Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Low-polarity small organic molecule with stable keto form for

photocatalytic H₂ evolution

Qing Yang, Cefei Zhang, Fangli Yi, Xinyu Li, Yiqi Yuan, Kewei Liu, Hongmei Cao, Hongjian Yan*, Zhishan Su*

College of Chemistry, Sichuan University, Chengdu, Sichuan, 610065, China

E-mail: hjyan@scu.edu.cn;

Tel: +86-1355-1341-892

Experimental Details

Materials:

All chemicals were commercially available and used without further purification. Triformylphloroglucinol, and 4-Aminobenzonitrile were purchased from Alpha chemicals. 4-amino-3-methoxybenzonitrile, 4-amino-3-methylbenzonitrile, 4-amino-3-hydroxybenzonitrile, and 4-amino-3-fluorobenzonitrile were purchased from Fluorochem. p-nitroaniline, 4-aminophenol, 4-fluoroaniline, 4-aminobenzoic acid, and p-methyl aniline, Ru₃(CO)₁₂ were purchased from Aladdin chemicals. Salicylaldehyde, Aniline, acetone, mesitylene, 1,4-dioxane, ethanol, sodium sulphate, tetrahydrofuran (THF) and propan-2-ol were purchased from Kelong chemicals. 2,4dihydroxyisophthalaldehyde was obtained from Bidepharm.

Synthesis of SOMs:

The synthesis method of SOMs was as shown below. Typically, Salicylaldehyde (12.2 mg, 0.10 mmol), 2,4-dihydroxylsophthalaldehyde (18.3 mg, 0.11 mmol), 2hydroxybenzene-1,3,5-tricarbaldehyde (8.9 mg, 0.05 mmol), 2,4-dihydroxybenzene-1,3,5-tricarbaldehyde (10 mg, 0.05 mmol) or triformylphloroglucinol (Tp, 11.9 mg, 0.05 mmol) and 4-Aminobenzonitrile (ABN, 40.0 mg, 0.34 mmol) were ultrasonically dispersed into 4 mL ethanol homogeneously and then solvothermally treated at 80 °C for 24 hours, respectively (sample was noted as **1**, **2**, **3**, **4** and **5**). During the whole process, the light-yellow, orange, or red precipitate appeared. As comparison, other monomer with different substituent (-F, -Me, -OMe, -NO₂, -COOH, -OH) replacing β -H or -CN group of ABN was reacted with TP, respectively, in the same reaction condition. The obtained product was immersed in acetone overnight and washed with ethanol, THF, acetone for several times until all residual unreacted reagents were cleaned, followed by dried at 70 °C under vacuum. Sample 1 and 3 was recrystallized for 2-3 times in ethanol. Sample 1: the experimental elemental composition and containment (C₁₄H₁₀N₂O: C(73.25%), N(11.78%), O(8.67%), H(6.30%), ¹³C solid state NMR(500 Hz): 8 112.3, 119.04, 129.0, 136.1, 147.8, 163.4 and the relative molecular mass (222.92 (m/z)), Anal. Calcld. for C₁₄H₁₀N₂O: C(75.66%), N(12.60%), O(7.20%), H(4.54%) and 222.25 (m/z). Sample 2: the experimental elemental composition and containment (C₂₂H₁₄N₄O₂: C (71.26%), N (14.59%), O (11.06%), H (3.09%), ¹³C solid state NMR(500 Hz): δ 108.3, 112.2, 118.2, 134.7, 142.8, 147.5, 184.3 and the relative molecular mass (366.91 (m/z)), Anal. Calcld. for $C_{22}H_{14}N_4O_2$: C (72.12%), N (15.29%), O (8.73%), H (3.85%) and 366.38 (m/z). Sample 3: the relative molecular mass (479.27 (m/z)), ¹³C solid state NMR (500 Hz): δ 108.8, 118.5, 132.1, 135.4, 156.4, 164.1. Anal. Calcld. For C₃₀H₁₈N₆O: 478.52. Sample 4: the relative molecular mass (495.30 (m/z), ¹³C solid state NMR (500 Hz): δ 108.4, 117.6, 121.4, 132.4, 150.1, 156.4, 184.1, Anal. Calcld. For C₃₀H₁₈N₆O₂: 494.15 (m/z). Sample 5: the experimental elemental composition and containment $(C_{30}H_{18}N_6O_3: C$ (70.06%), N (16.45%), O (10.38%), H (3.11%)) and the relative molecular mass (510.91(m/z), ¹³C solid state NMR (500 Hz): δ 107.9, 118.7, 133.8, 141.3, 182.7, Anal. Calcld. for C₃₀H₁₈N₆O₃: C (70.58%), N (16.46%), O (9.40%), H (3.55%) and 510.51 (m/z).

