Supplementary Material

Catalytic Methoxylation of Aryl Halides Using ¹³C and ¹⁴C-Labeled CO₂

Alexia Ohleier,^{1, 2, 3} Antoine Sallustrau,² Bouchaib Mouhsine,² Fabien Caillé,³* Davide Audisio²* and Thibault Cantat¹*

Corresponding authors: thibault.cantat@cea.fr, davide.audisio@cea.fr and fabien.caille@cea.fr

Affiliations :

¹ Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France.

² Université Paris-Saclay, Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, 91191 Gif-sur-Yvette, France.

³ Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401 Orsay, France.

Table of Contents

I.	General Information	3
II.	CO ₂ Reduction into BBN-OCH ₃	5
A.	General Procedure for CO ₂ Reduction into BBN-OCH ₃	5
B.	Evidence for Stoichiometric Conversion of ¹³ CO ₂ into BBN-OCH ₃	5
III	. Optimization of the Palladium Catalyzed Suzuki Cross Coupling	8
A.	Influence of the Base	8
B.	Influence of the Solvent	9
C.	Influence of the Palladium Catalyst	9
D.	Influence of the Aryl Halide	10
E.	Influence of the Temperature	11
F.	Limitations	11
IV	. General Reaction Conditions	12
A.	Set-Up	12
B.	General Reaction Procedure for both Carbon-13 and Carbon-14 Labeling	13
V.	Characterization	15
A.	Carbon-13 Labeled Compounds	15
B.	Carbon-14 Labeled Compounds	28
VI	. ¹ H and ¹³ C NMR Spectra of ¹³ C-Labeled Compounds	30
VI	I. Radio-TLC of ¹⁴ C-Labeled Compounds	47
VI	II. References	49

I. General Information

All reactions were carried out under argon in an mBraun LabMaster dp glovebox and on a Schlenk line. Glassware was dried overnight at 110 °C before use. Unless otherwise stated, reagents were purchased from commercial suppliers. Liquids were stored over 4 Å molecular sieves, which were activated at 200 °C under dynamic vacuum prior to use. Tetrahydrofuran (THF), d_8 -THF and C₆D₆ were dried over sodium/benzophenone and distilled before use. CD₃CN was dried over CaH₂ and distilled before use. Carbon dioxide was purchased from Messner in a 5.5 purity gas bottle.

¹*H* and ¹³*C* NMR spectra were recorded using a Bruker 400 MHz spectrometer. Chemical shifts (δ) are expressed in parts per million. Coupling constants (*J*) were reported in Hertz (Hz). ¹H and ¹³C chemical shifts are referenced to residual solvent signals. The following abbreviations are used: s, singlet; d, doublet; t, triplet; quint, quintuplet; m, multiplet. ¹H and ¹³C resonance signals were attributed by means of 2D HSQC and HMBC experiments.

IR spectra were recorded on a Shimadzu IRAffinity-1S spectrometer.

Gas chromatography data were recorded at 100 °C under a stream of argon on a Shimadzu GC-2010 Plus equipped with a Carboxen 1010 fused silica capillary column ($30 \text{ m} \times 0,53 \text{ mm} \times 30 \text{ }\mu\text{m}$).

Mass spectra were collected from a Shimadzu GCMS-QP2010 Ultra gas chromatograph mass spectrometer equipped with a Supelco SLB_{TM}-ms fused silica capillary column (30 m x 0.25 mm x 0.25 μ m), source EI.

High-resolution mass spectra (HRMS) were performed on a Bruker maXis mass spectrometer by the "Fédération de Recherche" ICOA/CBM (FR2708) platform (University of Orléans).

For Carbon-14 radiolabeling:

Carbon-14 reagents and compounds were handled by experimentalist uniquely trained in working with radioactive materials and operating in specialized laboratories. Carbon-14 radioactivity was either measured with a PerkinElmer Ultra Gold liquid scintillation cocktail or with a PerkinElmer 3110TR liquid scintillation analyzer.

RadioHPLC and HPLC-UV analyses were conducted with a Waters Alliance 2695 connected to a MS detector Waters ZQ 2000 and a Scintillation Analyzer Berthold 514 (column Xbridge BEH C18 100x4.6 mm, 3.5μ m). Alternatively, they were also conducted on a Waters Acquity UPLC® equipped PDA e λ Detector and SQ Detector 2, mobile phase A: H₂O + 0.1% formic acid, mobile phase B: acetonitrile + 0.1% formic acid and a Scintillation Analyzer Berthold 509 (Xbridge BEH C18 50x2.1, 1.7).

<u>When using ¹⁴CO₂</u>: ¹⁴CO₂ (2.172 GBq.mmol⁻¹) was generated using a ¹⁴CO₂ manifold system (RC Tritec AG).

https://www.rctritec.com/en/tritium-handling-technology/c-14-manifold-system.html

Mass spectra (ESI) for the calculation of specific activities were obtained using a Waters Micromass ZQ spectrometer. Radiochemical purities were determined by Thin Layer Chromatography on TLC silica gel 60F254 glass plates (Merck) using a RITA scanner (Raytest) for the radioactive detection.

II. CO₂ Reduction into BBN-OCH₃

A. General Procedure for CO₂ Reduction into BBN-OCH₃^[1]

A 2.0 mL J. Young NMR tube was charged with $(9\text{-BBN})_2$ dimer **1** (56.8 mg, 2.4×10^{-4} mol, 1.0 eq.), Verkade's base VB^{Me} (2.6 mg, 1.2×10^{-5} mol, 0.050 eq.) and 0.30 mL of d_8 -THF. The reaction mixture was freeze-pump-thaw degassed twice and exposed to 1 bar of CO₂. The reaction was stirred at RT and the formation of BBN-OCH₃ **2** was followed by ¹H NMR in d_8 -THF using mesitylene as internal standard. Full conversion was reached after 2 h. at RT. ^[1]

Characterization of **BBN-OCH**₃ (selected data): ¹**H NMR** (400 MHz, *d*₈-THF): 3.70 (s, 3H, BBN-OCH₃) ppm, ¹³C{¹H} **NMR** (100 MHz, *d*₈-THF): 53.4 (BBN-OCH₃) ppm and ¹¹B **NMR** (128.4 MHz, *d*₈-THF): 56.7 ppm.

B. Evidence for Stoichiometric Conversion of ¹³CO₂ into BBN-O¹³CH₃

A J. Young NMR tube was charged with $(9\text{-BBN})_2$ dimer **1** (36.6 mg, 1.5×10^{-4} mol, 1.5 eq.), Verkade's base VB^{Me} (1.6 mg, 7.5×10^{-6} mol, 0.075 eq. = 5 mol% *vs*. (9-BBN)₂) and 0.4 mL of *d*₈-THF. The tube was connected to the Tritec, frozen, vacuum pumped and loaded with ¹³CO₂ (1.0 × 10⁻⁴ mol, 1 eq.). The reaction was stirred for 3 h at RT and monitored by NMR spectroscopy using mesitylene as internal standard.

¹H NMR revealed the formation of 83% of BBN-O¹³CH₃ [¹³C]**2** along with 7.5% of the acetal H₂¹³C(OBBN)₂ (**Figure 1**). ¹³C{¹H} NMR showed one main ¹³C enriched peak at $\delta = 53.8$ ppm assigned to BBN-O¹³CH₃ [¹³C]**2** and a minor ¹³C enriched peak corresponding to H₂¹³C(OBBN)₂ at $\delta = 86.6$ ppm. Besides ¹³C{¹H} NMR evidenced the absence of any ¹³CO₂ in the solution (no peak at $\delta = 125.7$ ppm) (**Figure 2**). ¹¹B NMR confirmed full consumption of the (9-BBN)₂ dimer **1**.

In addition, GC analysis of the J. Young tube's headspace proved the absence of any remaining ${}^{13}\text{CO}_2$ in the gas phase. Tiny amounts of N₂, originating from commercial *d*₈-THF, and of H₂, arising from the quenching of water traces by 9-BBN, were detected. The chromatogram's peaks could be assigned by comparison of the retention times relative to a standard injection containing a mixture of H₂/CO/CO₂. The chromatograms are presented in **Figure 3**.

Figure S1: ¹H NMR spectrum of the reaction between 1.5 eq. of $(9-BBN)_2$ **1** and 1 eq. of ¹³CO₂ in the presence in 5 mol% of VB^{Me} in d_8 -THF after 3 h. at RT (D1 = 30). Mesitylene is used as internal standard.

