1 cm³ min⁻¹

PDA Ch1 204nm 4nm					
Peak#	Ret. Time	Height	Area	Area %	
1	35.66	81513	6546925	65.913	
2	43.04	33231	3385724	34.087	
Total		114744	9932648	100.000	

Entry 26 R = 2,4,6-(*i*Pr)₃C₆H₂, Rh₂(S-NTTL)₄, 50 °C, PhMe, hydrolysis/Grignard workup AD-H, 0.25% iPrOH in hexane, 1 cm³ min⁻¹

Entry 27 R = 5-dimethylaminonaphthalen-1-yl, Rh₂(S-NTTL)₄, 50 °C, PhMe, hydrolysis/Grignard workup AD-H, 0.25% *i*PrOH in hexane, 1 cm³ min⁻¹

PDA Ch1 2	204nm 4nm			
Peak#	Ret. Time	Height	Area	Area %
1	35.61	100471	8131938	54.496
2	42.73	56826	6790281	45.504
Total		157297	14922219	100.000

Entry 28 R = $pNO_2C_6H_4$, Rh₂(S-NTTL)₄, 50 °C, PhMe, hydrolysis/Grignard workup AD-H, 0.25% *i*PrOH in hexane, 1 cm³ min⁻¹

PDA Ch1 2	204nm 4nm			
Peak#	Ret. Time	Height	Area	Area %
1	36.27	220744	17845494	84.621
2	42.70	34549	3243124	15.379
Tota		255293	21088617	100.000

Entry 29 R = $pNO_2C_6H_4$, Rh₂(S-NTTL)₄, 50 °C, C₆F₆, hydrolysis/Grignard workup AD-H, 0.25% iPrOH in hexane, 1 cm³ min⁻¹

PDA Ch1 204nm 4nm

NMR Spectra

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

S32

20g

¹H, CDCl₃, 500 MHz

21a

¹H, CDCl₃, 400 MHz

 $\bigvee_{H}^{H}\bigvee_{H}^{O}$

23

Optimised Structures and Thermochemical Analyses

Calculations were performed on the PSI4 program.^[6]

Geometry optimisation and thermochemistry analysis was performed using B3LYP/6-31G(d).

Molecular orbitals were calculated using HF/6-311++G(2d,p) at B3LYP/6-31G(d) geometry.

Ground state structures were optimised and found to have zero imaginary frequencies by vibrational analysis:

- **GS1**: Methanesulfonyl azide
- **GS2**: Cyclooctyne in a chair conformation
- **GS3**: Bicyclononyne
- **GS4**: Acetylene

Geometries were inspired by previous work by the groups of Zeng^[7] and Houk.^[8]

Transition structures were optimised and found to have exactly one imaginary frequency by vibrational analysis:

- **TS1**: MsN₃ + Cyclooctyne
- **TS2**: MsN₃ + BCN
- TS3: MsN₃ + Acetylene

Geometries were inspired by previous work by groups of Houk^[8] and Bickelhaupt et al.^[9]

Distortion interaction analysis was performed following the work in this area by Houk et al.^[8]

Cycloaddition between MsN₃ and cyclooctyne in its twist boat geometry was found to be a less favourable pathway than ring flip^[10] to the cyclooctyne chair conformation and then cycloaddition so was not considered.

B3LYP/6-31G(D) optimised cartesian coordinates in Å

GS1

C -1.608519319467 1.457500593759 -0.063963233043 -2.591326236454 1.284233387220 0.380714572510 Н -1.703330072376 1.703787214968 -1.122526158519 Н H -1.066467955548 2.232920246299 0.478506732644 Ν 0.730021096991 0.400535623236 -0.835722057356 Ν 1.790949197114 0.048652886187 -0.287660921488 Ν 2.807257072661 -0.226759045565 0.137837070379 0 -1.393245800251 -1.114220638337 -0.699273589930 0 -0.315596877748 -0.322374532977 1.469000339776 S -0.706036913645 -0.090337630567 0.078877676271 : 1.245 Å N1-N2 distance : 1.136 Å N2-N3 distance : 174.96° Azide N-N-N angle B3LYP/6-31G(D) frequency analysis Number of imaginary frequencies: 0 E0 : -752.66557042 Ha ZPE: -752.60487666 Ha н: -752.59652407 Ha s : 0.13770244 mHa/K G -752.63758005 Ha •

evaluated at 298.15 K

HOMO-1 HOMO LUMO LUMO+1 -12.434656 -11.815705 0.902765 1.685338 eV HF/6-311++G(2D,P)