Characterization: Firstly, the organic element analysis (elemental vario EL cube,

Germany) and MALDI-TOF-MS (AXIMA Performance) were applied to measure the element component, content and relative molecular mass. The solid state ¹³C NMR (AVANCE III 500MHz), the liquid ¹H NMR (AVANCE III HD) and FT-IR (INVENIOR, bruker) were used to clarify the characteristic functional groups. The optical properties and charge separation ability were analyzed by UV-vis DRS (UV3600, Shimadzu) and fluorescence spectrometer (Hitachi F-7000). The Brunauer -Emmett-Teller (BET) surface area were obtained by using nitrogen adsorption-desorption curve (Micromeritics). The thermal properties were tested by METTLER TOLEDO DSC1, under N₂ flow and 10 °C/min heating rate between 30 °C and 600 °C. The X-ray photoelectron spectroscopy (XPS, Thermo Fisher 250 XI) was used for surface analysis of sample **5** after- or before- irradiation.

The analysis of photocurrent, electrochemical impedance spectroscopy (EIS) and Mott-Schottky curve were realized on electrochemical workstation (CHI660E). The fabrication of work electrode for the electrochemical test was as follows: 5 mg sample powder was placed into centrifuge tubes with the mixture solution of 150 μ L ethanol, 150 μ L isopropyl alcohol and 10 μ L naphthol and formed the homogeneous dispersion by ultrasonic. Draw 40 μ L dispersion to be coated on the surface of FTO conductive glass to generate uniformly 1.0 \times 1.0 cm film. At last, the FTO plate was placed into vacuum oven to dry for 5 h at 70 °C. The photoelectrochemical measurement was completed via a three-electrode model. Ag/AgCl electrode as the reference electrode, Pt piece as the counter electrode, and 0.1 M Na₂SO₄ as electrolyte solution in this model.

Photocatalytic measurement.

The photocatalytic water reduction reaction was performed in an airtight and homothermic glass photoreactor with external light lamp and gas circulation system. 10 mg SOM photocatalyst and quantitative H₂PtCl₆ solution were dropped in 200 mL aqueous triethanolamine (TEOA, 10 vol%). Before photocatalytic reaction, the whole system was evacuated to hold vacuum state. Prior to the catalytic reaction, Pt cocatalyst was loaded on sample **5** through the in-situ photoreduction of H₂PtCl₆ under the 30-min irradiation of full-spectrum 300W Xe lamp (Ceralux 300BF). After that, photocatalytic reaction was proceeded under the visible-light irradiation (300W Xe lamp installed with light filter, λ >400nm). The amount of photocatalytic H₂ production was monitored in real time by gas chromatograph (GC-112AT). The loading of RuO₂(consulting the previous literature [1]): 20 mg SOM-5 was impregnated in 15 mL THF solution with quantitative amount of Ru₃(CO)₁₂. The former was maintained at 60 °C. After the evaporation of the solvent, the photocatalyst powder was transferred to muffle furnace and heated at 300 °C for 1h.

The calculation of apparent quantum yield (AQY): 0.1 g photocatalyst and 200 mL TEOA solution (Pt as cocatalyst) was dispersed in the same photocatalytic reaction apparatus, 300 W Xe lamp installed with optical filter (λ =425 nm) as incident light. The amount of H₂ production was detected by gas chromatograph. The amount of photon was tested by ThorLabs S120C photo-diode.

The calculation of AQY by the following formula:

$$\eta = \frac{2 \times \text{moles of H2 evolved}}{\text{moles of the incident photons}} \times 100\%$$

Theoretical calculation

Gaussian 09^[2] program was employed to conduct all calculation, by using M062X^[3,4]-D3^[5,6] density functional with the 6-31+G(d,p) basis set. The chemical structure was optimized and characterized by frequency analysis at 298 K. The corresponding theoretical energy level was calculated by Time-dependent density functional theory (TD-DFT). Spin population was obtained using Multiwfn 3.8 software^[7], and the corresponding isosurface plots were generated by VMD 1.9.3 package ^[8]. The optimized geometries and the corresponding structural parameters are as shown in Figure S21 and Table S5.

Figure S1: The MALDI-TOF-MS results of sample 1-5.

Figure S2. the O1s(a), C1s(b) and N1s(c) spectra of high-resolution XPS spectra of sample 1-5.