Figure S2: ¹³C{¹H} NMR spectrum of the reaction between 1.5 eq. of $(9-BBN)_2$ **1** and 1 eq. of ¹³CO₂ in the presence in 5 mol% of VB^{Me} in d_8 -THF after 3 h. at RT. Generation of BBN-O¹³CH₃ [¹³C]**2** and minor amounts of acetal ¹³CH₂(OBBN)₂. Red triangles mark peaks related to mesitylene.

200 uL Methode 100°C 1010 Carboxen

Figure S3: GC analyses carried out at 100 °C under a stream of argon using a Carboxen 1010 capillary column, injected volume 200 μ L. **Top** - Chromatogram of the J. Young tube's headspace of the reaction between 1.5 eq. of (9-BBN)₂ **1** and 1.0 eq. of ¹³CO₂ catalyzed by 5 mol% VB^{Me} after 3 h. at RT. Absence of CO₂. **Bottom** - Chromatogram of a reference sample containing a mixture of H₂/CO/CO₂.

III. Optimization of the Palladium Catalyzed Suzuki Cross Coupling

The reaction conditions were optimized on a J. Young tube scale (0.1 mmol).

A J. Young NMR tube was charged with 4-bromotoluene **3a** (17.1 mg, 1.0×10^{-4} mol, 1 eq.), a selected base, 10 mol% ligand (*t*BuXPhos, 4.2 mg, 1.0×10^{-5} mol, 0.10 eq.), 5 mol% Pd catalyst (Pd₂dba₃, 4.6 mg, 5.0×10^{-6} mol, 0.050 eq.) and 0.3 mL of *d*₈-THF. Finally, BBN-OMe **2** (1.0 M in hexanes) (100 µL, 1.0×10^{-4} mol, 1 eq.) was added to the reaction mixture. Mesitylene or diphenylmethane were used as internal standards. The reactions were kept at 80 °C and monitored by ¹H NMR spectroscopy.

A. Influence of the Base

/

Br	+ >B-0	OCH₃	5 mol% 10 mol <u>x eq. [</u> d ₈ -TH	⁶ Pd₂dba₃ % tBuXPhos <mark>Base</mark> F, 80 °C, 3 h.	C
Entry	Equivalents	Ba	se	рКа	Yield (%)
1	1.5	NaC)Ac	4.8	0
2	1.5	Cs_2	CO_3	10.3	54
3	1.5	KO	Me	16.0	80
4	1.0	KO	iPr	16.5	62
5	1.5	KO	<i>t</i> Bu	17.0	54
6	1.5	TB	AF	-	0
7	1.5	TB	AT	-	0
8	2.0	Cs	sF	-	66

Table S1: Influence of the base on the yield of cross coupled product.

B. Influence of the Solvent

	Br +	B-OCH ₃	5 mol% Pd ₂ dba ₃ 10 mol% tBuXPhos Base Solvent, 80 °C, 3 h.	OCH3
Entry	Base	Solvent	Dielectric constant ϵ_r	Yield (%)
1	1.5 eq. Cs_2CO_3	d ₈ -THF	7.58	54
2	1.5 eq. Cs ₂ CO ₃	C_6D_6	2.27	12
3	1.5 eq. Cs ₂ CO ₃	DMF	36.7	~ 10 - 15

 Table S2: Influence of the solvent on the yield of cross coupled product.

	Br +	B-OCH ₃	5 mol% Pd ₂ dba ₃ 10 mol% tBuXPhos Base Solvent, 80 °C, 3 h.	OCH3
Entry	Base	Solvent	Dielectric constant ϵ_r	Yield (%)
4	1.0 eq. KOtBu	ds-THF	7.58	54
5	1.0 eq. KO <i>t</i> Bu	dioxane	2.25	n.d. (poor)
6	2.0 eq. CsF	d ₈ -THF	7.58	66
7	2.0 eq. CsF	CD ₃ CN	37.5	60 - 68

 Table S2: Influence of the solvent on the yield of cross coupled product.

C. Influence of the Palladium Catalyst

	Br +	B-OCH ₃ B-OCH ₃ Base	% Pd cat. bl% tBuXPhos	OCH3
		Solve	ent, 80 °C, 3 n.	
Entry	Pd Catalyst	Base	Solvent	Yield (%)
1	Pd2dba3	1.5 eq. Cs_2CO_3	d ₈ -THF	54
2	$Pd(OAc)_2$	1.5 eq. Cs_2CO_3	d_8 -THF	33
3	Pd2dba3	2.0 eq. CsF	d ₈ -THF	66
4	$Pd(OAc)_2$	2.0 eq. CsF	d ₈ -THF	~ 50
5	$Pd(OAc)_2$	2.0 eq. CsF	C_6D_6	traces

Table S3: Influence of the palladium catalyst on the yield of cross-coupled product.

D. Influence of the Aryl Halide

A J. Young NMR tube was charged with the corresponding aryl halide **3** (1.0×10^{-4} mol, 1 eq.), 2 eq. of CsF (30.4 mg, 2×10^{-4} mol, 2 eq.), 10 mol% *t*BuXPhos (4.2 mg, 1.0×10^{-5} mol, 0.10 eq.), 5 mol% Pd₂dba₃ (4.6 mg, 5.0×10^{-6} mol, 0.050 eq.) and 0.3 mL of *d*₈-THF. Finally, BBN-OMe **2** (1.0 M in hexanes) (100μ L, 1.0×10^{-4} mol, 1 eq.) was added to the reaction mixture. Mesitylene was used as internal standard. The reactions were kept overnight at 100 °C and followed by ¹H NMR spectroscopy.

Table S4: Influence of the halide on the yield of cross-coupled product.

E. Influence of the Temperature

The reactions were finally run at 100 °C to reach maximal conversion for less activated substrates.

We noted that most substrates were converted into the corresponding product during the first 3 hours. Afterwards the reaction rate drastically slowed down.

F. Limitations

The reaction does not tolerate alcohols (4-bromophenol), carboxylic acid and primary or secondary amines (3,6-dibromocarbazole).

Scheme S1: Alcohols and amine, which do not undergo Suzuki cross coupling with BBN-OCH₃.

Highly substituted and electron rich substrates, such as 5-bromo-2,4-dimethoxypyrimidine, didn't undergo Suzuki cross coupling with BBN-OCH₃ **2**, but instead led to extensive β -hydride elimination to generate the corresponding reduced arene.

N-(2-bromo-4-chlorophenyl)acetamide

When both Csp^2 -Cl and Csp^2 -Br substituents are included in the substrate, competitive methoxylations led to a mixture of methoxylated products, difficult to separate implying a limitation in term of selectivity towards the methoxylation at the chloro-position.

IV. General Reaction Conditions

A. Set-Up

Figure S4: Double chamber set-up for ${}^{13}CO_2$ reduction in BBN-O ${}^{13}CH_3$ [${}^{13}C$]2 with subsequent palladium catalyzed Suzuki cross coupling between BBN-O ${}^{13}CH_3$ [${}^{13}C$]2 and aryl chlorides 3.

Figure S5: Double chamber connected to the RC Tritec.

B. General Reaction Procedure for both Carbon-13 and Carbon-14 Labeling

General Protocol

Both vessels of the double chamber set-up were equipped with small magnetic stirring bars. 1.5 eq. of $(9\text{-BBN})_2$ dimer **1** (366.0 mg, 1.5×10^{-3} mol, 1.5 eq.) together with 5 mol% of Verkade's base VB^{Me} (16.2 mg, 7.5×10^{-5} mol, 0.075 eq., 5 mol% *vs*. (9-BBN)₂) were added to the reduction chamber. 2 eq. of CsF (303.8 mg, 2.0×10^{-3} mol, 2.0 eq.), 1eq. of substrate **3** if it is a solid (1.0×10^{-3} mol, 1.0 eq.), 10 mol% of *t*BuXPhos (42.5 mg, 1.0×10^{-4} mol) and 5 mol% of Pd₂dba₃ (45.8 mg, 5.0×10^{-5} mol) were then weighted into the Suzuki chamber. Afterwards, 4 mL of THF were added to the reduction chamber, which was tightly closed. The reagents in the Suzuki chamber were dissolved in 2 mL of THF. If the substrate **3** is a liquid, it was introduced at this point to the Suzuki chamber (1.0×10^{-3} mol, 1.0 eq.).

