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1 Experimental materials and methods

1.1 DNP

Spin hyperpolarization of 150 µL of a flash-frozen (vitrified) 15mM 4-Hydroxy-2,2,6,6-tetramethylpiperidinyloxyl
(TEMPOL) solution containing 10% H2O, 40% D2O, and 50% glycerol-d8 was performed at 1.4K and a magnetic
field of 6.7T in a cryostat-magnet apparatus, purchased from Cryogenic Ltd. The sample was irradiated with
microwaves at a frequency of 188.08GHz using a Virginia Diodes Inc. (VDI) microwave source and frequency
amplifier. The hyperpolarization build-up was monitored through a 400MHz Bruker Avance III spectrometer
modified to operate at 285.3MHz. A homemade tune and matching system was combined with the 400MHz
console. 1° detection pulses every 5 s were applied to monitor the proton polarization build-up. For DNP and
sample dissolution, the system described in Ref. 1 was used.

After polarizing for 3 h, 5mL of preheated D2O were injected at a pressure of 1.5MPa onto the sample for
dissolution. The solvent was pressurized in a homemade pressure heater combined with an Arduino system,
controlled by a home-written MATLAB code. The hyperpolarized solution was then transferred with pres-
surized helium gas at 0.6MPa to an NMR tube placed into a 500MHz Bruker NEO spectrometer, equipped
with a Prodigy BBFO cryo-probe. In the NMR tube, the DNP sample mixed rapidly with 200 µL of 2-(N-
morpholino)ethanesulfonic acid (MES) buffer (25mM NaCl, 25mM MES, 100mM arginine hydro chloride
(ArgHCl), pH 5.5), reconstituted in D2O waiting inside the NMR spectrometer. Therefore, the MES buffer
was diluted up to a volume of 5mL, with a final ArgHCl concentration of 4mM. The detection was carried out
employing using 1° hard pulses every second using the ‘zg2d’ pulse sequence implemented in Bruker TopSpin 4.
The dDNP data were baseline corrected and fitted to a Lorentzian function using the MATLAB R2019a software
to extrapolate signal intensities.

1.2 NMR

The series of conventional 1H-1H nuclear Overhauser enhanced spectroscopy (NOESY) spectra was acquired on
a 600MHz Bruker NEO spectrometer equipped with a cryogenically cooled TCI probe. The ‘noesyfpgpphrs190’
pulse sequence was used as implemented in the Bruker TopSpin 4 pulse program library. Twelve NOESY experi-
ments with different mixing times (10, 20, 30, 40, 50, 70, 100, 150, 200, 300, 500, and 1000ms) were collected
on a 100mM arginine solution in 600 µL MES buffer (pH 5.5.) containing 10% D2O as field lock solvent.
quadrature detection was achieved using the States-Time Proportional Phase Incrementation (TPPI) method.
All NOESY spectra were measured with spectral widths of 9615.3Hz in the F2 dimension and 7202.1Hz in the
F1 dimension. We recorded 32 scans. The processing and analysis of the collected data were carried out on
Topspin 4.0.7, SPARKY, and MATLAB R2019a. The NOESY spectra were zero-filled and Fourier transformed
prior to peak assignment. The arginine peaks were assigned according to SDBS entry 1143.
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Figure S1: Thermal equilibrium NOESY experiment on a 100 mM ArgHCl solution with different mixing times
(indicated on the bottom right of each spectrum).
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2 Computational analysis of the NOE

We used the CHARMM36 (Chemistry at Harvard Macromolecular Mechanics 36) force field,2–5 as implemented
in CHARMM-GUI6 for MD simulations of ten arginine and ten chloride counter ions were surrounded by 6788
water molecules (TIP3P model7,8). The initial intermolecular geometries were optimized by energy mini-
mization, before equilibration for 5 ns as isothermal-isobaric ensembles (NpT ; T=300K, p=1 atm) until the
simulation box lengths converged at a =60 Å. The trajectories were produced as isothermal-isochoric ensem-
bles (NV T , T=300K) using a Nosé-Hoover thermostat9,10 with periodic boundary conditions in OpenMM.11

High-frequency vibrations of covalent bonds involving hydrogen atoms were constrained using the Shake al-
gorithm.12 Non-bonded interactions were cut off at 12 Å, and electrostatic interactions were treated using the
Ewald method. The simulation trajectories were read into a Python3-based analysis program using the MD-
Analysis module.13,14 Computational bottlenecks were accelerated using the high-performance hybrid language
Cython.