Figure S3. The energy difference between corresponding enol structure and keto form structure of sample 1, 2, 3, 4 and 5, respectively.

Figure S4. FT-IR spectra (a), ¹³C solid-state NMR (b), thermogravimetry (TG) (c) and the UV-vis DRS (d) curve of **5**. The inset in (d) shows the bandgap of **5**.

Figure S5. The HOMO(a) and LUMO(b) level of 5.

Figure S6. The Mott-Schottky curves of sample **1-5** (a)-(e) (100 HZ, 300HZ, 500HZ). The intercept on the x axis is the value of the flat band (vs. Ag/AgCl).

Figure S7. The VB-XPS of sample 1-5 (a-e).

Figure S8. The energy band alignments of sample 1-5 respectively.

Figure S9. Nitrogen adsorption-desorption isotherm of sample 1-5.

Figure S10. The activity of **5** with changing incident-light wavelength.

Figure S11. The photostability test of **5** (6 cycles, 24h-irradiation).

Figure S12. The FT-IR spectra of **5** after-irradiation and the MALDI-TOF-MS of supernatants from the reaction solution.

Figure S13. The high resolution XPS spectra of N 1s(a), Pt 4f (b).

Figure S14. The synthetic route of **6a-d** and **7a-e**. (R_1 and R_2 substituent replace β -H or cyan group of ABN, respectively)

Figure S15. The MALDI-TOF-MS results of sample 1-3 and 4a-d, 5a-e.

Figure S16. The Fourier Transform Infrared Spectra (FT-IR) of **5**, R₁=F, Me, OMe(a) and R₂=H, F, Me, NO₂(b).

Figure S17. The ¹³C solid-state nuclear magnetic resonance (NMR) of **5** (δ 107.9, 118.7, 133.8, 141.3, 182.7(C=O)), R1=F(δ 108.5, 118.2, 132.1, 150.5, 182.4(C=O)), R1=Me(δ 17.1, 108.2, 114.3, 133.7, 140.1, 146.5, 183.9(C=O)), R1=OMe(δ 56.2(OMe), 107.4, 118.2, 134.2, 142.0, 147.2, 158.9, 184.1(C=O)) (a) and R₂=H(δ 107.5, 117.2, 130.9, 140.1, 150.3, 184.6(C=O)), F(δ 108.2, 117.5, 135.1, 147.2, 159.2(F-C), 183.5(C=O)), Me(δ 21.8(Me), 107.2, 117.6, 130.1, 136.5, 146.9, 183.3(C=O)), NO₂(δ 108.2, 117.4, 126.2, 143.4(NO₂-C), 184.2(C=O)), COOH(δ 107.2, 116.9, 130.3, 140.9, 148.1, 166.9(COOH), 183.6(C=O))(b).

Figure S18. The photocatalytic activity of **6a-d** (**6a**: R_1 =F,**6b**: R_1 =Me, **6c**: R_1 =OH, **6d**: R_1 =OMe) (a) and **7a-e**(**7a**: R_2 =H, **7b**: R_2 =F,**7c**: R_2 =Me, **7d**: R_2 =NO₂, **7e**: R_2 =COOH) (b).

Figure S20. The photocurrent response(a)(b) and EIS spectra(c)(d) of sample with different R_1 or R_2 substitution. EIS spectra (f) and photocurrent response of 1-5 (e).

Figure S21. Optimized geometries and the corresponding structural parameters.

Figure S22. The dipole moment of sample 1, 2, 3, 4 and 5 with keto or enol form respectively.

Figure S23. Electrostatic potential-mapped vdW molecular surface of **6a**, **6b**, **6d** and **7a** (isovalue=0.001 au, computed at the M062X-D3/6-31+G(d,p) level of theory) Isosurface map of electrostatic potential (ESP) (isovalue=0.001 au, computed at the M062X-D3/6-31+G(d,p) level of theory).

Figure S24. Spin electron density for **1-5** in the first excited triple state (T1, isovalue=0.02). The yellow domain represents the distribution of single electron.

Figure S25. Electrostatic potential-mapped vdW molecular surface of **5** (isovalue=0.001 au, computed at the M062X-D3/6-31+G(d,p) level of theory) Isosurface map of electrostatic potential (ESP) (isovalue=0.001 au, computed at the M062X-D3/6-31+G(d,p) level of theory).

Figure S26. Space representation of hole and electron distributions of S_1 and T_1 states for 5, obtained by Mutilwfn software. Green and blue isosurfaces corresponding to electron and hole distributions, respectively (isovalue = 0.02 au).

