Supporting Information

Highly Efficient and Enantioselective Synthesis of β-Heteroaryl Amino Alcohols via Ru-Catalyzed Asymmetric Hydrogenation

Chao Wu,^[a,b] Baode Ma,^{[d], *} Gen-Qiang Chen, ^{[c], *} Xumu Zhang ^{[b], *}

 ^[a] School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
^[b] Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.
^[c] Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China.
^[d] College of Innovation and Entrepreneurship, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China.

E-mail address: <u>mabd@sustech.edu.cn</u>, <u>chengq@sustech.edu.cn</u>, <u>zhangxm@sustech.edu.cn</u>.

Content

1. General Information	3
2. Experimental Details	4
2.1 General Procedure for the Synthesis of Substrate	4
2.2 Characterization Data of 1	4
3. General procedure for the asymmetric hydrogenation	9
3.1 General procedure for the asymmetric hydrogenation conducted with $S/C = 100$	9
3.2 General procedure for the asymmetric hydrogenation conducted with $S/C = 4000$.17
4. Synthetic Applications	.17
5. Spectroscopic data	19
6. HPLC spectra	55
7. References	73

1. General Information

Unless otherwise mentioned, all experiments were carried out under an atmosphere of argon in a glovebox or using standard Schlenk techniques. Solvents were dried with standard procedures and degassed with Ar₂. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 300-400 mesh). NMR spectra were recorded on a Bruker DPX 400 spectrometer at 400 MHz for ¹H NMR, 101 MHz for ¹³C NMR and 162 MHz for ³¹P NMR or a Bruker DPX 600 spectrometer at 600 MHz for ¹H NMR, 150 MHz for ¹³C NMR in CDCl₃, DMSO-*d*₆ and CD₃OD with tetramethylsilane (TMS) as internal standard. Chemical shifts are reported in ppm and coupling constants are given in Hz.

2. Experimental Details

2.1 General Procedure for the Synthesis of Substrate

Procedure A: Preparation of ketones 1a~1q, 1t.¹

To a solution of substituted α -bromo aryl ketone (10 mmol, 1.0 eq) in dichloromethane (10 mL), was added slowly to a suspension of imidazole (24.5 g, 0.36 mol) in dichloromethane (10 mL), and the mixture was heated to 40 °C for 2 h and then overnight at room temperature. The reaction mixture was washed with water and brine (100 mL) and dried (Na₂SO₄), and solvent was removed under vacuum to give a red oil. The desired product was purified by silica gel column chromatography with a mixture of petroleum ether and ethyl acetate as eluent.

Procedure B: Preparation of ketones 1r, 1s, 1u.²

Potassium carbonate (1.5 mmol), nitrogen heterocyclic (1.2 mmol) and α -bromo aryl ketone (1.0 mmol) were heated at 80 °C in acetonitrile (10 mL) for 10 hours. After solvents evaporation under vacuum, water was added to the reaction mixture followed by extraction with DCM. The combined organic phases were dried over Na₂SO₄, filtered, and concentrated in vacuo. The desired product was purified by silica gel column chromatography.

2.2 Characterization Data of 1

1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethan-1-one (1a)¹: white solid; 83% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.57 (d, J = 8.3 Hz, 1H), 7.54 – 7.49 (m, 2H), 7.38 (dd, J = 8.4, 1.9 Hz, 1H), 7.12 (s, 1H), 6.94 (s, 1H), 5.33 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.68, 139.27, 138.03, 134.10, 132.49, 131.14, 130.79, 129.83, 127.99, 119.99, 55.51.

2-(1H-imidazol-1-yl)-1-phenylethan-1-one (1b)¹: white solid; 63% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.93 (m, 2H), 7.71 – 7.62 (m, 1H), 7.58 – 7.48 (m, 3H), 7.12 (s, 1H), 6.94 (d, *J* = 1.4 Hz, 1H), 5.40 (d, *J* = 2.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 191.73, 138.17, 134.40, 134.18, 129.55, 129.13, 127.98, 120.34, 52.48.

2-(1H-imidazol-1-yl)-1-(o-tolyl)ethan-1-one (1c)³: white solid; 79% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.8 Hz, 1H), 7.52 – 7.45 (m, 2H), 7.33 (t, J = 7.8 Hz, 2H), 7.13 (s, 1H), 6.94 (s, 1H), 5.30 (s, 2H), 2.53 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 194.37, 139.95, 138.13, 133.95, 132.85, 132.76, 129.67, 128.30, 126.07, 120.21, 54.05, 21.70.

2-(1H-imidazol-1-yl)-1-(2-methoxyphenyl)ethan-1-one (1d)⁴: white solid; 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.56 (ddd, *J* = 8.4, 7.3, 1.9 Hz, 1H), 7.47 (s, 1H), 7.10 (t, *J* = 1.1 Hz, 1H), 7.09 – 7.01 (m, 2H), 6.91 (s, 1H), 5.32 (s, 2H), 4.00 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 193.15, 159.34, 138.22, 135.32, 131.28, 129.27, 124.54, 121.29, 120.30, 111.66, 56.90, 55.70.

1-(2-bromophenyl)-2-(1H-imidazol-1-yl)ethan-1-one (1e): white solid; 61% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 7.1 Hz, 1H), 7.52 (s, 1H), 7.43 – 7.34 (m, 3H), 7.10 (s, 1H), 6.96 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.18, 138.49, 137.96, 133.88, 132.85, 129.78, 128.98, 127.88, 119.95, 118.91, 55.01. HRMS (ESI) calcd. for C₁₁H₉BrN₂O [M+H]⁺: 264.9898, Found: 264.9970.

1-(3-chlorophenyl)-2-(1H-imidazol-1-yl)ethan-1-one (1f)⁵: white solid; 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (t, J = 1.9 Hz, 1H), 7.84 (dt, J = 7.8, 1.3 Hz, 1H), 7.63 (ddd, J = 8.0, 2.1, 1.0 Hz, 1H), 7.54 – 7.43 (m, 2H), 7.13 (s, 1H), 6.93 (s, 1H), 5.38 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 190.56, 138.10, 135.64, 135.57, 134.36, 130.50, 129.70, 128.14, 126.01, 120.26, 52.52.

2-(1H-imidazol-1-yl)-1-(*p***-tolyl)ethan-1-one (1g)³:** white solid; 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 8.2 Hz, 2H), 7.49 (s, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.12 (s, 1H), 6.93 (s, 1H), 5.35 (s, 2H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.20, 145.48, 138.16, 131.71, 129.78, 129.57, 128.07, 120.29, 52.33, 21.79.

1-(4-(tert-butyl)phenyl)-2-(1H-imidazol-1-yl)ethan-1-one (1h): white solid, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.86 (m, 2H), 7.58 – 7.46 (m, 3H), 7.13 (d, J = 1.3 Hz, 1H), 6.94 (q, J = 1.3 Hz, 1H), 5.38 (s, 2H), 1.36 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 191.19, 158.45, 138.15, 131.63, 129.56, 127.99, 126.09, 120.29, 52.38, 35.33, 31.02. HRMS (ESI) calcd. for C₁₅H₁₈N₂O [M+H]⁺: 242.1419, Found: 243.1492.

1-(4-fluorophenyl)-2-(1H-imidazol-1-yl)ethan-1-one (1i)⁵: white solid; 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.05 – 7.96 (m, 2H), 7.50 (s, 1H), 7.24 – 7.15 (m, 2H), 7.13 (s, 1H), 6.93 (t, *J* = 1.3 Hz, 1H), 5.37 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 190.09, 167.69, 165.14, 138.13, 130.80, 130.71, 130.67, 130.64, 129.75, 120.24, 116.54, 116.32, 52.35. ¹⁹F NMR (376 MHz, CDCl₃) δ -102.27.