B3LYP/6-31G(D) optimised cartesian coordinates in ${\rm \AA}$

С	-1.950674577258 -0.872434863451 -0.132	2659300671
С	-1.854882674202 0.620417969012 0.296	791614893
С	-0.698207387431 1.429617578033 -0.353	3182137875
С	-0.604210769791 -1.431719108537 -0.035	598782290
С	0.604281019996 -1.431678020515 0.035	652352377
С	0.698135403896 1.429670144360 0.353	3127403667
С	1.854853651130 0.620505769309 -0.290	812981004
С	1.950717841297 -0.872327732409 0.132	2691459716
Н	-2.810441636177 1.102275105372 0.042	2928450235
Н	-2.681695085584 -1.395968343418 0.496	5870195418
Н	-2.319706995271 -0.946365782036 -1.165	5443627177
Н	-1.758620098866 0.666886709905 1.383	3247961761
Н	-1.037120632674 2.472810040819 -0.389	9173207832
Н	-0.580908227713 1.124072540978 -1.401	1817423593
Н	0.580853087312 1.124162616689 1.401	775545124
Н	1.036992982379 2.472882213043 0.389	074632411
Н	1.758592832225 0.666931041743 -1.383	3271340529
Н	2.319755234564 -0.946203531625 1.165	5477957667
Н	2.681762036372 -1.395848927384 -0.496	5820741601
Н	2.810387577134 1.102419277917 -0.042	2963050523
Alŀ	lkyne C-C distance : 1.211 Å	
Alŀ	lkyne bond angles : 157.48°, 157.48°	
B3LYF	<pre>/P/6-31G(D) frequency analysis</pre>	
Nur	umber of imaginary frequencies: 0	
-		
Et		
	27E: -311.8193690/ Ha	
H		
S	5 : 0.13622001 MHa/K	
G	з : -311.85120464 На	

G : -311.85120464 evaluated at 298.15 K

HOMO-1	HOMO	LUMO	LUMO+1	
-9.745517	-9.619991	1.166634	1.320705 eV	HF/6-311++G(2D,P)

B3LYP/6-31G(D) optimised cartesian coordinates in ${\rm \AA}$

С	-1.535097805949	0.2165031526	13 0.7806	503654246	
С	-1.495090093543	1.5922473505	13 1.5124	416110485	
С	-0.583177128793	2.4347190119	52 0.7359	956935942	
С	-0.169263588230	-0.4414409482	46 0.6236	524893310	
С	0.109186941333	-1.4686943816	17 -0.4588	871679429	
С	0.244048846417	2.6533399200	87 -0.1218	852450203	
С	0.767282996305	0.8283862593	12 -1.6112	291291532	
С	0.785648802185	-2.7808813642	75 -0.1349	939498689	
С	0.872157587237	-0.1634068068	13 -0.4589	921400949	
С	1.140428599355	2.2905736585	33 -1.221	560587898	
Н	-2.508430457570	2.0083948169	13 1.578	569841869	
Н	-2.195452973410	-0.4648223820	33 1.3372	290223612	
Н	-1.998249942838	0.3674356017	21 -0.2012	268965622	
Н	-1.140115995246	1.4662845354	12 2.5446	551523560	
Н	-0.667538343066	-1.5546108546	43 -1.2198	833441177	
Н	-0.586794161487	-3.3762312006	20 1.101	739405570	
Н	-0.251051046393	0.8346193637	49 -2.016	709540497	
Н	0.291822242378	-0.6676661949	36 1.5883	307389820	
Н	1.033395614403	2.9478975899	99 -2.0938	820310176	
Н	1.236828759874	-3.2163917033	41 -1.033	506361872	
Н	1.428297890856	0.4939373874	95 -2.4239	986640385	
Н	1.601612453019	-2.6057390358	55 0.587	565164217	
Н	1.892651806174	-0.2419479993	57 -0.0788	830560910	
Н	2.193451540313	2.3475711545	81 -0.913	147757673	
0	-0.122946256015	-3.7675650826	68 0.344	530139492	
			ç		
A1	kyne C-C distance	e : 1.212	A		
AT	kyne bond angles	: 154.75°	, 154.81°		
B3LY	P/6-31G(D) treque	ency analysis			
		C	•		
NU	mber of imaginary	/ trequencies:	0		
F	a · _464 59664	1904 Ha			
7	PF: -464 37720	7904 Ha 7029 Ha			
ь Н	-464.3655	9127 Ha			
s,	: 0.1589	2050 mHa/K			
G	: -464.4129	7342 Ha			
ev	aluated at 298.1	5 K			
	HOMO-1	НОМО	LUMO	LUMO+1	