The whole set-up was then connected to the RC Tritec and the solutions were frozen in liquid nitrogen. Both chambers were opened to a vacuum pump in order to degas them, before adding 1.0 eq. of ${}^{13}\text{CO}_2$ (1.0 × 10⁻³ mol, 1.0 eq.). The reaction was stirred for 3 h. at RT and quantitatively generated BBN-O¹³CH₃ [¹³C]2, which needed to be distilled from the reduction chamber to the Suzuki chamber.

Thereafter, both solutions were frozen in liquid nitrogen and the set-up was put under static vaccum through a Schlenk line. The trap-to-trap distillation started by keeping the reduction chamber at RT, while the Suzuki chamber was plunged into liquid nitrogen. When nearly all liquid had been transferred to the second vessel, the reduction chamber was heated to 100 °C in order to properly distill all BBN-O¹³CH₃ (230 °C < Bpt < 260 °C). The vacuum distillation can be finished by using the heat gun. The set-up was then brought back to RT and an atmospheric pressure of argon.

The reduction chamber was closed and the Suzuki coupling was stirred overnight (18 h.) at $100 \,^{\circ}$ C. The double chamber was tilted to avoid collecting solvents around the stopper of the reduction chamber. The red solution turned orange and palladium black fell out of the solution.

Titration

The reaction was cooled down to RT. The yield was determined by ¹H NMR using CH₂Cl₂ as internal standard and a D1 = 40. Two titrations were carried out for each run (0.5 mL solution + 10 μ L CH₂Cl₂ in a J. Young tube).

Work-up

The reaction mixture was diluted with 10 mL of CH_2Cl_2 . The organic phase was washed with 15 mL of H_2O . The aqueous phase was then washed with 15 mL of CH_2Cl_2 . The combined organic fractions were finally washed with 35 mL of brine and dried over MgSO₄. The solvents were removed under reduced pressure and the crude mixture was purified by column chromatography (SiO₂).

V. Characterization

A. Carbon-13 Labeled Compounds

0¹³CH₃

C7¹³CH₁₀O **MW**: 123.08 g.mol⁻¹ **Yield**: 44% Pale Yellow liquid

After purification by column chromatography (SiO₂, start with pentane, when the impurities come out switch to pentane/Et₂O 100:1 and when the product comes out move to pentane/Et₂O 50:1) [¹³C] 4-methylanisole [¹³C]4b was obtained with 44 % yield (54.2 mg, 4.40×10^{-4} mol) as a very pale yellow liquid.

¹**H** NMR (400 MHz, CDCl₃) δ 2.30 (s, 3H, CH₃), 3.79 (d, ¹*J*_{C-H} = 143.6 Hz, 3H, O¹³CH₃), 6.82 (d, ³*J* = 8.4 Hz, 2H, CH-C(O¹³CH₃)), 7.10 (d, ³*J* = 8.4 Hz, 2H, CH-C(CH₃)).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 20.6 (*C*H₃), 55.4 (O¹³*C*H₃), 113.8 (d, ³*J*_{C-C} = 4.1 Hz, *C*H-C(O¹³CH₃)), 129.9 (*C*(CH₃)), 130.0 (*C*H-C(CH₃)), 157.6 (d, ²*J*_{C-C} = 2.1 Hz, *C*(O¹³CH₃)).

FTIR (cm⁻¹) 2944, 2905, 2831, 1612, 1585, 1508, 1464, 1435, 1294, 1230, 1175, 1109, 1034, 1018, 912, 825, 733, 717, 708.

MS (EI) *m/z* 123 (100), 122 (50), 107 (35), 92 (15), 91 (25), 79 (30), 77 (50).

[¹³ C] 4-Methoxyanisole ^[3, 4] ([¹³ C]4c)	

0¹³CH₃

 $C_7^{13}CH_{10}O_2$ **MW**: 139.07 g.mol⁻¹ **Yield**: 53% White Solid

After purification by column chromatography (SiO₂, pentane/Et₂O 40:1) [¹³C] 4methoxyanisole [¹³C]4c is obtained as a white solid with 53 % yield (73.8 mg, 5.30×10^{-4} mol).

¹**H** NMR (400 MHz, CDCl₃) δ 3.77 (d, ¹*J*_{C-H} = 143.2 Hz, 3H, O¹³C*H*₃), 3.78 (s, 3H, OC*H*₃), 6.85 (s, 4H, C*H*).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 55.8 (OCH₃ + O¹³CH₃), 114.8 (s, CH-C(OCH₃)), 114.8 (d, ³J_{C-C} = 4.0 Hz, CH-C(O¹³CH₃)), 153.9 (C(OCH₃) + C(O¹³CH₃)). **FTIR** (cm⁻¹) 2951, 2908, 2833, 1508, 1466, 1435, 1294, 1261, 1230, 1177, 1111, 1034, 1014, 944, 825, 706.

MS (EI) *m/z* 139 (100), 124 (70), 123 (70), 96 (30), 95 (30).

[¹³C] 4-Methoxybenzonitrile ^[5, 6] ([¹³C]4d)

NC O¹³CH₃

C7¹³CH7NO **MW:** 134.06 g.mol⁻¹ **Yield:** 76 % White solid

After purification by column chromatography (SiO₂, start with pentane/CH₂Cl₂ 7:1, when the product is coming out switch to pentane/CH₂Cl₂ 1:1) [¹³C] 4-methoxybenzonitrile [¹³C]4d is obtained as a white solid with 76 % yield (102 mg, 7.60×10^{-4} mol).

¹**H NMR** (400 MHz, CDCl₃) δ 3.85 (d, ¹*J*_{C-H} = 144.8 Hz, 3H, O¹³CH₃), 6.93 – 6.96 (m, 2H, CH-C(O¹³CH₃)), 7.56 – 7.60 (m, 2H, CH-C(CN)).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 55.7 (O¹³*C*H₃), 104.1 (*C*(CN)), 114.9 (d, ³*J*_{C-C} = 4.2 Hz, *C*H-C(O¹³CH₃)), 119.3 (*C*N), 134.1 (*C*H-C(CN)), 163.0 (d, ²*J*_{C-C} = 2.3 Hz, *C*(O¹³CH₃)).

FTIR (cm⁻¹) 3015, 2970, 2941, 2916, 2898, 2839, 2216, 1604, 1577, 1508, 1458, 1442, 1433, 1420, 1304, 1254, 1175, 1114, 1008, 986, 828, 808, 681, 544.

MS (EI) *m/z* 134 (100), 103 (50), 90 (55), 64 (20), 63 (20).

HRMS (ESI-TOF) *m/z* calcd for C₇¹³CH₇NO [M+H]⁺ : 135.0634, found: 135.0632.

[¹³C] 2-Methoxypyridine ^[7] ([¹³C]4e)

 ${}^{5}_{6} \underbrace{(1)}_{N} {}^{3}_{2}_{O^{13}CH_{3}}$

C₅¹³CH₇NO **MW**: 110.06 g.mol⁻¹

After purification by column chromatography (SiO₂, pentane/Et₂O 40:1), 17 mg of [¹³C] 2methoxypyridine [¹³C]4e were obtained as colorless liquid. Most product was lost after evaporation of the solvent, as it forms an azeotrope with Et₂O. No isolated yield will therefore be reported for this product. ¹**H** NMR (400 MHz, CDCl₃) δ 3.93 (d, ¹*J*_{C-H} = 145.6 Hz, 3H, O¹³C*H*₃), 6.72 – 6.76 (m, 1H, *H*₃), 6.83 – 6.88 (m, 1H, *H*₅), 7.52 – 7.59 (m, 1H, *H*₄), 8.14 – 8.19 (m, 1H, *H*₆).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 53.4 (O¹³*C*H₃), 111.1 (d, ³*J*_{C-C} = 2.1 Hz, *C*₃), 116.8 (*C*₅), 138.6 (*C*₄), 147.0 (*C*₆), 164.3 (d, ²*J*_{C-C} = 2.7 Hz, *C*₂).

FTIR (cm⁻¹) 2960, 2924, 2855, 1703, 1603, 1572, 1480, 1443, 1416, 1310, 1288, 1203, 1142, 1096, 1041, 1008, 986, 808, 781.