2-(1H-imidazol-1-yl)-1-(4-(trifluoromethyl)phenyl)ethan-1-one (1j): white solid; 80% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.09 (d, J = 8.0 Hz, 2H), 7.81 (d, J = 8.8 Hz, 2H), 7.56 (s, 1H), 7.15 (s, 1H), 6.96 (s, 1H), 5.46 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 191.14, 138.11, 136.78, 135.53 (q, J = 33.1 Hz), 129.43, 128.43, 126.17 (q, J = 3.7Hz), 123.31 (q, J = 272.9 Hz), 120.36, 52.76. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.31. HRMS (ESI) calcd. for C₁₂H₉F₃N₂O [M+H]⁺: 254.0667, Found: 255.0739.

1-(4-chlorophenyl)-2-(1H-imidazol-1-yl)ethan-1-one (1k)³: white solid; 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.6 Hz, 2H), 7.56 – 7.47 (m, 3H), 7.14 (s, 1H), 6.94 (s, 1H), 5.37 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 190.49, 141.05, 138.12, 132.49, 129.81, 129.53, 129.37, 120.21, 52.41.

methyl 4-(2-(1H-imidazol-1-yl)acetyl)benzoate (1I): white solid, 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.22 – 8.16 (m, 2H), 8.06 – 8.01 (m, 2H), 7.53 (s, 1H), 7.15 (s, 1H), 6.96 (s, 1H), 5.44 (s, 2H), 3.97 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.28, 165.83, 138.11, 137.26, 135.07, 130.27, 129.78, 127.94, 120.23, 52.73, 52.68. HRMS (ESI) calcd. for C₁₃H₁₂N₂O₃ [M+H]⁺: 244.0848, Found: 245.0921.

1-(furan-2-yl)-2-(1H-imidazol-1-yl)ethan-1-one (1m)⁶: white solid; 51% yield. ¹H NMR (600 MHz, DMSO- d_6) δ 8.10 (s, 1H), 7.59 (s, 2H), 7.12 (d, J = 2.6 Hz, 1H), 6.91 (d, J = 2.5 Hz, 1H), 6.80 (s, 1H), 5.50 (s, 2H). ¹³C NMR (151 MHz, DMSO- d_6) δ 182.64, 150.39, 148.88, 138.82, 128.44, 121.31, 119.72, 113.23, 52.07.

2-(1H-imidazol-1-yl)-1-(pyridin-2-yl)ethan-1-one (1n)⁶: white solid; 57% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.70 (s, 1H), 8.06 (d, J = 6.7 Hz, 1H), 7.89 (t, J = 7.8 Hz, 1H), 7.54 (d, J = 19.7 Hz, 2H), 7.12 (s, 1H), 6.96 (s, 1H), 5.65 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.48, 151.33, 149.24, 138.27, 137.37, 129.50, 128.29, 122.38, 120.29, 52.28.

2-(1H-imidazol-1-yl)-1-(thiophen-2-yl)ethan-1-one (10)⁷: white solid; 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (ddd, *J* = 7.8, 4.4, 1.1 Hz, 2H), 7.54 (s, 1H), 7.20 (dd, *J* = 4.9, 3.8 Hz, 1H), 7.13 (s, 1H), 6.97 (d, *J* = 1.4 Hz, 1H), 5.29 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 184.73, 140.59, 138.11, 135.36, 132.52, 129.74, 128.65, 120.24, 52.57.

2-(1H-imidazol-1-yl)-1-(naphthalen-2-yl)ethan-1-one (1p)⁷: white solid; 85% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 1.7 Hz, 1H), 8.03 – 7.88 (m, 4H), 7.72 – 7.51 (m, 3H), 7.16 (d, J = 1.1 Hz, 1H), 6.99 (s, 1H), 5.53 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 193.99, 138.86, 135.78, 132.58, 132.24, 130.50, 130.07, 129.46, 129.03, 128.39, 128.27, 127.68, 123.81, 121.43, 53.10.

Methyl (*E*)-3-(1-(2-(2,4-dichlorophenyl)-2-oxoethyl)-1H-imidazol-4-yl)acrylate (1q): white solid, 79% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.98 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 2.0 Hz, 1H), 7.71 (s, 1H), 7.67 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.59 – 7.53 (m, 2H), 6.37 (d, *J* = 15.5 Hz, 1H), 5.64 (s, 2H), 3.69 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 194.01, 167.09, 140.26, 137.36, 137.30, 136.67, 133.62, 132.05, 131.49, 130.54, 127.71, 124.78, 113.61, 54.99, 51.19. HRMS (ESI) calcd. for C₁₅H₁₂Cl₂N₂O₃ [M+H]⁺: 338.0225, Found: 339.0299.

1-(2,4-dichlorophenyl)-2-(1H-1,2,3-triazol-1-yl)ethan-1-one (1r)⁸: white solid; 69% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (s, 2H), 7.62 (d, J = 8.4 Hz, 1H), 7.49 (d, J = 2.0 Hz, 1H), 7.35 (dd, J = 8.4, 2.0 Hz, 1H), 5.88 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 192.52, 139.16, 135.37, 133.80, 132.92, 131.38, 130.78, 127.73, 62.91.

1-(2-chlorophenyl)-2-(2H-tetrazol-2-yl)ethan-1-one (1s)⁹: white solid; 60% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.63 (s, 1H), 7.77 – 7.72 (m, 1H), 7.54 (dd, J = 6.2, 1.7Hz, 2H), 7.44 (ddd, J = 7.8, 6.2, 2.3 Hz, 1H), 6.17 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 190.99, 153.34, 134.73, 133.94, 132.11, 131.11, 130.67, 127.52, 77.31, 77.10, 76.88, 60.78, 25.37.

2-(1H-benzo[d]imidazol-1-yl)-1-(2,4-dichlorophenyl)ethan-1-one (1t)¹⁰: white solid; 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 8.00 (m, 2H), 7.93 (s, 1H), 7.88 – 7.82 (m, 1H), 7.72 – 7.66 (m, 1H), 7.56 (dd, J = 8.5, 7.1 Hz, 2H), 7.33 – 7.26 (m, 2H), 7.25 – 7.21 (m, 1H), 5.57 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 191.24, 143.77, 143.63, 134.50, 134.25, 129.20, 128.07, 123.30, 122.37, 120.62, 109.23, 77.36, 77.04, 76.73, 50.39.

2-(2H-benzo[d][1,2,3]triazol-2-yl)-1-(2,4-dichlorophenyl)ethan-1-one (1u): white solid; 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.4 Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.55 – 7.49 (m, 2H), 7.47 – 7.35 (m, 3H), 6.06 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 192.06, 146.06, 139.50, 133.69, 133.63, 132.87, 131.41, 130.92, 128.03, 127.99, 124.17, 120.31, 109.29, 77.35, 77.04, 76.72, 56.63. HRMS (ESI) calcd. for C₁₄H₉Cl₂N₃O [M+H]⁺: 306.0123, Found: 306.0200.

3. General procedure for the asymmetric hydrogenation

3.1 General procedure for the asymmetric hydrogenation conducted with S/C = 100

To a 4.0 mL vial was added the catalyst $(2 \times 10^{-2} \text{ mmol}, 24 \text{ mg})$ and anhydrous THF (2.0 mL) under argon atmosphere. The mixture was stirred in the argon-filled glovebox. The resulting solution (200 µL) and KOH (0.1 mg) were transferred by syringe into a 5.0 mL vial charged with substrate (0.2 mmol) in 0.5 mL anhydrous THF. The vials were transferred to an autoclave, which was then charged with 50 atm of H₂ and stirred at room temperature for 24 h. The hydrogen gas was released slowly in a well-ventilated hood and the solution was concentrated and passed through a short column of silica gel to remove the metal complex.