Figure S27. Dominant natural transition orbital (NTO) pair for the $S_0 \rightarrow S_1$ transition for 5, obtained by Mutilwfn software (isovalue = 0.002 au). The associated eigenvalue λ is 0.883.

Figure S28. The TEM image of **5** before-irradiation (a and b) and after-irradiation SOM (c and d).

Tuble ST. The element containment of samples				
Element	C(wt%)	H(wt%)	O(wt%)	N(wt%)
analysis				
$1(C_{14}H_{10}N_2O)$	73.25	6.30	8.67	11.78
$2(C_{22}H_{14}N_4O_2)$	71.26	3.09	11.06	14.59
$5(C_{30}H_{18}N_6O_3)$	70.06	3.11	10.38	16.45
R ₂ =Me	69.88	4.91	11.17	14.04
$(C_{33}H_{24}N_6O_3)$				
R ₁ =OMe	65.74	4.89	16.25	13.12
$(C_{33}H_{24}N_6O_6)$				
$R_2=H$	72.94	5.17	12.78	9.11
$(C_{27}H_{21}N_3O_3)$				
R ₂ =Me	74.72	5.90	10.71	8.67
$(C_{30}H_{27}N_3O_3)$				
$R_2 = NO_2$	56.05	3.49	27.16	13.30
$(C_{27}H_{18}N_6O_9)$				

Table S1. The element containment of samples

Table S2 The BET surface area of sample 1-5, 6a, 6b

BET surface area	Pore volume(cm^{3}/g)	Pore size(nm)
$0.10 \text{ m}^2/\text{g}$	0.0017	15.39
$24.55 \text{ m}^2/\text{g}$	0.12	22.67
$43.70 \text{ m}^2/\text{g}$	0.18	18.71
$0.26 \text{ m}^2/\text{g}$	0.0027	16.78
$48.54 \text{ m}^2/\text{g}$	0.20	18.32
$0.15 \text{ m}^2/\text{g}$	0.0013	15.48
$0.60 \text{ m}^2/\text{g}$	0.0021	16.23
	BET surface area 0.10 m ² /g 24.55 m ² /g 43.70 m ² /g 0.26 m ² /g 48.54 m ² /g 0.15 m ² /g 0.60 m ² /g	BET surface areaPore volume(cm^3/g)0.10 m²/g0.001724.55 m²/g0.1243.70 m²/g0.180.26 m²/g0.002748.54 m²/g0.200.15 m²/g0.00130.60 m²/g0.0021

 Table S3. The dihedral angle and dipole moment of samples.

Sample	dihedral	Dipole(Debye)
	angle(°)	
1(enol form)	41.6	5.13
1(keto form)	17.2	3.90
2(enol form)	39.6	4.80
2(keto form)	0.3	3.89
3	0.7	0.16
R ₁ =OMe	1.1	0.14
R ₁ =F	29.5	2.04
R ₁ =Me	43.6	2.06

R ₁ =OH	1.2	0.20
$R_2=H$	1.5	0.48
R ₂ =Me	0.8	0.08
$R_2 = F$	1.5	0.48
$R_2 = NO_2$	1.5	0.42

Table S4. The spin population of main atoms of 5.

5	Value	% of sum	% of sum abs
C1	0.05826158	2.913091	2.696225
C2	0.41842150	22.921170	21.214791
C3	0.03800227	1.900122	1.758666
C8	0.02176706	1.0088358	0.270390
09	0.13931985	6.966021	6.447432
C10	0.41661284	20.830728	19.279974
011	0.14108878	7.054468	6.529295
N31	0.26291206	13.145657	12.167022

Table S5. Electronic energies (EZ), enthalpy(H), and Gibbs free energies (G) for all stationary points (in Hartree), obtained at the M062X-D3/6-31+G** theoretical level.