MS (EI) *m/z* 110 (25), 109 (30), 79 (30), 52 (20), 40 (100).

^{[13}C] 5-Methoxypyrimidine ^[8, 9] ([¹³C]4f)

 $H_3^{13}CO$

 $\begin{array}{c} C_{4}{}^{13}CH_{6}N_{2}O \\ \textbf{MW: 111.05 g.mol^{-1}} \\ \textbf{Yield: 42 \%} \\ \text{Yellow solid} \end{array}$

After purification by column chromatography (SiO₂, CH₂Cl₂/MeOH 100:1) [¹³C] 5methoxypyrimidine [¹³C]4f is obtained as a yellow solid with 42 % yield (46.7 mg, 4.20×10^{-4} mol).

¹**H** NMR (400 MHz, CDCl₃) δ 3.90 (d, ¹*J*_{C-H} = 145.2 Hz, 3H, O¹³CH₃), 8.40 (s, 2H, C-CH-N), 8.83 (s, 1H, N-CH-N).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 55.9 (O¹³CH₃), 143.3 (d, ³*J*_{C-C} = 4.2 Hz, (C-CH-N), 151.6 (N-CH-N), 160.7 (*C*(O¹³CH₃)).

FTIR (cm⁻¹) 3049, 2935, 2871, 1703, 1653, 1574, 1559, 1465, 1448, 1413, 1344, 1273, 1206, 1179, 1156, 1114, 1035, 1001, 917, 887, 813, 721, 615.

MS (EI) *m/z* 111 (100), 84 (10), 68 (30), 57 (50), 40 (30).

HRMS (ESI-TOF) *m*/*z* calcd for C₄¹³CH₆N₂O [M+H] ⁺: 112.0586, found: 112.0587.

C9¹³CH9NO **MW**: 160.07 g.mol⁻¹ **Yield**: 46 % Yellow liquid

After purification by column chromatography (SiO₂, wet the column with pentane/EtOAc 9:1, then switch to pentane/EtOAc 8:2) [¹³C] 6-methoxyquinoline [¹³C]4g is obtained as a yellow liquid with 46 % yield (73.7 mg, 4.60×10^{-4} mol).

¹**H** NMR (400 MHz, CDCl₃) δ 3.89 (d, ¹*J*_{C-H} = 144 Hz, 3H, O¹³C*H*₃), 7.03 (d, ⁴*J* = 2.8 Hz, 1H, *H*₅ or *H*₇), 7.31 – 7.38 (m, 2H, *H*₃ + *H*₅ or *H*₇), 7.99 (d, ³*J* = 9.6 Hz, 1H, *H*₄ or *H*₈), 8.03 (dd, ³*J* = 8.6 Hz, ⁵*J* = 1.2 Hz, 1H, *H*₄ or *H*₈), 8.74 (dd, ³*J* = 4.4 Hz, ⁴*J* = 1.6 Hz, 1H, *H*₂).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 55.6 (O¹³*C*H₃), 105.2 (d, ³*J*_{C-C} = 4.7 Hz, *C*₅ or *C*₇), 121.4 (*C*₃), 122.3 (d, ³*J*_{C-C} = 3.4 Hz, *C*₅ or *C*₇), 129.4 (CH-*C*^{IV}-CH), 130.9 (*C*₄ or *C*₈), 134.9 (*C*₄ or *C*₈), 144.5 (N-*C*^{IV}-CH), 148.0 (*C*₂), 157.8 (d, ²*J*_{C-C} = 2.2 Hz, *C*₆-OCH₃).

FTIR (cm⁻¹): 2993, 2950, 2929, 2832, 1654, 1624, 1597, 1574, 1499, 1473, 1456, 1429, 1379, 1323, 1261, 1246, 1226, 1186, 1160, 1114, 1035, 1013, 951, 909, 845, 832, 790, 771, 710, 618.

MS (EI) *m/z* 160 (90), 144 (10), 129 (25), 116 (100), 89 (40), 63 (20).

HRMS (ESI-TOF) *m/z* calcd for C₉¹³CH₉NO [M+H]⁺: 161.0790, found: 161.0792.

[¹³C] 2-Methoxyquinoxaline ^[13, 14] ([¹³C]4h)

 $\begin{array}{c} 5 & 4 & C_8^{13}CH_8N_2O \\ \hline 6 & N & 3 \\ 7 & N & 2 \\ 8 & 1 & \end{array} \\ \begin{array}{c} N & 3 \\ 2 & O^{13}CH_3 \\ \hline \end{array} \\ \begin{array}{c} 0 & White Solid \end{array} \\ \end{array}$

After purification by column chromatography (SiO₂, start with pentane/toluene 20:1, when the product starts to come out gradually increase the polarity. The following pentane/toluene ratios 10:1, 5:5 and 2:8 have been used) [¹³C] 2-methoxyquinoxaline [¹³C]4h is obtained as a white solid with 28 % yield (45.0 mg, 2.79×10^{-4} mol).

¹**H** NMR (400 MHz, CDCl₃) δ 4.09 (d, ¹*J*_{C-H} = 146.8 Hz, 3H, O¹³C*H*₃), 7.52 – 7.58 (m, 1H, *H*₆ or *H*₇), 7.63 – 7.69 (m, 1H, *H*₆ or *H*₇), 7.84 (dd, ³*J* = 8.0 Hz, ⁴*J* = 1.2 Hz, 1H, *H*₅ or *H*₈), 8.02 (dd, ³*J* = 8.0 Hz, ⁴*J* = 1.2 Hz, 1H, *H*₅ or *H*₈), 8.46 (s, 1H, *H*₃).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 53.8 (O¹³CH₃), 126.6 (*C*₆ or *C*₇), 127.3 (*C*₅ or *C*₈), 129.1 (*C*₅ or *C*₈), 130.2 (*C*₆ or *C*₇), 139.0 (*C*_{4a}), 139.7 (d, ³*J*_{C-C} = 2.1 Hz, *C*₃), 140.5 (*C*_{8a}), 157.8 (d, ²*J*_{C-C} = 2.7 Hz, *C*₂).

FTIR (cm⁻¹) 3004, 2977, 2939, 1612, 1574, 1507, 1496, 1477, 1454, 1440, 1395, 1392, 1344, 1336, 1313, 1283, 1270, 1233, 1209, 1203, 1139, 1136, 1121, 1118, 1025, 1011, 999, 972, 957, 921, 909, 873, 793, 756, 709, 679, 612.

MS (EI) *m/z* 161 (100), 131 (75), 103 (50), 90 (80), 76 (20), 63 (25), 50 (15), 39 (20).

HRMS (ESI-TOF) *m/z* calcd for C₈¹³CH₈N₂O [M+H]⁺: 162.0743, found: 162.0742.

[¹³ C] 5-Methoxybenzo[1,3]dioxole ^[15, 16] ([¹³ C]4i)	
$\begin{array}{c} 7 & 1 \\ 6 & 0 \\ 5 & 0 \\ 7 & 0 \\ 7 & 1 \\ 13 \\ 0 \\ 7 & 0 \\ 2 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	C ₇ ¹³ CH ₈ O ₃ MW : 153.05 g.mol ⁻¹ Yield : 48 %
4 3	Yellow liquid

After purification by column chromatography (SiO₂, start with pentane/CH₂Cl₂ 20:1, when the starting material starts to come out switch to pentane/CH₂Cl₂ 10:1 and when the product starts to come out switch to pentane/CH₂Cl₂ 5:1) [¹³C] 5-methoxybenzo[1,3]dioxole [¹³C]4i is obtained as a yellow liquid with 48 % yield (73.5 mg, 4.80×10^{-4} mol).

¹**H** NMR (400 MHz, CDCl₃) δ 3.74 (d, ¹*J*_{C-H} = 143.2 Hz, 3H, O¹³C*H*₃), 5.91 (s, 2H, C*H*₂), 6.32 (dd, ³*J* = 8.4 Hz, ⁴*J* = 2.4 Hz, 1H, *H*₆), 6.50 (d, ⁴*J* = 2.4 Hz, 1H, *H*₄), 6.71 (d, ³*J* = 8.4 Hz, 1H, *H*₇).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 56.1 (O¹³*C*H₃), 97.6 (d, ⁴*J*_{C-C} = 3.8 Hz, *C*₄), 101.2 (*C*H₂), 104.8 (d, ³*J*_{C-C} = 4.3 Hz, *C*₆), 108.0 (*C*₇), 141.7 (O-*C*^{IV}-C₇), 148.4 (O-*C*^{IV}-C₄), 155.3 (d, ²*J*_{C-C} = 2.2 Hz, *C*₅).