(*S*)-1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethan-1-ol (2a)¹: white solid; 99% yield, >99% ee, $[\alpha]^{25}_{D} = +85$ (*c* 1.0, MeOH) (lit.¹ $[\alpha]^{25}_{D} = +83.8$ (*c* 0.998, MeOH), 91% ee, *S*); ¹H NMR (600 MHz, DMSO-*d*₆) δ 7.59 (d, *J* = 3.3 Hz, 1H), 7.45 (dt, *J* = 23.0, 5.4 Hz, 3H), 7.05 (s, 1H), 6.84 (s, 1H), 6.06 (s, 1H), 5.13 – 5.04 (m, 1H), 4.17 (dd, *J* = 14.1, 2.9 Hz, 1H), 4.05 (ddd, *J* = 14.3, 6.8, 3.3 Hz, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 139.12, 138.21, 133.22, 132.28, 129.85, 128.88, 128.42, 127.93, 120.50, 69.16, 52.08. The enantiomeric excess of **2a** was determined by HPLC analysis on Chiralpak AS-H column. Conditions: hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, uvvis detection at λ = 208 nm, *t_R* = 10.4 min (major), 13.1 min (minor).

(*S*)-2-(1H-imidazol-1-yl)-1-phenylethan-1-ol (2b)¹: white solid; 97% yield, >99% ee, $[\alpha]^{25}_{D} = +81$ (*c* 0.5, MeOH) (lit.¹ $[\alpha]^{25}_{D} = +46.1$ (*c* 0.98, EtOH), 97% ee, *S*); ¹H

NMR (600 MHz, DMSO- d_6) δ 7.49 (d, J = 8.5 Hz, 1H), 7.35 (d, J = 6.9 Hz, 4H), 7.30 – 7.24 (m, 1H), 7.11 (d, J = 8.3 Hz, 1H), 6.83 (d, J = 8.4 Hz, 1H), 5.72 (s, 1H), 4.82 (td, J = 8.5, 4.0 Hz, 1H), 4.14 (tt, J = 9.2, 4.3 Hz, 1H), 4.04 (dt, J = 13.7, 8.3 Hz, 1H). ¹³C NMR (151 MHz, DMSO- d_6) δ 143.12, 138.18, 128.54, 128.19, 127.80, 126.49, 120.50, 72.55, 54.01. The enantiomeric excess of **2b** was determined by HPLC analysis on Chiralpak AS-H column. Conditions: hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, uv-vis detection at $\lambda = 208$ nm, $t_R = 10.4$ min (major), 13.1 min (minor).

(*S*)-2-(1H-imidazol-1-yl)-1-(o-tolyl)ethan-1-ol (2c): white solid; 98% yield, >99% ee, $[\alpha]^{25}_{D} = +67$ (*c* 0.5, MeOH). ¹H NMR (600 MHz, CD₃OD) δ 7.50 (s, 1H), 7.41 – 7.38 (m, 1H), 7.18 – 7.12 (m, 3H), 7.04 (s, 1H), 6.90 (s, 1H), 5.16 – 5.11 (m, 1H), 4.21 – 4.14 (m, 2H), 2.28 (s, 3H). ¹³C NMR (151 MHz, CD₃OD) δ 139.53, 137.61, 134.55, 129.92, 127.33, 126.98, 125.87, 125.43, 120.16, 69.34, 52.86, 17.62. HRMS (ESI) calcd. for C₁₂H₁₄N₂O [M+H]⁺: 203.1106, Found: 203.1177. The enantiomeric excess of **2c** was determined by HPLC analysis on Chiralpak IB column. Conditions: hexane/isopropanol = 80/20, flow rate = 1.0 mL/min, uv-vis detection at λ = 208 nm, t_R = 11.4 min (minor), 23.6 min (major).

(*S*)-2-(1H-imidazol-1-yl)-1-(2-methoxyphenyl)ethan-1-ol (2d): white solid; 98% yield, >99% ee, $[\alpha]^{25}_{D} = +80$ (*c* 0.5, MeOH). ¹H NMR (600 MHz, CD₃OD) δ 7.50 (s, 1H), 7.38 – 7.34 (m, 1H), 7.28 (td, *J* = 7.8, 1.7 Hz, 1H), 7.03 (s, 1H), 6.99 (d, *J* = 7.3 Hz, 1H), 6.94 (t, *J* = 7.5 Hz, 1H), 6.90 (s, 1H), 5.25 (dd, *J* = 7.1, 3.4 Hz, 1H), 4.26 (dd, *J* = 14.1, 3.4 Hz, 1H), 4.12 (dd, *J* = 14.0, 7.1 Hz, 1H), 3.88 (s, 3H). ¹³C NMR (151 MHz, CD₃OD) δ 155.97, 137.56, 129.29, 128.49, 126.84, 126.09, 120.22, 120.12, 109.88, 67.70, 54.47, 52.57. HRMS (ESI) calcd. for C₁₂H₁₄N₂O₂ [M+H]⁺: 219.1055,

Found: 219.1126. The enantiomeric excess of **2d** was determined by HPLC analysis on Chiralpak AS-H column. Conditions: hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, uv-vis detection at λ = 208 nm, t_R = 16.3 min (major), 22.2 min (minor).

(*S*)-1-(2-bromophenyl)-2-(1H-imidazol-1-yl)ethan-1-ol (2e): white solid; 97% yield, >99% ee, $[\alpha]^{25}_{D} = +65$ (*c* 0.5, MeOH). ¹H NMR (600 MHz, CD₃OD) δ 7.57 (d, J = 7.5 Hz, 2H), 7.49 (dd, J = 7.8, 1.7 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7.20 (td, J = 7.7, 1.8 Hz, 1H), 7.07 (s, 1H), 6.92 (s, 1H), 5.25 (dd, J = 7.3, 3.0 Hz, 1H), 4.30 (dd, J = 14.3, 3.1 Hz, 1H), 4.13 (dd, J = 14.3, 7.3 Hz, 1H). ¹³C NMR (151 MHz, CD₃OD) δ 140.38, 137.58, 132.27, 129.21, 127.66, 127.52, 126.86, 121.26, 120.17, 71.69, 52.38. HRMS (ESI) calcd. for C₁₁H₁₁BrN₂O [M+H]⁺: 267.0055, Found: 267.0124. The enantiomeric excess of **2e** was determined by UPLC analysis on Chiralpak IB-U column. Conditions: hexane/isopropanol = 80/20, flow rate = 0.5 mL/min, uv-vis detection at $\lambda = 210$ nm, $t_R = 3.0$ min (major), 3.6 min (minor).

(*S*)-1-(3-chlorophenyl)-2-(1H-imidazol-1-yl)ethan-1-ol (2f): white solid; 98% yield, >99% ee, $[\alpha]^{25}_{D} = +23$ (*c* 0.5, MeOH). ¹H NMR (600 MHz, CD₃OD) δ 7.71 (s, 1H), 7.35 (s, 1H), 7.33 – 7.24 (m, 3H), 7.15 (s, 1H), 7.00 (s, 1H), 4.95 (dd, *J* = 7.3, 4.1 Hz, 1H), 4.28 (dd, *J* = 14.1, 4.0 Hz, 1H), 4.19 (dd, *J* = 14.1, 7.3 Hz, 1H). ¹³C NMR (151 MHz, CD₃OD) δ 143.93, 137.37, 134.04, 129.61, 127.53, 125.79, 125.74, 124.07, 120.61, 53.99. HRMS (ESI) calcd. for C₁₁H₁₁ClN₂O [M+H]⁺: 223.0560, Found: 223.0641. The enantiomeric excess of **2f** was determined by HPLC analysis on Chiralpak IB column. Conditions: hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, uv-vis detection at λ = 208 nm, *t_R* = 18.3 min (major), 23.9 min (minor).

(*S*)-2-(1H-imidazol-1-yl)-1-(p-tolyl)ethan-1-ol (2g): white solid; 99% yield, >99% ee, $[\alpha]^{25}_{D} = +35$ (*c* 0.5, MeOH). ¹H NMR (600 MHz, DMSO-*d*₆) δ 7.49 (s, 1H), 7.22 (d, *J* = 7.9 Hz, 2H), 7.13 (d, *J* = 7.8 Hz, 2H), 7.10 (s, 1H), 5.63 (s, 1H), 4.77 (dd, *J* = 7.9, 4.1 Hz, 1H), 4.10 (dd, *J* = 13.9, 4.2 Hz, 1H), 4.01 (dd, *J* = 13.9, 7.9 Hz, 1H), 2.28 (s, 3H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 140.11, 138.15, 136.83, 129.09, 128.09, 126.41, 120.51, 72.37, 54.05, 21.18. HRMS (ESI) calcd. for C₁₂H₁₄N₂O [M+H]⁺: 203.1106, Found: 203.1177. The enantiomeric excess of **2g** was determined by HPLC analysis on Chiralpak AS-H column. Conditions: hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, uv-vis detection at λ = 210 nm, *t_R* = 21.8 min (major), 24.3 min (minor).