The NOE is a magnetization transfer phenomenon mediated by the nuclear dipoles and is a function of
the distance and not the chemical connectivity of the interacting nuclei I and S. Using Redfield theory15 and
Solomon’s differential equations16

d⟨∆Iz⟩
dt

= ρII⟨∆Iz⟩+ σSI⟨∆Iz⟩ (1)

d⟨∆Sz⟩
dt

= σIS⟨∆Sz⟩+ ρSS⟨∆Sz⟩ (2)

the kinetics of the two spins I and S can be related to the self- (ρ) and cross-(σ) relaxation rates. Following
Redfield theory, these rates can be obtained from the spectral density function J(ν):

ρII = 0.6J(νI + νS)+ 0.3J(νS)+ 0.1J(νI − νS) (3)

σNOE
IS = 0.6J(νI + νS) − 0.1J(νI − νS) (4)

σROE
IS = 0.3J(νS)+ 0.2J(νI − νS) (5)

with ρII = σNOE
IS +σROE

IS . As shown in Ref.17, the ratio σNOE
IS /σROE

IS is not plagued by long-range contributions
whereas the individual σNOE

IS and σROE
IS are affected.

A similar effect is also visible in our water residence times. In Table S1, the residence times of water
molecules within four Å and six Å of the respective arginine hydrogen are displayed.

Table S1: Experimental initial signal enhancements 1/ϵi and computational values for the arginine hydrogens.
For the coordination number and the residence time τ only water molecules with hydrogens closer than four/six
Å to the corresponding arginine hydrogen were taken into account in the simulation.

Atom 1/ϵi σL σL/σR distance < 4 Å distance < 6 Å
[a. u.] [a. u.] # H2O τ[ps] # H2O τ[ps]

Hα — 4.98 0.986 4.6 4.0 24 8.3
Hβ 2.30 4.95 0.984 3.7 1.8 24 7.6
Hγ 2.22 4.70 0.981 3.9 1.9 23 7.2
Hδ 1.24 4.55 0.981 4.2 2.9 23 6.5

Using the larger distance criterion r <6 Å, the cross-relaxation rate σNOE = σL shows the same trend as the
residence times: The longer σL, the slower τ . Increasing the distance criterion results in a larger overlap of the
water neighborhood of the argenine hydrogens and consequently blurs the trend.

Interestingly, the ranking of the residence times is reversed for the shorter distance criterion of four Å (see
Table S1). Here, only more or less direct water neighbors of the argenine hydrogens are taken into account.
This situation resembles the short-range effect of the ratio σNOESY

L /σROESY
R which has been used for protein

surface hydration mapping.18 However, since arginine is a small molecule and all the water residence times
are all similarly short, the ratio σNOESY

L /σROESY
R becomes almost uniform as has been previously found for

disaccharide hydration.19

It should be noted that the detected samples contained 1.4% glycerol-d8, which was used as (necessary)
glassing agent in the dDNP experiments. It is well-documented that glycerol can influence the hydration shell
of biomolecules. However, concentrations of >10% v/v are typically required to observe such effects.20 Hence,
in our MD simulations, the presence of glycerol was neglected. The correspondence between the computed and
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Figure S2: Predicted solvent NOE rates (colored solid lines) at different resonance frequencies for each non-
exchangeable arginine proton. The black dashed line indicates the experimental Larmor frequency.

experimentally observed relaxation rates justifies this simplification. Nevertheless, this potential bias of possible
changes in hydration shells should be considered when precise quantifying computed NOE rates is required.
Likewise, the presence of D2O in the hyperpolarized samples was not considered during the MD simulations.
However, deuteron exchange and dilution of water by D2O can indeed impact NOE rates as well as proton
exchange efficiencies. This potential bias could experimentally yet not be confirmed as only hyperpolarized pro-
tons were detected. However, again, it should be kept in mind that the degree of deuteration could potentially
bias the MD simulations when aiming to extract precise NOE rates.
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3 Additional experimental data

To showcase the application of our method to other biological systems and verify that the approach is suitable
for different amino acids, too, we performed similar dDNP experiments to study the transfer of polarization
from water to polyaspartate (pAsp) at a concentration of 1 mg / mL. We followed the same protocol outlined
above. We observed that, while the signal of the Hβ protons is readily identified at 2.6 ppm, the signal of the Hα

proton was again covered by the broad water peak. The enhanced signals of the amide protons were detected
at 8.2 ppm. The hyperpolarized proton signals decay within approximately 20 seconds. As for the arginine
dDNP experiments, t = 0 corresponds to the start of acquisition. The amide proton signal decays monotonic,
as expected since the enhancement is based primarily on chemical proton exchange. Contrarily, the Hβ signal
reaches its maximum intensity two seconds after the beginning of the detection period as a result of the slower
exchange-relayed NOE rate. Importantly, the observed signal build-ups and decays differ from those observed
for arginine. As the hydration shells of a single amino acid and a biomacromolecule necessarily differ, such
an observation can be expected. Therefore, the possibility arises to determine intramolecular interactions or
conformational changes from different solvent interaction.

Figure S3: Hyperpolarized water experiments with polyaspartate. a) Time series of proton NMR spectra of
pAsp in hyperpolarized water. At t=0, signals of the amide protons, the water, the glycerol and the aliphatic
protons are discernible. b) Intensities of the pAsp amide protons. The signal decay is strictly monoexponential
. c) Intensities of the Hβ signal. The maximum intensity of the signal is reached two seconds after start of the
detection, indicating the contribution of NOE to the pAsp system. d) Intensity of the water signal.
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