FTIR (cm⁻¹) 2997, 2946, 2896, 2831, 1632, 1609, 1503, 1486, 1465, 1451, 1430, 1363, 1340, 1285, 1268, 1242, 1191, 1174, 1129, 1102, 1090, 1037, 1016, 937, 919, 836, 814, 788, 757, 746, 715, 633, 615.

MS (EI) *m/z* 153 (100), 137 (100), 107 (40), 79 (55), 53 (30), 51 (35).

HRMS (ESI-TOF) *m/z* calcd for C₇¹³CH₈O₃ [M+H] ⁺ : 154.0579, found: 154.0573.

[¹³C] 2-Methoxythiazole ^[17, 18] ([¹³C]4j)

C₃¹³CH₅NSO **MW**: 116.01 g.mol⁻¹ **NMR Yield**: 23%

Regarding the poor ¹H NMR yield (23% *vs.* CH_2Cl_2 as internal standard) and the important product losses upon purification, [¹³C] 2-methoxythiazole [¹³C]4j has not been purified by column chromatography. Nevertheless ¹H and ¹³C peaks could be assigned from the crude reaction mixture and mass analysis was carried out.

¹**H NMR** (400 MHz, THF) δ 4.02 (d, ¹*J*_{C-H} = 147.2 Hz, 3H, O¹³C*H*₃), 6.77 (d, ³*J* = 4.0 Hz, 1H, S-C*H*), 7.06 (d, ³*J* = 4.0 Hz, 1H, N-C*H*).

¹³C{¹H} NMR (100 MHz, THF) δ 58.3 (O¹³CH₃), 111.8 (S-CH), 137.7 (N-CH), 175.8 (d, $C(O^{13}CH_3))$.

MS (EI) *m/z* 116 (45), 115 (30), 100 (30), 58 (30), 56 (45), 40 (100).

C₁₉¹³CH₂₆N₂O **MW**: 311.21 g.mol⁻¹ **Yield**: 85% Yellow oil

After purification by column chromatography (SiO₂, pentane/EtOAc 9:1 + 1% Et₃N) [¹³C] 3methoxyimipramine [¹³C]4**r** is obtained as a yellow sticky oil with 85 % yield (265.0 mg, 8.51×10^{-4} mol).

¹**H** NMR (400 MHz, CDCl₃) δ 1.77 (quint, ³*J* = 7.2 Hz, 2H, N-CH₂-CH₂-CH₂-N(CH₃)₂), 2.18 (s, 6H, N(CH₃)₂), 2.34 (t, ³*J* = 7.2 Hz, 2H, CH₂-N(CH₃)₂), 3.09 – 3.20 (m, 4H, *H*₁₀ + *H*₁₁), 3.78 (t, ³*J* = 7.2 Hz, 2H, N-CH₂), 3.79 (d, ¹*J*_{C-H} = 143.4 Hz, 3H, O¹³CH₃), 6.50 (dd, ³*J* = 8.4 Hz, ⁴*J* = 2.5 Hz, 1H, *H*₂), 6.70 (d, ⁴*J* = 2.5 Hz, 1H, *H*₄), 6.95 (td, ³*J* = 7.2 Hz, ⁴*J* = 1.2 Hz, 1H, *H*₇ or *H*₈), 7.01 (d, ³*J* = 8.4 Hz, 1H, *H*₁), 7.09 – 7.18 (m, 3H, *H*₆, *H*₉, *H*₇ or *H*₈).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 26.2 (N-CH₂-CH₂-CH₂-N(CH₃)₂), 31.8 (*C*₁₀ or *C*₁₁), 32.2 (*C*₁₀ or *C*₁₁), 45.6 (N(CH₃)₂), 48.9 (N-CH₂), 55.3 (O¹³CH₃), 57.7 (CH₂-N(CH₃)₂), 106.3 (d, ³J_Cc = 3.8 Hz, *C*₄), 107.1 (d, ³J_{C-C} = 4.1 Hz, *C*₂), 120.4 (*C*₆, *C*₇ or *C*₈), 122.8 (*C*₆, *C*₇ or *C*₈), 125.9 (*C*_{11a}), 126.4 (*C*₆, *C*₇ or *C*₈), 129.6 (*C*₉), 130.6 (*C*₁), 135.1 (*C*_{9a}), 148.3 (*C*_{5a}), 149.1 (*C*_{4a}), 158.3 (d, ²J_{C-C} = 2.3 Hz, *C*₃).

FTIR (cm⁻¹) 2930, 2893, 2816, 2763, 1607, 1597, 1585, 1573, 1507, 1489, 1473, 1458, 1448, 1437, 1286, 1253, 1217, 1196, 1160, 1132, 1112, 1097, 1061, 1038, 845, 800, 755, 746.

HRMS (ESI-TOF) m/z calcd for C₁₉¹³CH₂₆N₂O [M+H]⁺: 312.2151, found: 312.2153.

[¹³C] Mepyramine ([¹³C]4s)

C₁₆¹³CH₂₃N₃O **MW**: 286.19 g.mol⁻¹ **Yield**: 70% Yellow oil

After purification by column chromatography (SiO₂, start with pentane/EtOAc 9:1 + 1% Et₃N, move to pentane/EtOAc 8:2 + 1% Et₃N, when the product is coming out switch to pentane/EtOAc 3:7 + 1% Et₃N) [¹³C] mepyramine [¹³C]4s was obtained as a yellow sticky oil with 70 % yield (200.5 mg, 7.00×10^{-4} mol).

¹**H** NMR (400 MHz, CDCl₃) δ 2.25 (s, 6H, N(CH₃)₂), 2.49 (t, ³J = 7.4 Hz, 2H, CH₂-N(CH₃)₂), 3.64 (t, ³J = 7.4 Hz, 2H, N-CH₂-CH₂-N(CH₃)₂), 3.75 (d, ¹J_{C-H} = 143.6 Hz, 3H, O¹³CH₃), 4.70 (s, 2H, Anisole-CH₂-N), 6.45 (d, ³J = 8.4 Hz, 1H, CH_{pyridine}), 6.49 – 6.54 (m, 1H, CH_{pyridine}), 6.83 (d, ³J = 8.4 Hz, 2H, CH_{anisole}), 7.16 (d, ³J = 8.4 Hz, 2H, CH_{anisole}), 7.32 – 7.40 (m, 1H, CH_{pyridine}), 8.16 (dd, ³J = 4.8 Hz, ⁴J = 1.2 Hz, 1H, CH_{pyridine}).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 45.8 (N(*C*H₃)₂), 46.5 (N-*CH*₂-CH₂-N(*C*H₃)₂), 51.2 (Anisole-*C*H₂-N), 55.2 (O¹³*C*H₃), 56.7 (*C*H₂-N(*C*H₃)₂), 105.7 (*C*_{pyridine}), 111.7 (*C*_{pyridine}), 113.9 (d, ³*J*_{C-C} = 3.9 Hz, *C*₃ + *C*₅), 128.2 (*C*₂ + *C*₆), 130.8 (*C*₁), 137.2 (*C*_{pyridine}), 148.1 (*C*_{pyridine}), 158.2 (*C*₂·), 158.6 (d, ²*J*_{C-C} = 2.2 Hz, *C*₄).

FTIR (cm⁻¹) 2968, 2941, 2901, 2860, 2820, 2768, 1595, 1559, 1510, 1490, 1460, 1436, 1420, 1350, 1327, 1301, 1288, 1243, 1171, 1161, 1150, 1107, 1096, 1052, 1041, 1019, 977, 952, 924, 889, 817, 767, 732.

HRMS (ESI-TOF) *m/z* calcd for C₁₆¹³CH₂₃N₃O [M+H]⁺: 287.1947, found: 287.1949.