(*S*)-1-(4-(tert-butyl)phenyl)-2-(1H-imidazol-1-yl)ethan-1-ol (2h): white solid, 98% yield, >99% ee, $[\alpha]^{25}_{D} = +33$ (*c* 0.1, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (s, 1H), 7.38 (dt, *J* = 8.4, 2.0 Hz, 2H), 7.25 (dt, *J* = 8.5, 2.1 Hz, 2H), 7.08 (t, *J* = 1.3 Hz, 1H), 6.91 (s, 1H), 4.86 (d, *J* = 2.3 Hz, 1H), 4.25 – 4.11 (m, 2H), 1.31 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 154.58, 142.51, 141.56, 130.90, 129.40, 128.88, 124.03, 76.64, 57.84, 37.91, 34.33. HRMS (ESI) calcd. for C₁₅H₂₀N₂O [M+H]⁺: 244.1576, Found: 245.1649. The enantiomeric excess of **2h** was determined by UPLC analysis on Chiralpak IB-U column. Conditions: hexane/isopropanol = 75/25, flow rate = 0.5 mL/min, uv-vis detection at λ = 220 nm, *t_R* = 3.40 min (major), 3.91 min (minor).

(*S*)-1-(4-fluorophenyl)-2-(1H-imidazol-1-yl)ethan-1-ol (2i): white solid; 98% yield, >99% ee, $[\alpha]^{25}_{D} = +41$ (*c* 0.5, MeOH). ¹H NMR (600 MHz, CD₃OD) δ 7.48 (s, 1H), 7.32 (dd, *J* = 8.4, 5.4 Hz, 2H), 7.07 – 7.01 (m, 3H), 6.89 (s, 1H), 4.92 (dd, *J* = 7.2, 4.5 Hz, 1H), 4.20 (dd, *J* = 14.1, 4.4 Hz, 1H), 4.15 (dd, *J* = 14.1, 7.1 Hz, 1H). ¹³C NMR (151 MHz, CD₃OD) δ 163.22, 161.60, 137.64, 127.63, 127.57, 127.02, 120.13, 14 114.74, 114.60, 72.11, 53.82. ¹⁹F NMR (377 MHz, CD₃OD) δ -116.94. HRMS (ESI) calcd. for C₁₁H₁₁FN₂O [M+H]⁺: 207.0855, Found: 207.0924. The enantiomeric excess of **2i** was determined by UPLC analysis on Chiralpak IB-U column. Conditions: hexane/isopropanol = 80/20, flow rate = 0.5 mL/min, uv-vis detection at λ = 230 nm, t_R = 3.2 min (major), 3.7 min (minor).

(*S*)-2-(1H-imidazol-1-yl)-1-(4-(trifluoromethyl)phenyl)ethan-1-ol (2j): white solid; 98% yield, >99% ee, [α]²⁵_D = +30 (*c* 0.1, MeOH).. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.70 (d, *J* = 8.1 Hz, 2H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.48 (s, 1H), 7.12 (s, 1H), 6.83 (s, 1H), 5.92 (d, *J* = 4.6 Hz, 1H), 4.95 (dt, *J* = 8.2, 4.4 Hz, 1H), 4.19 (dd, *J* = 14.0, 4.1 Hz, 1H), 4.07 (dd, *J* = 13.9, 7.6 Hz, 1H). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 147.78, 138.22, 128.42 (q, *J* = 31.6 Hz), 128.27, 127.29, 125.40 (q, *J* = 3.8 Hz), 124.79 (q, *J* = 271.9, 270.7 Hz), 120.54, 71.90, 53.63. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -59.99. HRMS (ESI) calcd. for C₁₂H₁₁F₃N₂O [M+H]⁺: 256.0823, Found: 257.0895. The enantiomeric excess of **2j** was determined by UPLC analysis on Chiralpak IB-U column. Conditions: hexane/isopropanol = 75/25, flow rate = 0.5 mL/min, uv-vis detection at λ = 220 nm, *t_R* = 2.38 min (major), 2.84 min (minor).

(*S*)-1-(4-chlorophenyl)-2-(1H-imidazol-1-yl)ethan-1-ol (2k): white solid; 97% yield, >99% ee, $[\alpha]^{25}_{D}$ = +86 (*c* 0.5, MeOH). ¹H NMR (600 MHz, CD₃OD) δ 7.48 (s, 1H), 7.30 (q, J = 8.5 Hz, 4H), 7.05 (s, 1H), 6.89 (s, 1H), 4.92 (dd, J = 7.1, 4.3 Hz, 1H), 4.22 (dd, J = 14.1, 4.4 Hz, 1H), 4.16 (dd, J = 14.1, 7.1 Hz, 1H). ¹³C NMR (151 MHz, CD₃OD) δ 140.47, 137.66, 133.16, 128.08, 127.34, 127.04, 120.14, 72.05, 53.68. HRMS (ESI) calcd. for C₁₁H₁₁ClN₂O [M+H]⁺: 223.0560, Found: 223.0641. The enantiomeric excess of **2k** was determined by HPLC analysis on Chiralpak IB column.

Conditions: hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, uv-vis detection at λ = 208 nm, t_R = 20.3 min (major), 23.5 min (minor).

methyl (S)-4-(1-hydroxy-2-(1H-imidazol-1-yl)ethyl)benzoate (2l): white solid, 99% yield, >99% ee, [α]²⁵_D = +120 (*c* 0.1, MeOH). ¹H NMR (400 MHz, CD₃OD) δ 7.97 (d, J = 8.4 Hz, 2H), 7.49 (s, 1H), 7.44 (d, J = 8.3 Hz, 2H), 7.06 (s, 1H), 6.90 (s, 1H), 5.01 (dd, J = 7.0, 4.2 Hz, 1H), 4.27 (dd, J = 14.1, 4.3 Hz, 1H), 4.19 (dd, J = 14.1, 7.0 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (101 MHz, CD₃OD) δ 166.91, 147.14, 137.68, 129.40, 129.22, 127.06, 128.89, 120.19, 72.29, 53.62, 51.26. HRMS (ESI) calcd. for C₁₃H₁₄N₂O₃ [M+H]⁺: 246.1004, Found: 247.1077. The enantiomeric excess of **2l** was determined by UPLC analysis on Chiralpak IB-U column. Conditions: hexane/isopropanol = 75/25, flow rate = 0.5 mL/min, uv-vis detection at $\lambda = 210$ nm, $t_R = 4.53$ min (major), 5.33 min (minor).

(*R*)-1-(furan-2-yl)-2-(1H-imidazol-1-yl)ethan-1-ol (2m): white solid; 96% yield, >99% ee, $[\alpha]^{25}_{D} = +34$ (*c* 0.5, MeOH). ¹H NMR (600 MHz, CDCl₃) δ 7.41 (d, *J* = 1.8 Hz, 1H), 7.31 (s, 1H), 6.84 – 6.80 (m, 2H), 6.35 (dd, *J* = 3.3, 1.8 Hz, 1H), 6.29 (d, *J* = 3.3 Hz, 1H), 5.05 (s, 1H), 4.92 (dd, *J* = 7.7, 3.9 Hz, 1H), 4.27 (dd, *J* = 14.1, 4.0 Hz, 1H), 4.20 (dd, *J* = 14.1, 7.7 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 153.78, 142.24, 137.61, 128.42, 119.61, 110.55, 107.18, 67.32, 52.07. HRMS (ESI) calcd. for C₉H₁₀N₂O₂ [M+H]⁺: 179.0742, Found: 179.0813. The enantiomeric excess of **2m** was determined by UPLC analysis on Chiralpak IB-U column. Conditions: hexane/isopropanol = 80/20, flow rate = 0.5 mL/min, uv-vis detection at λ = 210 nm, *t_R* = 1.9 min (major), 2.5 min (minor).