-9.829246 -9.688074 1.037652 1.160974 eV HF/6-311++G(2D,P)

B3LYP/6-31G(D) optimised cartesian coordinates in Å C -0.000000010212 0.00000044425 -0.602484980775 C -0.000000010212 0.00000044425 0.602484961555 H -0.000009075862 0.000000896472 -1.669106428570 0.000009319050 -0.000001954388 1.669106657424 Н Alkyne C-C distance : 1.205 Å Alkyne bond angles : 180.00°, 180.00° B3LYP/6-31G(D) frequency analysis Number of imaginary frequencies: 0 E0 : -77.32563186 Ha ZPE: -77.30021899 Ha -77.29654192 Ha н: s : 0.07809315 mHa/K G -77.31982539 Ha : evaluated at 298.15 K

HOMO-1	HOMO	LUMO	LUMO+1		
-11.168183	-11.168183	1.141436	1.277385	eV	HF/6-311++G(2D,P)

B3LYP/6-31G(D) optimised cartesian coordinates in ${\rm \AA}$

С	-3.148356606691	2.579235149662	-0.629254936799
С	-3.027257989458	1.046133973733	-0.481679825435
С	-2.489050159376	3.431648407520	0.483020338988
С	-1.612112977838	0.657849554129	-0.330011101966
С	-1.001734129975	3.866989184529	0.309246065630
С	-0.456104384370	0.974430838826	-0.040441426088
С	0.090117519094	3.083299470390	1.076267803709
С	0.659987310033	1.826462452254	0.370388697199
С	2.676426564695	-2.785659093179	-1.312864560995
Н	-4.220091931329	2.816298001876	-0.665577489478
Н	-3.588451562976	0.706613721437	0.400176913716
Н	-3.486082475129	0.548420341769	-1.344059877114
Н	-3.079243116013	4.353741915128	0.553211334665
Н	-2.736038842590	2.874177337299	-1.603212644586
Н	-2.615515008982	2.931194267156	1.453487257949
Н	-0.934373145855	4.905502230570	0.656457264528
Н	-0.749004009673	3.900597074728	-0.760118784000
Н	-0.300024319340	2.788748259424	2.058998297846
Н	0.938486660294	3.752844146722	1.269023735382
Н	1.242813376475	2.123138717616	-0.512461867438
Н	1.350608128839	1.297673465552	1.035015464400
Н	1.958406934123	-3.439511933723	-1.811274383124
Н	2.957848476371	-1.946364012920	-1.950348244872
Н	3.560306365280	-3.352539616321	-1.010371192347
Ν	-1.597783731448	-1.491540562685	-0.772255161078
Ν	-0.475011006244	-1.752813705039	-0.628079762228
Ν	0.635833790780	-1.164113703577	-0.412163200442
0	1.413984488191	-3.262291132365	0.975516552379
0	2.833894298629	-1.148992777790	0.777690933893
S	1.928267026432	-2.137016393881	0.195501909826
N1-	N2 distance	: 1.276 Å	
N2-	N3 distance	: 1.162 Å	
Alk	vne C-C distance	e : 1.233 Å	
N1-	C distance	: 2.430 Å	
N3-	C distance	: 2.194 Å	
Azi	de N-N-N angle	: 139.36°	
Alk	yne bond angles	: 158.54°, 1	L48.86°
	- 0		