Compounds **4k** to **4q** were prepared directly using a commercial solution of BBN-OMe (1.0 M in hexanes) on a 1 mmol scale (see page S8, Optimization of the Palladium Catalyzed Suzuki Cross Coupling), according to the following procedure:

A 9 mL heavy-wall borosilicate glass tubes (ACE pressure tube, L × O.D. 10.2 cm × 19 mm, from Sigma Aldrich, ref. Z564567-1EA) was charged with the corresponding substituted chlorobenzene (1 mmol, 1 eq.), 2 eq. of CsF (303.8 mg, 2.0×10^{-3} mol, 2.0 eq.), 10 mol% of *t*BuXPhos (42.5 mg, 1.0×10^{-4} mol) and 5 mol% of Pd₂dba₃ (45.8 mg, 5.0×10^{-5} mol). Afterwards, 2 mL of THF were added. After 18 h at 100 °C, the reaction was quenched according to the general procedure.

	$C_{12}H_{10}O_2$
1-(4-methoxyphenyl) ethan-1-one ^[20] ([¹² C]4k)	MW : 150.18 g.mol-1
	Yield: 52%
7	Orange solid

After purification by column chromatography (SiO₂, start with pentane, when the impurities come out switch to pentane/CH₂Cl₂ 9:1) methyl 3-methoxybenzoate was obtained with 52 % yield (79 mg, 5.3×10^{-4} mol) as an orange solid.

¹**H NMR** (400 MHz, CDCl3) δ 2.53 (s, 3H, *H*₉), 3.85 (s, 3H, *H*₇), 6.95 – 6.86 (m, 2H, *H*₂₊*H*₆), 7.97 – 7.88 (m, 2H, *H*₃₊*H*₅).

¹³C NMR (101 MHz, CDCl₃) δ 26.28 (*C*₉), 55.59 (*C*₇), 113.67 (*C*₂₊*C*₆), 130.49 (*C*₃₊*C*₅), 163.49 (*C*₁), 196.72 (*C*₈).

HRMS (ESI-TOF) *m*/z calcd for C₉H₁₀O₂ [M+H]⁺ : 151.0759, found: 151.0759.

FTIR (cm⁻¹) 2921, 2839, 1673, 1598, 1575, 1508, 1417, 1357, 1305, 1265, 1171, 1148, 1113, 1074, 1026, 956, 835, 805, 741, 703, 632.

3-methoxybenzonitrile ^[21] ([¹²C]4l)

C₈H₇NO **MW**: 133.05 g.mol-1 **Yield**: 60% Pale yellow solid

After purification by column chromatography (SiO₂, start with pentane, when the impurities come out switch to pentane/EtOAc 98:2) methyl 3-methoxybenzoate was obtained with 60 % yield (80 mg, 6.0×10^{-4} mol) as a pale yellow solid.

¹**H NMR** (400 MHz, CDCl₃) δ 3.76 (s, 3H, H_8), 7.08 – 7.04 (m, 2H, $H_{4+}H_5$), 7.17 (dt, ³J = 7.6 Hz, ⁴J = 1.2 Hz, 1H, H_6), 7.33 – 7.26 (m, 1H, H_2).

¹³C NMR (101 MHz, CDCl₃) δ 55.58 (*C*₈), 113.17 (*C*₁), 116.86 (*C*₄), 118.72 (*C*₇), 119.32 (*C*₂), 124.50 (*C*₆), 130.32 (*C*₅), 159.60 (*C*₃).

HRMS (ESI-TOF) *m*/z calcd for C₈H₇NO [M+H]⁺ : 134.0606, found: 134.0609.

FTIR (cm⁻¹) 2935, 2938, 2229, 1651, 1596, 1577, 15074, 1842, 1421, 1446, 1317, 1281, 1255, 1170, 1147, 1031, 973, 922, 845, 790, 741, 701, 685, 607.

Methyl 3-methoxybenzoate ^[22] ([¹²C]4m)

C₉H₁₀O₃ **MW**: 166.06 g.mol-1 **Yield**: 62% Pale yellow oil

After purification by column chromatography (SiO₂, start with pentane, when the impurities come out switch to pentane/CH₂Cl₂ 9:1) methyl 3-methoxybenzoate was obtained with 62 % yield (104 mg, 6.2×10^{-4} mol) as a pale yellow oil.

¹**H** NMR (400 MHz, CDCl3) δ 3.76 (s, 1H, *H*₇), 3.83 (s, 1H, *H*₉), 7.01 (ddd, ³*J* = 8.3 Hz, ⁴*J* = 2.7 Hz, ⁴*J* = 1.0 Hz, 1H, *H*₆), 7.29 – 7.22 (m, 1H, *H*₂), 7.48 (dd, ³*J* = 2.6 Hz, ³*J* = 1.5 Hz, 1H, *H*₅), 7.57 – 7.52 (m, 1H, *H*₄),

¹³**C NMR** (100 MHz, CDCl3) δ 52.12 (*C*₉), 55.40 (*C*₇), 113.99 (*C*₂), 119.56 (*C*₆), 121.97 (*C*), 129.36 (*C*₅), 131.47(*C*₃), 159.57 (*C*₁), 167.02 (*C*₈).

HRMS (ESI-TOF) *m*/z calcd for C₉H₁₀O₃ [M+H]⁺ : 167.0708, found: 167.0708.

FTIR (cm⁻¹) 2951, 2837, 1718, 1600, 1586, 1488, 1454, 1433, 1320, 1276, 1222, 1183, 1098, 1075, 1042, 988, 806, 783, 753, 682.

(4-methoxyphenyl)(phenyl)methanone ^[23]([¹²C]4o)

C₁₄H₁₂O₂ **MW**: 212.08 g.mol-1 **Yield**: 63% Pale yellow oil

After purification by column chromatography (SiO₂, start with pentane, when the impurities come out switch to pentane/CH₂Cl₂ 95:5) methyl 3-methoxybenzoate was obtained with 63 % yield (134 mg, 6.3×10^{-4} mol) as a pale yellow oil.

1H NMR (400 MHz, CDCl3) δ 3.81 (s, 3H, H_{14}), 6.92 – 6.84 (m, 1H, $H_{4+}H_6$), 7.39 (dd, ³J = 10.4 Hz, ³J = 4.6 Hz, 2H, $H_{10+}H_{12}$), 7.48 (m, 1H, H_{11}), 7.71 – 7.62 (m, 2H, $H_{3+}H_7$), 7.80 – 7.72 (m, 2H, $H_{9+}H_{13}$).

¹³**C NMR** (101 MHz, CDCl3) δ 55.49 (*C*₁₄), 113.57 (*C*₄+*C*₆), 128.18 (*C*₁₀+*C*₁₂), 129.72 (*C*₉+*C*₁₃), 130.20 (*C*₂), 131.87 (*C*₁₁), 132.55 (*C*₃+*C*₇), 138.26 (*C*₈), 163.24 (*C*₅), 195.54 (*C*₁).

HRMS (ESI-TOF) *m*/z calcd for C₁₄H₁₂O₂ [M+H]⁺ : 213.0916, found: 213.0917.

FTIR (cm⁻¹) 2931, 2839, 1650, 1596, 1576, 1507, 1445, 1418, 1315, 1304, 1280, 1171, 1148, 1116, 1027, 937, 922, 843, 792, 740, 700, 607, 635.

After purification by column chromatography (SiO₂, start with pentane, when the impurities come out switch to pentane/CH₂Cl₂ 9:1) methyl 3-methoxybenzoate was obtained with 53 % yield (94 mg, 5.3×10^{-4} mol) as a very pale yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 2.18 – 2.05 (q, ³*J* = 6.4, 2H, *H*₃), 2.67 – 2.58 (t, ³*J* = 6.4 Hz, 2H, *H*₄), 2.89 (t, ³*J* = 6.1 Hz, 2H, *H*₂), 3.82 (s, 3H, *H*₉), 7.04 (dd, ³*J* = 8.4 Hz, ⁴*J* = 2.8 Hz, 1H, *H*₇), 7.15 (d, ³*J* = 8.4 Hz, 1H, *H*₆), 7.51 (d, ⁴*J* = 2.8 Hz, 1H, *H*₁₀).

¹³C NMR (101 MHz, CDCl₃) δ 23.50 (*C*₃), 28.89 (*C*₄), 39.00 (*C*₂), 55.49 (*C*₉), 109.10 (*C*₁₀), 121.74 (*C*₇), 129.97 (*C*₆), 133.39 (*C*₁₁), 137.13 (*C*₅), 158.34 (*C*₈), 198.31 (*C*₁).