(*R*)-2-(1H-imidazol-1-yl)-1-(pyridin-2-yl)ethan-1-ol (2n): white solid; 97% yield, >99% ee, $[\alpha]^{25}_{D} = +18$ (*c* 0.5, MeOH). ¹H NMR (600 MHz, CD₃OD) δ 8.53 (s, 1H), 7.80 (t, *J* = 7.8 Hz, 1H), 7.54 – 7.45 (m, 2H), 7.35 – 7.29 (m, 1H), 7.03 (s, 1H), 6.88 (s, 1H), 5.01 – 4.95 (m, 1H), 4.42 (dt, *J* = 14.3, 3.3 Hz, 1H), 4.32 – 4.21 (m, 1H). ¹³C NMR (151 MHz, CD₃OD) δ 160.42, 148.23, 137.68, 137.39, 127.04, 122.86, 120.92, 120.10, 73.07, 52.66. HRMS (ESI) calcd. for C₁₀H₁₁N₃O [M+H]⁺: 190.0902, Found: 190.0973. The enantiomeric excess of **2n** was determined by UPLC analysis on Chiralpak IG-3 column. Conditions: hexane/isopropanol = 80/20, flow rate = 0.5 mL/min, uv-vis detection at λ = 210 nm, *t_R* = 5.3 min (major), 5.7 min (minor).

(*R*)-2-(1H-imidazol-1-yl)-1-(thiophen-2-yl)ethan-1-ol (20): yellow solid; 96% yield, >99% ee, $[\alpha]^{25}_{D} = +10$ (*c* 0.5, MeOH). ¹H NMR (600 MHz, CD₃OD) δ 7.54 (s, 1H), 7.33 (dd, *J* = 4.9, 1.3 Hz, 1H), 7.10 (s, 1H), 6.96 (dt, *J* = 7.4, 3.5 Hz, 2H), 6.91 (s, 1H), 5.17 (dd, *J* = 7.4, 4.5 Hz, 1H), 4.30 (dd, *J* = 14.0, 4.5 Hz, 1H), 4.23 (dd, *J* = 14.1, 7.4 Hz, 1H). ¹³C NMR (151 MHz, CD₃OD) δ 145.30, 137.66, 127.06, 126.37, 124.47, 123.77, 120.08, 69.05, 53.99. HRMS (ESI) calcd. for C₉H₁N₂S [M+H]⁺: 195.0514, Found: 195.0585. The enantiomeric excess of **20** was determined by UPLC analysis on Chiralpak AS-H column. Conditions: hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, uv-vis detection at λ = 210 nm, *t_R* = 2.4 min (major), 2.9 min (minor).

(*S*)-2-(1H-imidazol-1-yl)-1-(naphthalen-2-yl)ethan-1-ol (2p): white solid; 99% yield, >99% ee, $[\alpha]^{25}_{D}$ = +43 (*c* 0.5, MeOH). ¹H NMR (600 MHz, CD₃OD) δ 7.67 (s, 2H), 7.58 (d, *J* = 8.4 Hz, 1H), 7.43 (d, *J* = 2.1 Hz, 1H), 7.35 (d, *J* = 8.6 Hz, 1H), 5.57 (dd, *J* = 8.1, 3.9 Hz, 1H), 4.65 (dd, *J* = 13.8, 3.9 Hz, 1H), 4.57 (dd, *J* = 13.8, 8.0 Hz, 17

1H). ¹³C NMR (151 MHz, CD₃OD) δ 137.83, 134.08, 133.84, 132.43, 128.85, 128.54, 127.25, 68.55, 59.31. HRMS (ESI) calcd. for C₁₅H₁₄N₂O [M+H]⁺: 239.1106, Found: 239.1177. The enantiomeric excess of **2p** was determined by HPLC analysis on Chiralpak IB column. Conditions: hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, uv-vis detection at λ = 208 nm, t_R = 26.6 min (major), 30.9 min (minor).

methyl (*S*, *E*)-3-(1-(2-(2,4-dichlorophenyl)-2-hydroxyethyl)-1H-imidazol-4-yl) acrylate (2q): white solid, 98% yield, >99% ee, $[α]^{25}_{D} = +21$ (*c* 0.1, MeOH). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.62 (t, *J* = 1.2 Hz, 1H), 7.59 – 7.58 (m, 1H), 7.55 (s, 1H), 7.50 (d, *J* = 15.6 Hz, 1H), 7.45 (d, *J* = 1.5 Hz, 2H), 6.33 (d, *J* = 15.6 Hz, 1H), 6.08 (d, *J* = 4.6 Hz, 1H), 5.08 (ddd, *J* = 7.7, 4.7, 3.3 Hz, 1H), 4.20 (dd, *J* = 14.1, 3.3 Hz, 1H), 4.05 (dd, *J* = 14.1, 7.3 Hz, 1H), 3.68 (s, 3H). ¹³C NMR (151 MHz, DMSO*d*₆) δ 167.59, 140.30, 138.83, 137.88, 137.06, 133.34, 132.26, 129.82, 128.97, 128.01, 124.73, 113.81, 68.93, 52.31, 51.63. HRMS (ESI) calcd. for C₁₅H₁₄Cl₂N₂O₃ [M+H]⁺: 340.0381, Found: 341.0455. The enantiomeric excess of **2q** was determined by UPLC analysis on Chiralpak IA-U column. Conditions: hexane/isopropanol = 75/25, flow rate = 0.5 mL/min, uv-vis detection at λ = 280 nm, *t_R* = 1.92 min (major), 3.02 min (minor).

(*S*)-1-(2,4-dichlorophenyl)-2-(1H-1,2,3-triazol-1-yl)ethan-1-ol (2r): white solid; 98% yield, >99% ee, $[\alpha]^{25}_{D} = +22$ (*c* 0.5, MeOH). ¹H NMR (600 MHz, CD₃OD) δ 7.67 (s, 2H), 7.58 (d, *J* = 8.4 Hz, 1H), 7.43 (d, *J* = 2.1 Hz, 1H), 7.35 (d, *J* = 8.6 Hz, 1H), 5.57 (dd, *J* = 8.1, 3.9 Hz, 1H), 4.65 (dd, *J* = 13.8, 3.9 Hz, 1H), 4.57 (dd, *J* = 13.8, 8.0 Hz, 1H). ¹³C NMR (151 MHz, CD₃OD) δ 137.83, 134.08, 133.84, 132.43, 128.85, 128.54, 127.25, 68.55, 59.31. HRMS (ESI) calcd. for C₁₀H₉Cl₂N₃O [M+H]⁺: 258.0123, Found: 258.0194. The enantiomeric excess of **2r** was determined by HPLC analysis on 18

Chiralpak IB column. Conditions: hexane/isopropanol = 90/10, flow rate = 1.0 mL/min, uv-vis detection at $\lambda = 208$ nm, $t_R = 11.6$ min (major), 12.2 min (minor).