B3LYP/6-31G(D) frequency analysis Number of imaginary frequencies: 1 -1064.65235543 Ha E0 : ZPE: -1064.41014712 Ha н : -1064.39312311 Ha S : 0.21064736 mHa/K G : -1064.45592762 Ha evaluated at 298.15 K Difference from GS1 and GS2 ground states ΔE0 : 0.01340461 Ha 8.411 kcal/mol 8.780 kcal/mol ΔH : 0.01399160 Ha ΔS : -0.06327509 mHa/K -39.705 cal/mol/K ∆G : 0.03285707 Ha 20.618 kcal/mol evaluated at 298.15 K Azide at transition state geometry E0 : -752.63732419 Ha B3LYP/6-31G(D) E0 : -749.98581599 Ha HF/6-311++G(2D,P) ∆Edist from GS1 ground state 17.72458 kcal/mol B3LYP/6-31G(D) HOMO-1 HOMO LUMO LUMO+1 -12.326763 -12.053560 0.085689 0.906194 eV HF/6-311++G(2D,P) Alkyne at transition state geometry E0 : -311.99750562 Ha B3LYP/6-31G(D) E0 : -309.84573460 Ha HF/6-311++G(2D,P) B3LYP/6-31G(D) ΔEdist from GS2 ground state 1.68432 kcal/mol HOMO-1 HOMO LUMO LUMO+1 -9.627120 -9.532969 1.156756 1.320542 eV HF/6-311++G(2D,P) HF/6-311++G(2D,P) Ground State HOMO - LUMO gaps (at distorted geometry) HOMO Alkyne GS2 - LUMO Azide GS1 : 10.523 eV (HOMO Azide GS1 - LUMO Alkyne GS2 : 12.982 eV (9.619 eV) 13.210 eV) B3LYP/6-31G(D) distortion-interaction analysis $\Sigma\Delta Edist:$ 19.40890 kcal/mol

Eint = $\Sigma \Delta E0 - \Sigma \Delta Edist$: -10.99737 kcal/mol

B3LYP/6-31G(D) optimised cartesian coordinates in ${\rm \AA}$

С	-2.022111563594	-2.228277861997 1.049130742828
С	-1.863024780567	-0.831017202717 1.702547399656
С	-0.888715754848	-0.044649410523 0.920549895337
С	-0.729858535861	-3.028789117841 0.975109882452
С	-0.548308879960	-4.162192829496 -0.017848473608
С	-0.047813329422	-0.025935040922 0.020202148841
С	0.018251375085	-5.494268991846 0.417814424645
С	0.270916674810	-2.016368222835 -1.337058971375
С	0.323857708171	-2.933122371726 -0.123538420297
С	0.782926283316	-0.576353711387 -1.054069694270
С	2.309181097022	4.461929033121 -0.161109890160
Н	-2.834210168754	-0.323899505614 1.748397590242
Н	-2.762637747934	-2.801209320932 1.625769053271
Н	-2.446362162882	-2.096667663941 0.046835060133
Н	-1.520135497527	-0.931254426770 2.741462610835
Н	-1.389401031039	-5.873394989862 1.700454769105
Н	-1.333532581728	-4.246437551285 -0.769959117561
Н	-0.752163591247	-1.952605016436 -1.725336548514
Н	-0.296280414780	-3.214107534550 1.960820222318
Н	0.428639919463	-6.038461120230 -0.439977352555
Н	0.731312578252	0.037098107593 -1.959809669835
Н	0.848595471205	-5.327560801211 1.125795029127
Н	0.882514510313	-2.451504551281 -2.139471111355
Н	1.340176527489	-3.065954784983 0.251849783126
Н	1.838237383231	-0.598143932850 -0.752046370862
Н	1.900548499608	4.918040850202 0.742426510414
Н	2.672043653627	5.232679328916 -0.845512232073
Н	3.104054900337	3.753611999897 0.076410261754
Ν	-1.064671444746	2.064228680929 1.663523682143
Ν	-0.299392369364	2.584669593412 0.966069336147
Ν	0.596342690262	2.318612671573 0.100836437261
0	-0.967096032873	-6.358644108786 0.973967617369
0	-0.140032167486	4.491087457093 -1.192869344461
0	1.570693274951	2.849880538736 -2.143154323102
S	0.990162593876	3.579531286392 -1.018666878886
N1-	N2 distance	: 1.273 Å
N2-	N3 distance	: 1.159 Å
Alk	yne C-C distance	e : 1.232 Å
N1-	C distance	: 2.433 Å
N3-	•C distance	: 2.243 Å
Azi	de N-N-N angle	: 141.22°
Alk	yne bond angles	: 156.48°, 147.74°