HRMS (ESI-TOF) *m*/z calcd for C₁₁H₁₂O₂ [M+H]⁺ : 177.0916, found: 177.0915.

FTIR (cm⁻¹) 2938, 2835, 1678, 1604, 1574, 1494, 1462, 1422, 1348, 1325, 1276, 1257, 1232, 1184, 1171, 1060, 1033, 956, 878, 819, 747, 693.

3-methoxybenzonitrile ^[25] ([¹²C]4q)

C9H9NO MW: 147.18 g.mol-1 Yield: 67% Pale yellow solid

After purification by column chromatography (SiO₂, start with pentane, when the impurities come out switch to pentane/EtOAc 98:2) methyl 3-methoxybenzoate was obtained with 67 % yield (99 mg, 6.7×10^{-4} mol) as a pale yellow solid.

¹**H NMR** (400 MHz, CDCl₃) δ 2.46 (s, 3H, *H*₇), 3.79 (s, 3H, *H*₈), 7.02 (dd, ${}^{3}J$ = 8.5 Hz, ${}^{4}J$ = 2.8 Hz, 1H, *H*₄), 7.07 (d, ${}^{4}J$ = 2.7 Hz, 1H, *H*₂), 7.19 (d, ${}^{3}J$ = 8.5 Hz, 1H, *H*₅).

¹³**C NMR** (101 MHz, CDCl₃) δ 19.27(*C*₇), 55.56(*C*₈), 113.17(*C*₁), 116.45(*C*₂), 118.08(*C*₉), 119.54(*C*₄), 131.28(*C*₅), 133.77(*C*₆), 157.52(*C*₃).

HRMS (ESI-TOF) *m*/z calcd for C₉H₉NO [M+H]⁺ : 148 .0762, found: 148 .0766

FTIR (cm⁻¹) 2924, 2228, 1651, 1597, 1577, 1507, 1446, 1304, 1280, 1256, 1170, 1147, 1031, 937, 922, 845, 790, 741, 701, 685, 681, 607.

B. Carbon-14 Labeled Compounds

[¹⁴C] 4-Methoxybenzonitrile ^[5, 6] ([¹⁴C]4d)

 $C_7^{14}CH_7NO$ **MW**: 135.14 g.mol⁻¹ **Yield**: 37% White Solid

[¹⁴C] 4-Methoxybenzonitrile [¹⁴C]4d was prepared according to the general procedure, using 1.5 eq. of (9-BBN)₂ dimer 1 (91.5 mg, 3.75×10^{-4} mol, 1.5 eq.) together with 5 mol% of Verkade's base VB^{Me} (4.1 mg, 1.88×10^{-5} mol, 0.075 eq., $5 \mod \% vs$. (9-BBN)₂) in the reduction chamber and 2 eq. of CsF (76.0 mg, 5.0×10^{-4} mol, 2.0 eq.), 1eq. of substrate 3d (2.5×10^{-4} mol, 1.0 eq.), 10 mol% of *t*BuXPhos (10.6 mg, 2.5×10^{-5} mol) and 5 mol% of Pd₂dba₃ (11.5 mg, 1.25×10^{-5} mol) in the Suzuki chamber.

1.2 eq. of ${}^{14}CO_2$ (3 × 10⁻⁴ mol, 693 MBq) was used. The crude product was purified by Flash Chromatography on SiO₂ gel (eluent DCM/Heptane 50:50) affording the [${}^{14}C$] 4-methoxybenzonitrile [${}^{14}C$]4d as white solid (186.517 MBq, 0.093 mmol, 37%).

¹⁴CO₂ Specific activity: 2.172 GBq mmol⁻¹

Specific activity (MS (ESI)): 1.990 GBq mmol⁻¹

TLC (silicagel 60F254, EtOAc/Hept (30/70)) Rf = 0.21. Radiochemical purity: ≥99 %.

[¹⁴C] Mepyramine ([¹⁴C]4s)

C₁₆¹⁴CH₂₃N₃O **MW**: 287.38 g.mol⁻¹ **Yield**: 35% Yellowish oil

[¹⁴C] Mepyramine [¹⁴C]4s was prepared according to the general procedure, using 1.5 eq. of (9-BBN)₂ dimer **1** (91.5 mg, 3.75×10^{-4} mol, 1.5 eq.) together with 5 mol% of Verkade's base VB^{Me} (4.1 mg, 1.88×10^{-5} mol, 0.075 eq., 5 mol% *vs*. (9-BBN)₂) in the reduction chamber and

2 eq. of CsF (76.0 mg, 5.0×10^{-4} mol, 2.0 eq.), 1eq. of substrate **3s** (72.5 mg, 2.5×10^{-4} mol, 1.0 eq.), 10 mol% of *t*BuXPhos (10.6 mg, 2.5×10^{-5} mol) and 5 mol% of Pd₂dba₃ (11.5 mg, 1.25×10^{-5} mol) in the Suzuki chamber.

1.2 eq. of ${}^{14}CO_2$ (3 × 10⁻⁴ mol, 693 MBq) was used. The crude product was purified by Flash Chromatography on SiO₂ gel (Eluent gradient pentane/EtOAc 9/1 + 1% Et₃N, then pentane/EtOAc 8/2 + 1% Et₃N, and pentane/EtOAc 3/7 + 1% Et₃N) affording the [${}^{14}C$] Mepyramine [${}^{14}C$]4l as a yellow sticky oil solid (179.764 MBq, 0.088 mmol, 35%).

¹⁴CO₂ Specific activity: 2.172 GBq mmol⁻¹

Specific activity (MS (ESI)): 2.025 GBq mmol⁻¹

TLC (silicagel 60F254, EtOAc/Hept (30/70)) Rf = 0.14. Radiochemical purity: ≥99 %.

VI. ¹H and ¹³C NMR Spectra of ¹³C-labeled compounds

¹³C NMR Spectrum of [¹³C]4-Methylanisole [¹³C]4b in CDCl₃.

[¹³C] 4-Methoxyanisole ([¹³C]4c)

¹H NMR Spectrum of [¹³C]4-Methoxyanisole [¹³C]4c in CDCl₃.

¹³C NMR Spectrum of [¹³C]4-Methoxyanisole [¹³C]4c in CDCl₃.

[¹³C] 4-Methoxybenzonitrile ([¹³C]4d)

¹H NMR Spectrum of [¹³C]4-Methoxybenzonitrile [¹³C]4d in CDCl₃.

¹³C NMR Spectrum of [¹³C]4-Methoxybenzonitrile [¹³C]4d in CDCl₃.

[¹³C] 2-Methoxypyridine ([¹³C]4e)

¹H NMR Spectrum of [¹³C]2-Methoxypyridine [¹³C]4e in CDCl₃.

¹³C NMR Spectrum of [¹³C]2-Methoxypyridine [¹³C]4e in CDCl₃.

[¹³C] 5-Methoxypyrimidine ([¹³C]4f)

¹H NMR Spectrum of [¹³C]5-Methoxypyrimidine [¹³C]4f in CDCl₃.

¹³C NMR Spectrum of [¹³C]5-Methoxypyrimidine [¹³C]4f in CDCl₃.

¹H NMR Spectrum of [¹³C]6-Methoxyquinoline [¹³C]4g in CDCl₃.

¹³C NMR Spectrum of [¹³C]6-Methoxyquinoline [¹³C]4g in CDCl₃.

¹H NMR Spectrum of [¹³C]2-Methoxyquinoxaline [¹³C]4h in CDCl₃.

¹³C NMR Spectrum of [¹³C]2-Methoxyquinoxaline [¹³C]4h in CDCl₃.

[¹³C] 5-Methoxybenzo[1,3]dioxole ([¹³C]4i)

¹H NMR Spectrum of [¹³C]5-Methoxybenzo[1,3]dioxole [¹³C]4i in CDCl₃.

¹³C NMR Spectrum of [¹³C]5-Methoxybenzo[1,3]dioxole [¹³C]4i in CDCl₃.

¹³C NMR spectrum of the crude reaction mixture between 2-chlorothiazole and BBN-O¹³CH₃.

¹H NMR Spectrum of [¹³C]3-Methoxyimipramine [¹³C]4k in CDCl₃.

¹³C NMR Spectrum of [¹³C]3-Methoxyimipramine [¹³C]4k in CDCl₃.