(S)-1-(2-chlorophenyl)-2-(2H-tetrazol-2-yl)ethan-1-ol (2s): white solid; 98% yield, 98.5% ee, $[\alpha]^{25}_{D}$ = +66 (c 0.25, MeOH). ¹H NMR (600 MHz, CDCl₃) δ 8.54 (s, 1H), 7.63 (dd, J = 7.7, 1.8 Hz, 1H), 7.40 (dd, J = 7.8, 1.5 Hz, 1H), 7.32 (dtd, J = 22.8, 7.5, 1.6 Hz, 2H), 5.73 (dt, J = 8.5, 3.3 Hz, 1H), 4.99 (dd, J = 13.9, 2.7 Hz, 1H), 4.79 (dd, J = 13.9, 8.7 Hz, 1H), 3.26 (d, J = 4.2 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 152.91, 136.63, 131.78, 129.79, 129.71, 127.51, 127.37, 69.25, 58.00. HRMS (ESI) calcd. for $C_9H_9CIN_4O [M+H]^+$: 224.0456, Found: 224.0527. The enantiomeric excess of 2s was by HPLC analysis on Chiralpak IC column. determined Conditions: hexane/isopropanol = 75/25, flow rate = 1.0 mL/min, uv-vis detection at λ = 208 nm, $t_R = 6.8 \text{ min} \text{ (major)}, 7.6 \text{ min} \text{ (minor)}.$

(*S*)-2-(1H-benzo[d]imidazol-1-yl)-1-(2,4-dichlorophenyl)ethan-1-ol (2t): white solid; 98% yield, >99% ee, $[\alpha]^{25}_{D} = +10$ (*c* 0.5, MeOH). ¹H NMR (600 MHz, CD₃OD) δ 7.99 (s, 1H), 7.65 (dd, *J* = 7.2, 1.5 Hz, 1H), 7.51 (dd, *J* = 7.4, 1.5 Hz, 1H), 7.36 – 7.31 (m, 4H), 7.30 – 7.24 (m, 3H), 5.07 (dd, *J* = 7.2, 4.8 Hz, 1H), 4.51 – 4.43 (m, 2H). ¹³C NMR (151 MHz, CD₃OD) δ 144.01, 142.32, 141.65, 133.91, 128.10, 127.57, 125.71, 122.71, 121.91, 118.51, 110.23, 71.83, 51.89. HRMS (ESI) calcd. for C₁₅H₁₂Cl₂N₂O [M+H]⁺: 307.0329, Found: 307.0400. The enantiomeric excess of **2t** was determined by HPLC analysis on Chiralpak IB column. Conditions: hexane/isopropanol = 80/20, flow rate = 1.0 mL/min, uv-vis detection at λ = 210 nm, *t_R* = 14.2 min (major), 17.2 min (minor).

(*S*)-2-(2H-benzo[d][1,2,3]triazol-2-yl)-1-(2,4-dichlorophenyl)ethan-1-ol (2u): white solid; 98% yield, 97% ee, $[\alpha]^{25}_{D} = +34$ (*c* 0.5, MeOH). ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.02 (d, *J* = 8.3 Hz, 1H), 7.80 (d, *J* = 8.3 Hz, 1H), 7.61 (d, *J* = 2.1 Hz, 1H), 7.58 – 7.51 (m, 2H), 7.45 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.42 – 7.36 (m, 1H), 6.08 (s, 1H), 5.40 (dd, *J* = 7.6, 3.8 Hz, 1H), 4.88 (dd, *J* = 14.4, 3.8 Hz, 1H), 4.82 (dd, *J* = 14.4, 7.6 Hz, 1H). ¹³C NMR (151 MHz, CD₃OD) δ 145.10, 137.87, 133.94, 132.26, 128.83, 128.55, 127.26, 127.16, 124.10, 118.28, 110.68, 68.72, 53.35. HRMS (ESI) calcd. for C₁₄H₁₁Cl₂N₃O [M+H]⁺: 308.0279, Found: 308.0350. The enantiomeric excess of **2u** was determined by UPLC analysis on Chiralpak IB-U column. Conditions: hexane/isopropanol = 80/20, flow rate = 0.5 mL/min, uv-vis detection at λ = 210 nm, t_R = 2.9 min (minor), 3.2 min (major).

(*R*)-6,7-dihydro-5H-pyrrolo[1,2-a]imidazol-7-ol (2v)¹¹: white solid; 65% yield, >99% ee, $[\alpha]^{25}_{D} = +35.4$ (*c* 0.125, MeOH) (lit.¹¹ $[\alpha]^{24}_{D} = +11$ (*c* 0.48, MeOH), 99% ee, *R*). ¹H NMR (600 MHz, CD₃OD) δ 7.04 (s, 2H), 5.04 – 5.00 (m, 1H), 4.16 (ddt, *J* = 10.2, 7.6, 3.6 Hz, 1H), 3.96 (td, *J* = 8.4, 4.2 Hz, 1H), 2.93 (dq, *J* = 14.4, 7.4 Hz, 1H), 2.42 (ddd, *J* = 13.8, 7.4, 3.6 Hz, 1H). ¹³C NMR (151 MHz, CD₃OD) δ 154.36, 131.51, 114.44, 64.12, 42.05, 36.45. HRMS (ESI) calcd. for C₆H₈N₂O [M+H]⁺: 125.0637, Found: 125.0708. The enantiomeric excess of **2v** was determined by UPLC analysis on Chiralpak OD column. Conditions: hexane/isopropanol = 80/20, flow rate = 0.5 mL/min, uv-vis detection at λ = 210 nm, *t_R* = 1.9 min (major), 3.4 min (minor).

3.2 General procedure for the asymmetric hydrogenation conducted with S/C =

RuCl₂[(*R*)-xylbinap] [(*R*)-daipen] (1.25×10^{-4} mmol) and KOH (0.1 mg) transferred by syringe into a 10 mL vial charged with substrate (1.27 g, 5 mmol) in 2.0 mL anhydrous THF. The vial was transferred to an autoclave, which was then charged with 50 atm of H₂ and stirred at room temperature for 48 h. The hydrogen gas was released slowly in a well-ventilated hood and the solution was concentrated and passed through a short column of silica gel to remove the metal complex.

4. Synthetic Applications

Step 1: I RuCl₂[(*R*)-xylbinap] [(*R*)-daipen] (5×10^{-4} mmol) and Cs₂CO₃ (0.3 mg) transferred by syringe into a 10 mL vial charged with substrate (1.11 g, 5 mmol) in 2.0 mL anhydrous THF. The vial was transferred to an autoclave, which was then charged with 50 atm of H₂ and stirred at room temperature for 48 h. The hydrogen gas was released slowly in a well-ventilated hood and the solution was concentrated and passed through a short column of silica gel to remove the metal complex.

Step 2^{12} : Chlorosulfonylisocyanate (1.5 equiv) was dissolved in dry THF (0.1-0.15 M) and placed in an ice bath. The (*R*)-2s (1 equiv) dissolved in dry THF (0.3 M) was added slowly to the reaction. The ice bath was removed and stirred until consumption of alcohol was apparent by TLC. The reaction was placed back in an ice bath and water was added. The reaction flask was fitted with a reflux condenser and refluxed

4000

until TLC indicated complete conversion of the starting material. Water was added and the organic phase separated collected. The aqueous layer was extracted with 3 portions of ethyl acetate, the organics combined, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel chromatography. The products $3s^{13}$ were obtained as oil (1.14 g, 86% yield, 98% ee). $[\alpha]^{25}_{D} = 3.4$ (c 0.5, MeOH).¹H NMR (400 MHz, CD₃OD) δ 8.70 (s, 1H), 7.45 (ddd, *J* = 9.5, 5.5, 3.5 Hz, 2H), 7.39 – 7.27 (m, 2H), 6.54 (dd, *J* = 8.1, 3.6 Hz, 1H), 5.10 (dd, *J* = 14.2, 8.2 Hz, 1H), 5.03 (dd, *J* = 14.3, 3.6 Hz, 1H), 4.85 (s, 2H). ¹³C NMR (151 MHz, CD₃OD) δ 156.19, 152.77, 134.57, 131.75, 129.84, 129.46, 127.31, 127.08, 70.46, 55.34. The enantiomeric excess of **3s** was determined by UPLC analysis on Chiralpak IB-U column. Conditions: hexane/isopropanol = 80/20, flow rate = 0.5 mL/min, uv-vis detection at $\lambda = 230$ nm, $t_R = 2.8$ min (minor), 3.9 min (major).