	points (ii	111a11ee), 00ta	inea at the	1100211 05/0 51 0	theor	etical level.
Structures	^a ZPE	E_{z}	^b <i>H</i> _c	Н	°Gc	G
1-enol	0.20132	-724.20560	0.21573	-723.98987	0.15976	-724.04584
1-keto	0.20071	-724.19242	0.21522	-723.97719	0.15872	-724.03370
2-enol	0.30503	-1216.1899	0.32863	-1215.8626	0.25020	-1215.94107
2-keto	0.30585	-1216.1899	0.32981	-1215.8602	0.24988	-1215.94009
3-enol	0.40325	-1632.9282	0.43557	-1557.2483	0.33552	-1632.59267
3-keto	0.40449	-1632.9293	0.43714	-1632.4926	0.33523	-1632.59407
4-enol	0.39894	-1557.6788	0.43049	-1557.2483	0.33113	-1557.34769
4-keto	0.39886	-1557.6462	0.43087	-1557.2153	0.33116	-1557.31500
5	0.42445	-1707.20146	0.45783	-1707.16808	0.35446	-1707.27145
$R_1(F)$	0.39951	-2004.83938	0.43541	-2004.80348	0.32670	-2004.91220
R ₁ (Me)	0.50864	-1825.00909	0.54643	-1824.97130	0.43551	-1825.08221
R ₁ (OMe)	0.52379	-2050.54306	0.56481	-2050.50204	0.44449	-2050.62236
$R_2(H)$	0.42866	-1430.54918	0.45651	-1430.52134	0.36663	-1430.61122
R ₂ (Me)	0.51142	-1548.36348	0.54477	-1548.33013	0.44204	-1548.43286
$R_2(F)$	0.40406	-1728.20387	0.43345	-1728.17448	0.34109	-1728.26684

a Zero-point correction energy;

b Thermal correction to Gibbs free energy;

c Gibbs free energy obtained using BP86-D3 and B3LYP-D3 with def2-TZVP basis set.

1-enol form	Х	Y	Ζ
С	-4.404434	-2.254705	0.272098
С	-3.881099	-3.523071	0.553176
С	-4.671188	-4.480414	1.169737
С	-5.999379	-4.205293	1.524722
С	-6.520416	-2.953947	1.249024
С	-5.744004	-1.962932	0.6229
С	-6.331125	-0.662994	0.352984
0	-3.609051	-1.357834	-0.321919
Ν	-5.672061	0.293603	-0.198275
С	-6.312996	1.512862	-0.480152
С	-5.597263	2.697795	-0.267441
С	-6.18352	3.926131	-0.531153
С	-7.489348	3.981145	-1.03636
С	-8.198132	2.799932	-1.279681
С	-7.611021	1.571738	-1.004864
С	-8.096357	5.254686	-1.320587
Ν	-8.584311	6.280059	-1.546481
Н	-2.852157	-3.724968	0.275944
Н	-4.24993	-5.458749	1.38042
Н	-6.607787	-4.960691	2.00886
Н	-7.54794	-2.717061	1.515466
Н	-7.376468	-0.521719	0.661068
Н	-4.117274	-0.519751	-0.441607
Н	-4.585108	2.635689	0.11821
Н	-5.637401	4.846709	-0.355001
Н	-9.199888	2.850131	-1.692947
Н	-8.145358	0.653648	-1.228145

Table S6. Cartesian coordinates of all structures

1-keto form	Х	Y	Ζ
С	-2.91807	0.917114	0.039819
С	-4.352934	1.096459	0.062384
С	-5.195239	0.041628	-0.129398
С	-4.716485	-1.289393	-0.36259
С	-3.374688	-1.517471	-0.3921
С	-2.443568	-0.448343	-0.191004
С	-1.076847	-0.700104	-0.222113
0	-2.121165	1.876051	0.205274
Ν	-0.171883	0.260675	-0.051292

С	1.218937	0.11078	-0.034332
С	2.000998	1.259735	-0.209056
С	3.383711	1.169347	-0.205788
C	4.002797	-0.074215	-0.028746
2	3.222097	-1.22011	0.159737
2	1.837859	-1.129338	0.165524
2	5.43757	-0.174724	-0.031555
Ν	6.592374	-0.25817	-0.035528
I	-4.720538	2.102067	0.236382
I	-6.268709	0.210314	-0.106583
I	-5.422949	-2.097662	-0.512155
	-2.984683	-2.518283	-0.56611
[-0.717344	-1.710745	-0.409494
[-0.634189	1.195656	0.076092
I	1.513528	2.218392	-0.356597
I	3.989793	2.057672	-0.347013
I	3.705407	-2.178601	0.31542
I	1.250617	-2.021003	0.352865

2-enol form	Х	Y	Ζ
С	-1.547137	0.389968	-0.546357
С	-0.991727	-0.89053	-0.361422
С	-1.817176	-1.935396	-0.015058
С	-3.205582	-1.769776	0.164173
С	-3.762697	-0.484772	-0.024804
С	-2.938054	0.603592	-0.381223
С	-3.529535	1.91358	-0.565633
С	-4.03514	-2.892089	0.532953
0	-5.068017	-0.263726	0.122305
0	-0.732669	1.383294	-0.875976
Ν	-5.310199	-2.781822	0.689402
С	-6.071064	-3.888284	1.104711
С	-7.347227	-4.053158	0.551816
С	-8.140542	-5.126133	0.928082
С	-7.67156	-6.037728	1.883006
С	-6.408928	-5.862709	2.459804
С	-5.614359	-4.791062	2.074584
Ν	-2.812121	2.937026	-0.878218
С	-3.429663	4.182782	-1.09409
С	-2.763373	5.331701	-0.650492
С	-3.32952	6.583939	-0.834702
С	-4.562572	6.701208	-1.48918
С	-5.218573	5.558881	-1.961115
С	-4.6528	4.305902	-1.766615