B3LYP/6-31G(D) frequency analysis Number of imaginary frequencies: 1 -1217.25087376 Ha E0 : ZPE: -1216.97011412 Ha н: -1216.95018599 Ha S : 0.23423057 mHa/K G : -1217.02002183 Ha evaluated at 298.15 K Difference from GS1 and GS3 ground states ΔE0 : 0.01134570 Ha 7.119 kcal/mol ΔH : 0.01192935 Ha 7.486 kcal/mol ΔS : -0.06239237 mHa/K -39.151 cal/mol/K ∆G : 19.159 kcal/mol 0.03053164 Ha evaluated at 298.15 K Azide at transition state geometry E0 : -752.64006601 Ha B3LYP/6-31G(D) E0 : -749.98880533 Ha HF/6-311++G(2D,P) ∆Edist from GS1 ground state 16.00408 kcal/mol B3LYP/6-31G(D) HOMO-1 HOMO LUMO LUMO+1 -12.342436 -12.024988 0.217392 0.907391 eV HF/6-311++G(2D,P) Alkyne at transition state geometry E0 : -464.59474472 Ha B3LYP/6-31G(D) E0 : -461.56849346 Ha HF/6-311++G(2D,P) ∆Edist from GS3 ground state B3LYP/6-31G(D) 1.19496 kcal/mol HOMO-1 HOMO LUMO LUMO+1 1.033489 -9.728482 -9.614358 1.151913 eV HF/6-311++G(2D,P) HF/6-311++G(2D,P) Ground State HOMO - LUMO gaps (at distorted geometry) HOMO Alkyne GS3 - LUMO Azide GS1 : 10.591 eV (HOMO Azide GS1 - LUMO Alkyne GS3 : 12.853 eV (9.832 eV) 13.058 eV) B3LYP/6-31G(D) distortion-interaction analysis $\Sigma\Delta Edist:$ 17.19904 kcal/mol

Eint = $\Sigma \Delta EO$ - $\Sigma \Delta Edist$: -10.07959 kcal/mol

B3LYP/6-31G(D) optimised cartesian coordinates in ${\rm \AA}$

(C -2.739635483330 0.7	75690313641	1.293251677467
(C -1.845072207042 1.5	38666465355	0.923791422009
(C 1.409303265664 -0.5	16354327130	-2.056292985287
	H -3.652576283571 0.4	76594525023	1.761638671629
	H -1.179930526456 2.3	42842462708	0.698867336253
	H 0.912993045703 0.2	11438887901	-2.699568394561
I	H 0.980392971178 -1.5	12717313123	-2.177247268723
I	H 2.483652133035 -0.5	37796547430	-2.255314883106
I	N -2.172692392396 -1.1	79621990615	0.666267398821
I	N -1.159427975084 -0.9	37588718638	0.140207201235
I	N -0.516342897870 0.1	15053009108	-0.189188468793
(0 1.627225503708 1.3	92971381461	-0.211176310430
(0 1.737206309212 -1.0	50994529889	0.525481693670
	S 1.208567381609 0.0	00075350137	-0.340672719257
	N1-N2 distance	: 1.277 Å	
	N2-N3 distance	: 1.167 Å	
1	Alkyne C-C distance	: 1.232 Å	
I	N1-C distance	: 2.243 Å	
I	N3-C distance	: 2.130 Å	
1	Azide N-N-N angle	: 136.43°	
	Alkyne bond angles	: 169.03°,	157.61°
B3	LYP/6-31G(D) frequency	analysis	
	Number of imaginary fre	quencies: 1	
	E0 : -829.96554018	На	
	ZPE: -829.8/630/16	На	
	H : -829.86552540	на	
	S : 0.15/16510	мна/к	
	G : -829.91238418	на	
(evaluated at 298.15 K		
	Difference from CS1 and	CEA anound	statos
			16 102 kcal/mol
		На	17 282 kcal/mol
		na mHp/K	-36 701 col/mol/V
	AG · 0 04503126		-30./31 Cal/1101/N
	$\frac{1}{2}$	IId	20.2JI KCdI/IIUI
	Evaludieu al 200.10 N		