5. Spectroscopic data

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR (400 MHz, CDCl₃) of **1b**:

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR (400 MHz, CDCl₃) of **1f**:

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

F

¹H NMR (600 MHz, CDCl₃) of **1j**:

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2. fl (ppm)

¹³C NMR (101 MHz, CDCl₃) of 1k:

34

¹³C NMR (151 MHz, CDCl₃) of **1n**:

193.48	(151.33) (49.24) (38.27) (37.37) (22.50) (22.38) (20.29)	77.07 76.86	52.28
ī	57 52 57 57	\checkmark	Ĩ

¹H NMR (400 MHz, CDCl₃) of **1p**:

¹³C NMR (101 MHz, CDCl₃) of **1p**:

193.99	138,86 135,78 132,57 132,24 130,50 130,50 130,50 120,07 128,39 128,39 128,39 128,39 128,39 121,43	53.10 40.40 40.12 39.98 39.57
1		

¹H NMR (400 MHz, CDCl₃) of **1r**:

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4. fl (ppm)

¹³C NMR (101 MHz, CDCl₃) of **1r**:

52	33 16 33 33 30 33 16	×2 10 m	_
5	7.01.53.5		6
19	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	77 76	2
1		\checkmark	1

¹H NMR (400 MHz, CDCl₃) of 1t:

¹H NMR (600 MHz, DMSO-*d*₆) of **2a**:

¹³C NMR (151 MHz, DMSO-*d*₆) of **2a**:

¹H NMR (600 MHz, DMSO-*d*₆) of **2b**:

¹H NMR (600 MHz, CD₃OD) of **2c**:

¹H NMR (600 MHz, CD₃OD) of **2d**:

¹H NMR (600 MHz, CD₃OD) of **2e**:

¹H NMR (600 MHz, CD₃OD) of **2f**:

¹H NMR (600 MHz, DMSO-*d*₆) of **2g**:

¹H NMR (400 MHz, CD_3OD) of **2h**:

¹H NMR (600 MHz, CD₃OD) of **2i**:

¹⁹F NMR (377 MHz, CD₃OD) of **2i**:

¹³C NMR (151 MHz, DMSO-*d*₆) of **2j**:

¹H NMR (600 MHz, CD₃OD) of **2k**:

¹H NMR (400 MHz, CD₃OD) of **2l**:

¹³C NMR (101 MHz, CD₃OD) of **2l**:

166.91	147.14	137.68 129.40 129.22 127.06 125.89 125.89 120.19	72.29 51.26 447.48 47.56 47.56 47.50 47.51 47.51
1	1		

¹H NMR (600 MHz, CDCl₃) of **2m**:

¹H NMR (600 MHz, CD₃OD) of **2n**:

58

¹H NMR (600 MHz, CD₃OD) of **20**:

7,733 7,332 7,332 7,332 7,332 7,332 7,332 7,332 7,332 7,332 7,332 7,331 7,5317 7,5317 7,

¹H NMR (600 MHz, CD₃OD) of **2p**:

¹H NMR (400 MHz, DMSO- d_6) of **2q**:

¹³C NMR (151 MHz, DMSO-*d*₆) of **2q**:

¹H NMR (600 MHz, CD₃OD) of **2r**:

¹³C NMR (151 MHz, CDCl₃) of **2s**:

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR (600 MHz, CD₃OD) of **2t**:

¹H NMR (600 MHz, DMSO-*d*₆) of **2u**:

¹H NMR (600 MHz, CD₃OD) of **2v**:

¹H NMR (400 MHz, CD₃OD) of **3s**:

¹³C NMR (101 MHz, CD₃OD) of **3s**:

152.77 152.77	134.57 131.75 129.84 129.46 127.31 127.08	70.46 55.34 48.14 47.72 47.57 47.57 47.29
1.7		

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

6. HPLC spectra

Signal 1: DAD1 E, Sig=208,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
 1	10.059	 BB	0.6726	5.42146e4	1233.79675	100.0000

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.409	BB	0.5263	8291.38867	232.36989	49.6316
2	23.661	BB	1.0394	8414.48047	122.18788	50.3684

Totals :

1.67059e4 354.55777

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

----	------
 -----|
 -----|
 1
 23.555
 BB
 1.0231
 7.08493e4
 1074.67920
 100.0000

 Totals :
 7.08493e4
 1074.67920
 1074.67920
 100.0000

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	16.322	BB	0.8488	1.30053e4	208.18881	50.4193	
2	22.243	BB	1.1455	1.27890e4	138.99339	49.5807	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	17.603	BB	1.5081	1.22038e4	96.58673	100.0000
Total	ls :			1.22038e4	96.58673	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

1.5

2

1000 -

500

0 -

0.5

 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

----	------
 -----|
 -----|
 1

 1
 2.293
 MM
 0.1446
 1.93354e4
 2229.32056
 100.0000

 Totals :
 1.93354e4
 2229.32056
 100.0000

2.5

3

3.5

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak # 	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	18.296	BB	1.2264	1.45578e4	158.08727	51.3504
2	23.937	BB	1.5067	1.37921e4	113.10023	48.6496
Tota]	s:			2.83499e4	271.18750	

Signal 1: DAD1 A, Sig=210,4 Ref=off

Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1 13.617 BB	0.9095	1.08159e4	157.44118	100.0000	
Totals :		1.08159e4	157.44118		

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak RetTime Typ # [min]	e Width [min]	Area [mAU*s]	Height [mAU]	Area %
	-			
1 21.798 MF	1.0716	5654.55566	87.94574	48.2549
2 24.282 FM	1.2136	6063.55273	83.26916	51.7451

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	21.758	BB	0.9529	1.37448e4	214.70074	100.0000

Signal 1: DAD1 C, Sig=220,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	3.393	BV	0.1870	9383.28320	765.69318	48.2830
2	3.912	VB	0.2289	1.00507e4	662.71301	51.7170
Total	s :			1.94339e4	1428,40619	

Signal 1: DAD1 C, Sig=220,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	3.396	MM	0.2094	7549.28662	600.90680	100.0000
Total	s :			7549,28662	600,90680	

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.204	BV	0.1529	1124.43457	110.36457	48.6112
2	3.742	VB	0.1876	1188.68591	93.93526	51.3888

2313.12048 204.29984

Peak RetTime T # [min]	Type Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 3.215 E	BBA 0.1909	3958.71265	318.76175	100.0000
Totals :		3958.71265	318.76175	

76

Signal 1: DAD1 C, Sig=220,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.382	мм	0.1297	3064.38647	393.64590	51.4058
2	2.840	мм	0.1469	2896.78735	328.66504	48.5942
Total	ls :			5961.17383	722.31094	

Signal 1: DAD1 C, Sig=220,4 Ref=360,100

Peak #	RetTime Typ [min]	e Width [min]	Area [mAU*s]	Height [mAU]	Area %	
 1	2.369 MM	0.1575	7571.47803	801.30267	 100.0000	
Total	s:		7571.47803	801.30267		

Signal 1: DAD1 E, Sig=208,4 Ref=360,100

Peak F	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
-						
1	20.276	BB	0.8227	1.40428e4	256.52542	48.4773
2	23.451	BB	0.9292	1.49249e4	229.36137	51.5227

Signal 1: DAD1 E, Sig=208,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	20.241	BB	0.8369	3.74351e4	649.05475	100.0000
Total	s :			3.74351e4	649.05475	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	4.531	BV	0.2286	3468.59229	226.54500	48.6715
2	5.322	VB	0.2817	3657.94824	194.20930	51.3285

Totals :

7126.54053 420.75430

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
							l
1	4.576	MM	0.2918	8048.38037	459.70197	100.0000	

```
Totals : 8048.38037 459.70197
```


2.24172e4 2641.15662

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak Re	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1	1.925	· MM	0.1218	1.31955e4	1806.21582	100.0000
Totals	:			1.31955e4	1806.21582	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak Re	tTime	Туре	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	%
		-				
1	5.364	MM	0.2250	8401.42773	622.21075	99.6636
2	6.436	MM	0.2456	28.35750	1.92461	0.3364
Totals	:			8429.78523	624.13537	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak Re	etTime Type	Width	Area	Height	Area
	[min]	[min]	[mAU*s]	[mAU]	%
1 2	2.368 MM	0.1273	1.09782e4	1437.71606	49.0736
	2.939 MM	0.1525	1.13927e4	1245.04895	50.9264
Totals	:		2.23708e4	2682.76501	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak Re #	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
 1	2.404	. ММ	0.1413	2323.25635	273.98352	 100.0000	
Totals	:			2323.25635	273.98352		