С	-5.148053	8.000531	-1.690046
Ν	-5.618616	9.04637	-1.849005
С	-8.494762	-7.147988	2.283969
Ν	-9.155221	-8.04268	2.606084
Н	0.075461	-1.016053	-0.497557
Н	-1.393629	-2.926605	0.129521
Н	-4.609379	1.996377	-0.408674
Н	-3.533438	-3.860703	0.659614
Н	-5.500675	-1.132699	0.365371
Н	-1.274976	2.21717	-0.965093
Н	-7.695725	-3.334465	-0.182467
Н	-9.123721	-5.264123	0.491338
Н	-6.062854	-6.560317	3.215102
Н	-4.651864	-4.633337	2.550785
Н	-1.807554	5.222495	-0.148924
Н	-2.822664	7.474869	-0.480041
Н	-6.162031	5.659844	-2.486811
Н	-5.144686	3.422517	-2.161298
2 -keto from	Х	Y	Ζ
С	-5.059277	-7.175998	-0.134002
С	-5.753228	-5.9769	-0.120189
С	-5.067619	-4.764061	0.025805
С	-3.674881	-4.765278	0.167936
С	-2.98108	-5.966642	0.14814
С	-3.665623	-7.177846	-0.002878
Ν	-5.830918	-3.589991	0.033307
С	-5.378585	-2.334599	0.015229
С	-6.189039	-1.217935	0.04299
С	-5.51651	0.081281	0.017293
С	-6.379875	1.26825	0.052898
С	-7.815335	1.101478	0.108081
С	-8.426562	-0.101886	0.129752
С	-7.649027	-1.339756	0.096911
0	1 274704	0.176987	-0.029866
0	-4.2/4/04	0.1/0/0/	0.027000
0	-8.208419	-2.449292	0.112346
0 C	-8.208419 -5.84422	-2.449292 2.53512	0.112346 0.031992
C N	-8.208419 -5.84422 -4.528756	-2.449292 2.53512 2.803552	0.112346 0.031992 -0.021255
C N C	-4.274704 -8.208419 -5.84422 -4.528756 -3.916795	-2.449292 2.53512 2.803552 4.057238	0.112346 0.031992 -0.021255 -0.047965
C N C C	-4.274704 -8.208419 -5.84422 -4.528756 -3.916795 -2.515112	-2.449292 2.53512 2.803552 4.057238 4.086927	0.112346 0.031992 -0.021255 -0.047965 -0.089708
C N C C C	-4.274704 -8.208419 -5.84422 -4.528756 -3.916795 -2.515112 -1.837577	-2.449292 2.53512 2.803552 4.057238 4.086927 5.293782	0.112346 0.031992 -0.021255 -0.047965 -0.089708 -0.117427
C N C C C C	-4.274704 -8.208419 -5.84422 -4.528756 -3.916795 -2.515112 -1.837577 -2.552698	-2.449292 2.53512 2.803552 4.057238 4.086927 5.293782 6.49799	0.112346 0.031992 -0.021255 -0.047965 -0.089708 -0.117427 -0.103617
C N C C C C C C	-4.274704 -8.208419 -5.84422 -4.528756 -3.916795 -2.515112 -1.837577 -2.552698 -3.950709	-2.449292 2.53512 2.803552 4.057238 4.086927 5.293782 6.49799 6.470876	0.112346 0.031992 -0.021255 -0.047965 -0.089708 -0.117427 -0.103617 -0.062684

С	-2.940466	-8.419725	-0.018587
Ν	-2.358577	-9.420599	-0.03163
С	-1.855894	7.755168	-0.132435
Ν	-1.294963	8.767951	-0.155854
Н	-5.591629	-8.113922	-0.248667
Н	-6.833817	-5.970959	-0.227219
Н	-3.124031	-3.842338	0.305191
Н	-1.901955	-5.970588	0.258098
Н	-6.856757	-3.655037	0.052167
Н	-4.305037	-2.171922	-0.030567
Н	-8.419387	2.007036	0.13252
Н	-9.504867	-0.203945	0.17039
Н	-6.518387	3.387597	0.060523
Н	-3.943984	1.960728	-0.042942
Н	-1.962812	3.152139	-0.099694
Н	-0.75362	5.311374	-0.149608
Н	-4.503797	7.403876	-0.05304
Н	-5.714631	5.274268	-0.005671