Azide at transition state geometry
E0 : -752.63114165 Ha B3LYP/6-31G(D) E0 : -749.97767517 Ha HF/6-311++G(2D,P)
ΔEdist from GS1 ground state 21.60414 kcal/mol B3LYP/6-31G(D)
HOMO-1 HOMO LUMO LUMO+1 -12.268068 -11.929204 -0.049389 0.907418 eV HF/6-311++G(2D,P)
Alkyne at transition state geometry
E0 : -77.31705545 Ha B3LYP/6-31G(D) E0 : -76.80371615 Ha HF/6-311++G(2D,P)
ΔEdist from GS4 ground state 5.38172 kcal/mol B3LYP/6-31G(D)
HOMO-1 HOMO LUMO LUMO+1 -11.026657 -11.008153 1.179913 1.367672 eV HF/6-311++G(2D,P)
HF/6-311++G(2D,P) Ground State HOMO - LUMO gaps (at distorted geometry) HOMO Alkyne GS4 - LUMO Azide GS1 : 12.071 eV (10.959 eV) HOMO Azide GS1 - LUMO Alkyne GS4 : 12.957 eV (13.109 eV)
B3LYP/6-31G(D) distortion-interaction analysis ΣΔEdist: 26.98587 kcal/mol Eint = ΣΔΕ0 - ΣΔEdist: -10.88284 kcal/mol

References

1) L. Brandsma, H. D. Verkruijsse, Synthesis 1978, 1978, 290-290.

2) J. Dommerholt, S. Schmidt, R. Temming, L. J. A. Hendriks, F. P. J. T. Rutjes, J. C. M. van Hest, D. J. Lefeber, P. Friedl,

F. L. van Delft, Angew. Chem. Int. Ed. 2010, 49, 9422-9425.

3) K. Banert, T. Pester, J. Org. Chem. 2019, 84, 4033-4039.

4) P. Müller, P. Nury, *Helv. Chim. Acta* **2001**, *84*, 662-677.

5) J. K. Whitesell, M. A. Minton, S. W. Felman, J. Org. Chem. 1983, 48, 2193-2195.

6 a) J. M. Turney, A. C. Simmonett, R. M. Parrish, E. G. Hohenstein, F. A. Evangelista, J. T. Fermann, B. J. Mintz, L. A. Burns, J. J. Wilke, M. L. Abrams, N. J. Russ, M. L. Leininger, C. L. Janssen, E. T. Seidl, W. D. Allen, H. F. Schaefer, R. A. King, E. F. Valeev, C. D. Sherrill, T. D. Crawford, *Wiley Interdiscip. Rev. Comput. Mol. Sci.* 2012, *2*, 556-565; b) D. G. A. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M. C. Schieber, R. Galvelis, P. Kraus, H. Kruse, R. Di Remigio, A. Alenaizan, A. M. James, S. Lehtola, J. P. Misiewicz, M. Scheurer, R. A. Shaw, J. B. Schriber, Y. Xie, Z. L. Glick, D. A. Sirianni, J. S. O'Brien, J. M. Waldrop, A. Kumar, E. G. Hohenstein, B. P. Pritchard, B. R. Brooks, H. F. Schaefer, A. Y. Sokolov, K. Patkowski, A. E. DePrince, U. Bozkaya, R. A. King, F. A. Evangelista, J. M. Turney, T. D. Crawford, C. D. Sherrill, *J. Chem. Phys.* 2020, *152*; c) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, *J. Phys. Chem.* 2002, *98*, 11623-11627; d) S. Lehtola, C. Steigemann, M. J. T. Oliveira, M. A. L. Marques, *SoftwareX* 2018, *7*, 1-5.
7) G. Deng, D. Li, Z. Wu, H. Li, E. Bernhardt, X. Zeng, *J. Phys. Chem.* A 2016, *120*, 5590-5597.
8 a) D. H. Ess, G. O. Jones, K. N. Houk, *Org. Lett.* 2008, *10*, 1633-1636; b) F. Schoenebeck, D. H. Ess, G. O. Jones, K. N.

Houk, J. Am. Chem. Soc. **2009**, 131, 8121-8133.

9) J. Dommerholt, O. van Rooijen, A. Borrmann, C. F. Guerra, F. M. Bickelhaupt, F. L. van Delft, *Nature Communications* **2014**, *5*.

10) I. Yavari, F. Nasiri, H. Djahaniani, A. Jabbari, Int. J. Quantum Chem 2006, 106, 697-703.