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	26.320	MM	2.1267	8.60222e4	674.15271	50.1301	
2	30.885	MM	2.6425	8.55759e4	539.73499	49.8699	

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

----	------
 -----|------|
 -----|

 1
 26.674
 BB
 1.7352
 1.29459e5
 884.68591
 100.0000

 Totals :
 1.29459e5
 884.68591

Signal 1: DAD1 G, Sig=280,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.924	BB	0.1133	2742.44360	375.06287	50.2110
2	3.016	BBA	0.1817	2719.38965	227.06509	49.7890

Totals :

5461.83325 602.12796

Signal 1: DAD1 G, Sig=280,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.930	VV R	0.0931	1.24510e4	2026.74792	100.0000

Totals : 1.24510e4 2026.74792

Signal 1: DAD1 E, Sig=208,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
							ĺ
1	11.635	BV	0.1962	1.43582e4	1130.05945	49.6172	
2	12.185	VB	0.2094	1.45798e4	1066.79895	50.3828	

Signal 1: DAD1 E, Sig=208,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.450	MM	0.3296	5.10667e4	2582.09473	99.2532
2	12.198	MM	0.1935	384.23291	33.09596	0.7468

Signal 1: DAD1 E, Sig=208,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.830	BB	0.1376	6897.81592	777.13690	49.9374
	7.582	BB	0.1555	6915.10107	686.80951	50.0626

Totals :

1.38129e4 1463.94641

Signal 1: DAD1 E, Sig=208,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.703	BB	0.1354	3028.35278	348.45911	99.3265
2	7.424	BB	0.1353	20.53299	2.31836	0.6735
Total	s :			3048.88577	350.77747	

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.230	MM	0.6264	4.44089e4	1181.56445	49.1842
2	17.222	VB	0.5917	4.58820e4	1120.52917	50.8158

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	14.009	BB	0.6099	1.26449e5	2673.07446	99.8887	
2	17.540	BB	0.5189	140.83405	3.69280	0.1113	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak Re # [1	etTime Type [min] - 2.885 BV	Width [min] 	Area [mAU*s] 1.57373e4	Height [mAU] 1763.17883	Area % 48.8532
2	3.208 VB	0.1537	1.64761e4	1690.78552	51.1468
Totals	:		3.22134e4	3453.96436	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak Re	etTime	Type	Width	Area	Height	Area
# [[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	2.941	MM	0.0816	42.72357	8.72127	0.4094
2	3.250	MM	0.1576	1.03926e4	1099.19788	99.5906
Totals	:			1.04353e4	1107.91914	

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	1.883	MM	0.1153	3291.16821	475.60983	50.3084
2	2.438	MM	0.1314	3250.82227	412.33521	49.6916

6541.99048 887.94504

Signal 1: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.908	MM	0.1322	1446.86353	182.44945	100.0000

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1	2.832	BB	0.1314	2351.97925	276.13885	48.9468	
2	3.933	BBA	0.1819	2453.19067	207.51233	51.0532	

Totals :

4805.16992 483.65118

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Peak R #	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
-						
1	2.839	MM	0.0885	115.56354	21.75784	1.0502
2	3.838	BBA	0.2212	1.08883e4	769.11243	98.9498
Totals	:			1.10038e4	790.87026	

7. References

- 1. I. C. Lennon and J. A. Ramsden, An Efficient Catalytic Asymmetric Route to 1-Aryl-2-imidazol-1-yl-ethanols, *Org. Process Res. Dev.*, 2005, **9**, 110-112.
- L. Zhang, L. Fu, S. Zhang, J. Zhang, Y. Zhao, Y. Zheng, G. He, S. Yang, L. Ouyang and B. Liu, Discovery of a small molecule targeting ULK1-modulated cell death of triple negative breast cancer in vitro and in vivo, *Chemical Science*, 2017, 8, 2687-2701.
- S. Dhiman, K. Pericherla, N. K. Nandwana, D. Kumar and A. Kumar, Synthesis of Aza-Fused Isoquinolines through Domino Cross-Aldol Condensation and Palladium-Catalyzed Intramolecular Direct Arylation, *J. Org. Chem.*, 2014, 79, 7399-7404.
- 4. A. S. Wagman, R. S. Boyce, S. P. Brown, E. Fang, D. Goff, J. M. Jansen, V. P. Le,

B. H. Levine, S. C. Ng, Z.-J. Ni, J. M. Nuss, K. B. Pfister, S. Ramurthy, P. A. Renhowe, D. B. Ring, W. Shu, S. Subramanian, X. A. Zhou, C. M. Shafer, S. D. Harrison, K. W. Johnson and D. E. Bussiere, Synthesis, Binding Mode, and Antihyperglycemic Activity of Potent and Selective (5-Imidazol-2-yl-4-phenylpyrimidin-2-yl)[2-(2-pyridylamino)ethyl]amine Inhibitors of Glycogen Synthase Kinase 3, *J. Med. Chem.*, 2017, **60**, 8482-8514.

- Y. Zhou, X. Lu, C. Du, Y. Liu, Y. Wang, K. H. Hong, Y. Chen and H. Sun, Novel BuChE-IDO1 inhibitors from sertaconazole: Virtual screening, chemical optimization and molecular modeling studies, *Bioorg. Med. Chem. Lett.*, 2021, 34, 127756.
- C. Liu, C. Shi, F. Mao, Y. Xu, J. Liu, B. Wei, J. Zhu, M. Xiang and J. Li, Discovery of New Imidazole Derivatives Containing the 2,4-Dienone Motif with Broad-Spectrum Antifungal and Antibacterial Activity, *Molecules*, 2014, 19, 15653-15672.
- G. Roman, J. Z. Vlahakis, D. Vukomanovic, K. Nakatsu and W. A. Szarek, Heme Oxygenase Inhibition by 1-Aryl-2-(1H-imidazol-1-yl/1H-1,2,4-triazol-1yl)ethanones and Their Derivatives, *ChemMedChem*, 2010, 5, 1541-1555.
- 8. V. K. Vyas and B. M. Bhanage, Catalytic asymmetric synthesis of β -triazolyl amino alcohols by asymmetric transfer hydrogenation of α -triazolyl amino alkanones, *Tetrahedron: Asymmetry*, 2017, **28**, 974-982.
- 9. Y. Li, K. K. Pasunooti, R.-J. Li, W. Liu, S. A. Head, W. Q. Shi and J. O. Liu,

Novel Tetrazole-Containing Analogues of Itraconazole as Potent Antiangiogenic Agents with Reduced Cytochrome P450 3A4 Inhibition, *J. Med. Chem.*, 2018, **61**, 11158-11168.

- L. Zhang, L. Fu, S. Zhang, J. Zhang, Y. Zhao, Y. Zheng, G. He, S. Yang, L. Ouyang and B. Liu, Discovery of a small molecule targeting ULK1-modulated cell death of triple negative breast cancer in vitro and in vivo, *Chem. Sci.*, 2017, 8, 2687-2701.
- 11. Z. Zhang, F. Xie, J. Jia and W. Zhang, Chiral Bicycle Imidazole Nucleophilic Catalysts: Rational Design, Facile Synthesis, and Successful Application in Asymmetric Steglich Rearrangement, *J. Am. Chem. Soc.*, 2010, **132**, 15939-15941.
- R. D. Grigg, J. W. Rigoli, S. D. Pearce and J. M. Schomaker, Synthesis of Propargylic and Allenic Carbamates via the C–H Amination of Alkynes, *Org. Lett.*, 2012, 14, 280-283.
- J.-x. Huang, W. Hong-yi, W. Ze-nong, S. Xun and Z. Fu-li, Improved synthesis of cenobamate, *Chin. J. Med. Chem.*, 2021, **31**, 419-421.