3 -keto form	Х	Y	Ζ
С	-0.652938	-1.31353	-0.002425
С	0.803058	-1.209373	0.010242
С	1.490032	0.087666	0.036728
С	0.671079	1.295579	0.032108
С	-0.795508	1.243165	0.018529
С	-1.431788	-0.070074	0.010066
0	-1.47434	2.286895	0.010206
С	1.240621	2.549905	0.03828
Ο	2.733062	0.153937	0.0614
С	1.604622	-2.330122	-0.003777
Ο	-1.218964	-2.422686	-0.020341
С	-2.803291	-0.203075	0.007236
Ν	2.554448	2.795432	0.053691
С	3.166038	4.05547	0.03056
С	4.536327	4.120625	0.313559
С	5.195041	5.339642	0.305109
С	4.489636	6.513553	0.0149
С	3.122514	6.447457	-0.276046
С	2.463175	5.227147	-0.275838
С	5.168192	7.781516	0.008701
Ν	5.714852	8.802147	0.004167
Ν	-3.670207	0.814	0.010087
С	-5.067539	0.716869	0.032887
С	-5.805529	1.867669	-0.272059

С	-7.190722	1.831703	-0.267421
С	-7.85725	0.640019	0.041229
С	-7.119996	-0.507091	0.355875
С	-5.733215	-0.470561	0.359732
С	-9.294773	0.594933	0.042527
Ν	-10.451952	0.557111	0.042893
N	1.154673	-3.588425	-0.03013
С	1.920356	-4.759992	-0.052367
С	1.229387	-5.978724	-0.064828
2	1.92209	-7.178127	-0.087937
С	3.321827	-7.175468	-0.098761
С	4.012451	-5.958617	-0.08655
С	3.32063	-4.756386	-0.064005
С	4.048184	-8.416307	-0.124309
N	4.63372	-9.414929	-0.145846
H	0.563335	3.399564	0.041728
Н	2.67879	-2.16826	0.007319
H	-3.202405	-1.213809	-0.011977
Η	3.135714	1.952183	0.09048
Η	5.078569	3.209678	0.548219
Η	6.255411	5.389191	0.527549
H	2.580345	7.356161	-0.51415
H	-3.227463	1.738603	-0.016896
H	-5.284105	2.786676	-0.521874
H	-7.761638	2.721773	-0.508248
H	-7.639398	-1.424971	0.609144
Н	0.131998	-3.660845	-0.035442
H	0.143558	-5.977625	-0.056347
Н	1.384205	-8.11986	-0.09798
H	5.097046	-5.958336	-0.096087
Н	1.410836	5.197461	-0.532455
Н	-5.182293	-1.361729	0.636235
Н	3.881553	-3.829655	-0.057354

R ₂ (H)	Х	Y	Ζ
С	-0.549504	-1.307884	-0.01694
С	0.90522	-1.20798	-0.001345
С	1.595335	0.085645	0.034213
С	0.780483	1.294353	0.046222
С	-0.684943	1.246211	0.038907
С	-1.324118	-0.063636	0.01088
Ο	-1.362386	2.293412	0.048732
С	1.355767	2.548773	0.061982
0	2.840806	0.148811	0.05401