¹H NMR Spectrum of [¹³C]Mepyramine [¹³C]4l in CDCl₃.

¹³C NMR Spectrum of [¹³C]Mepyramine [¹³C]4l in CDCl₃.

1-(4-methoxyphenyl) ethan-1-one ([¹²C]4k)

¹H NMR Spectrum of 1-(4-methoxyphenyl) ethan-1-one [¹²C]4k in CDCl₃.

¹³C NMR Spectrum of 1-(4-methoxyphenyl) ethan-1-one [¹²C]4k in CDCl₃.

¹H NMR Spectrum of 3-methoxybenzonitrile $[^{12}C]4l$ in CDCl₃.

¹³C NMR Spectrum of 3-methoxybenzonitrile [¹²C]4l in CDCl₃.

¹H NMR Spectrum of Methyl 3-methoxybenzoate [¹²C]4m in CDCl₃.

¹³C NMR Spectrum of Methyl 3-methoxybenzoate [¹²C]4m in CDCl₃.

(4-methoxyphenyl)(phenyl)methanone ([¹²C]4o)

¹H NMR Spectrum of (4-methoxyphenyl)(phenyl)methanone [¹²C]40 in CDCl₃.

¹³C NMR Spectrum of (4-methoxyphenyl)(phenyl)methanone [¹²C]40 in CDCl₃

7-methoxy-3, 4-dihydronaphthalen-1(2H)-one ([¹²C]4p)

¹H NMR Spectrum of 7-methoxy-3, 4-dihydronaphthalen-1(2H)-one [¹²C]4p in CDCl₃.

¹³C NMR Spectrum of 7-methoxy-3, 4-dihydronaphthalen-1(2H)-one [¹²C]4p in CDCl₃

¹H NMR Spectrum of 3-methoxy-6-methylbenzonitrile [¹²C]4q in CDCl₃.

¹³C NMR Spectrum of 3-methoxy-6-methylbenzonitrile [¹²C]4q in CDCl₃.

2,045

1,116

604,89

648,64

5,08

5,43

VII. TLC of ¹⁴C-Labelled Compounds

BKG1

2 ROIS BKG

Remainder RF

Remainder (Tot)

[¹⁴C] Mepyramine ([¹⁴C]4l)

C₁₆¹⁴CH₂₃N₃O MW: 287.38 g.mol⁻¹ Yield: 35% Yellowish oil

,20 C/mm	*1000		E.							it.								TLC
,10	Star		S-fin	×	41:	А	2	52	ā	≊ Fro	2	3	i.	0	8	÷	3	2
1,00-		-	5-21	2	2	í4	R	÷	2		la.	i.	÷	R	9			11
, 90		-	AS	5	1	$\overline{\kappa}$	÷	л.	зй,	s I	a.	s:	3	R)	22	ũ.	r	10
,80	l,			39	÷	\overline{n}	ä	2	Ŀ	4	×	5	C.	4	22	14	×	
,70-	and the second second		- ×	т.	100	ii	R	:4	÷	85	з	ş.	14	2	31	4	3	
,60-		-		¥	ui.	а	Ŀ	2	<i>v</i>	8	1	91	R		л	5	4	10 I
, 50			14	,	<u>s:</u>	3	5	æ	÷.	8	з	×	IJ	3	3¥	2	90	8
,40			1.	ï	х	2	×	5	.4	y		28	ŵ.	2	ũ	×	£5	
1, 30		ł	1 -	Œ	×	38	đ	2	5	Q.	-	G.	ж	5	9	7		м
), 20		-	Į.,	15	Ы	i:		w.	ĸ	ĸ	×	2		Ĕ	ар:	ï	a.	
^{),10} ថ្ងី		ŀ										(62						
0,00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u></u>	1			-	-	-				B	-		_	-	-	12.5

Description de l'échantillon

Etude:	ANTOINE				
Mesure;	AS5-213-14C-	final_01.rta,	commencé:	20/12/2019	15:26
Méthode:	C14				
Origine:	20 mm	Front 117 mm			
Meas. time:	0,1 min	Résolution:	0,4 mm		
Haute tension:	1620,0 V				
Détecteur de radioa	ctivité: rayt	est RITA			
Autre Square flow c	ell ≇0				
Cell volume 0 ul					

Intégration TLC

Substance	R/F	Type	Aire	%Aire
	Contraction of the American		Counts	8
AS5-213-final	0,136	BB	5824,416	100,00
Sum in ROI			5824,416	
Aire totale			6110,037	
Aire RF			6070,000	
BKG1			1,1111	
2 ROIS BKG			0,5882	
Remainder RF			245,58	4,05
Remainder (Tot)			285,62	4,67

VIII. References

[1] E. Blondiaux, J. Pouessel, T. Cantat, Angew. Chem. Int. Ed., 2014, 53, 12186-12190.

[2] G. Bencivenni, T. Lanza, R. Leardini, M. Minozzi, D. Nanni, P. Spagnolo, G. Zanardi, *Org. Lett.*, **2008**, *10*, 1127-1130.

[3] T. Schaefer, G. H. Penner, Can. J. Chem., 1988, 66, 1635-1640.

[4] A. B. Naidu, E. A. Jaseer, G. Sekar, J. Org. Chem., 2009, 74, 3675-3679.

[5] S. V. Ley, A. G. Leach, R. I. Storer, J. Chem. Soc., Perkin Trans. 1, 2001, 358-361.

[6] M. Hatsuda, M. Seki, *Tetrahedron*, 2005, 61, 9908-9917.

[7] R. D. Chambers, M. Parsons, G. Sandford, C. J. Skinner, M. J. Atherton, J. S. Moilliet, J. Chem. Soc., Perkin Trans. 1, 1999, 803-810.

[8] N. Plé, A. Turck, K. Couture, G. Quéguiner, Synthesis, 1996, 838-842.

[9] J. Šturala, S. Boháčová, J. Chudoba, R. Metelková, R. Cibulka, J. Org. Chem., 2015, 80, 2676-2699.

[10] C. S. Cho, B. H. Oh, S. C. Shin, J. Heterocycl. Chem., 1999, 36, 1175-1178.

[11] N. Shakya, K. K. Roy, A. K. Saxena, Bioorg. Med. Chem., 2009, 17, 830-847.

[12] R. N. Monrad, R. Madsen, Org. Biomol. Chem., 2011, 9, 610-615.

[13] H. Mcnab, J. Chem. Soc., Perkin Trans. 1, 1982, 357-363.

[14] Z. Zhang, K. Tanaka, J.-Q. Yu, Nature, 2017, 543, 538-542.

[15] P. F. Schuda, W. A. Price, J. Org. Chem., 1987, 52, 1972-1979.

[16] T. De Haro, C. Nevado, J. Am. Chem. Soc., 2010, 132, 1512-1513.

[17] A. Friedmann, *Comptes Rendus des Séances de l'Académie des Sciences, Série C : Sciences Chimiques*, **1969**, 269, 1560-1561.

[18] D. S. Noyce, S. A. Fike, J. Org. Chem., 1973, 38, 3318-3321.

[19] X. Lu, R. B. Silverman, *Bioorg. Med. Chem.*, **1998**, *6*, 1851-1856.

[20] J. Ruan, X. Li, O. Saidi, J. Xiao, J. Am. Chem. Soc., 2008, 130, 2424-2425.

[21] H-J. Cristau, A. Ouali, J-F. Spindler, M. Taillefer, J. Chem. Eur., 2005,11, 2483 – 2492.

[22] M. Tobisu, K. Yamakaw, T. Shimasakia, N. Chatani, *Chem. Commun.*, **2011**, 47, 2946–2948.

[23] J. Karthikeyan, K. Parthasarathy, C.Cheng, Chem. Commun., 2011, 47, 10461–10463.

[24] B. Andrews, K. Bullock, S. Condon, J. Corona, R. Davis, J. Grimes, A. Hazelwood,E.Tabet, *Synth Commun.*, 2009, 39, 2664–2673.

[25] B. D. Yestrepsky, Y. Xu, M. E. Breen, X. Li, W. G. Rajeswaran, J. G. Ryu, R. J. Sorenson,
Y. Tsume, M. W. Wilson, W. Zhang, D. Sun, H. Sun, S. D. Larsen, *Bioorg. Med. Chem.*, 2013,
21, 1880–1897.