С	1 704255	-2 333685	-0.016246
0	-1 119153	-2 41732	-0.048102
Ŭ C	-2,698642	-0.191477	0.001745
N	2.666551	2,793105	0.069149
C	3,277632	4.060423	0.049317
C C	4 631445	4,140243	0.391293
C C	5.280712	5,369597	0.384056
Č C	4.589693	6.531161	0.042244
Č C	3.242848	6.445617	-0.305514
Č	2.584727	5.219468	-0.313289
Ň	-3.562736	0.823527	0.021541
C	-4.966194	0.723673	0.038599
Ē	-5.706513	1.860643	-0.301148
Č C	-7.096029	1.813824	-0.298012
Č C	-7.761272	0.635614	0.037883
С	-7.019426	-0.492407	0.383992
С	-5.628147	-0.454735	0.395826
Ν	1.254974	-3.588528	-0.049171
С	2.022434	-4.766341	-0.064484
С	1.331877	-5.982982	-0.066353
С	2.03052	-7.184525	-0.080735
С	3.424363	-7.189225	-0.093168
С	4.108557	-5.975205	-0.092492
С	3.420738	-4.765276	-0.079267
Н	0.681231	3.400781	0.08034
Н	2.778729	-2.173875	0.001934
Н	-3.1013	-1.200471	-0.037571
Н	3.2483	1.950333	0.094039
Н	5.165877	3.236242	0.669374
Н	6.331136	5.41801	0.653012
Н	2.696062	7.339638	-0.588084
Н	-3.119932	1.748043	0.014279
Н	-5.185077	2.773452	-0.574978
Н	-7.659634	2.701995	-0.565172
Н	-7.525684	-1.411439	0.661943
Н	0.232717	-3.660239	-0.060979
Н	0.245481	-5.97855	-0.055544
Н	1.480103	-8.119925	-0.081804
Н	5.193856	-5.963402	-0.103876
Н	1.545877	5.172521	-0.620534
Н	-5.070872	-1.333347	0.701264
Н	3.981035	-3.837464	-0.08268
Н	5.096501	7.490216	0.040055
Н	3.970876	-8.126069	-0.104157

Н	-8.845342	0.598721	0.037069
R ₂ (Me)	Х	Y	Ζ
С	-0.58262	-1.317694	0.05654
С	0.872063	-1.228225	0.049311
С	1.572799	0.05921	0.061098
С	0.767953	1.274184	0.059599
С	-0.69737	1.237569	0.053826
С	-1.347246	-0.066997	0.052983
0	-1.366573	2.290871	0.043429
С	1.354672	2.524158	0.062416
0	2.819502	0.112676	0.070809
С	1.660951	-2.361429	0.032104
0	-1.160065	-2.423893	0.068012
С	-2.723343	-0.183078	0.037541
Ν	2.667045	2.756089	0.065315
С	3.289851	4.018272	0.040819
С	4.637163	4.097527	0.39799
С	5.2922	5.324918	0.387822
С	4.628704	6.499971	0.029728
С	3.281229	6.400554	-0.332848
С	2.61373	5.181771	-0.34004
Ν	-3.57806	0.83918	0.028231
С	-4.982986	0.752498	0.024076
С	-5.71179	1.884711	-0.345439
С	-7.102278	1.846212	-0.36294
С	-7.800848	0.686085	-0.022305
С	-7.054728	-0.435127	0.35613
С	-5.665426	-0.41166	0.390563
Ν	1.207215	-3.61451	0.025712
С	1.99893	-4.77744	-0.04096
С	1.452474	-5.982367	0.403785
С	2.203302	-7.152591	0.345456
С	3.51028	-7.153636	-0.145954
С	4.037541	-5.938992	-0.596952
С	3.29763	-4.762903	-0.55839
Н	0.688276	3.382753	0.074188
Н	2.73869	-2.216394	0.036327
Н	-3.134723	-1.189239	0.017687
Н	3.240416	1.907417	0.095373
Н	5.166742	3.196036	0.693408
Н	6.340264	5.366645	0.672385
Н	2.74144	7.296568	-0.629596
Н	-3.126246	1.759223	0.007955

Н	-5.183877	2.792103	-0.625205
Н	-7.652768	2.737243	-0.65288
Н	-7.572543	-1.346619	0.644695
Н	0.186953	-3.692458	0.07363
Н	0.441647	-5.997319	0.801554
Н	1.762763	-8.081971	0.696633
Н	5.045208	-5.913337	-1.00457
Н	1.577893	5.143269	-0.659272
Н	-5.124265	-1.291459	0.721501
Н	3.723363	-3.847296	-0.954967
С	5.335329	7.831346	0.013069
Н	5.432082	8.212726	-1.008621
Н	4.783771	8.577962	0.592249
Н	6.33916	7.74922	0.43649
С	-9.306681	0.63121	-0.065098
Н	-9.652448	0.013141	-0.900309
Н	-9.712471	0.199646	0.854547
Н	-9.734529	1.62892	-0.188405
С	4.335258	-8.414772	-0.188313
Н	4.799734	-8.549798	-1.169456
Н	5.138484	-8.382405	0.55525
Н	3.722002	-9.294627	0.020298

R2(F)	Х	Y	Ζ
С	-0.569015	-1.31312	-0.044457
С	0.885737	-1.222227	-0.030858
С	1.584716	0.065655	0.008892
С	0.777901	1.27911	0.034885
С	-0.687174	1.240487	0.045579
С	-1.335061	-0.064694	0.010021
0	-1.357777	2.292169	0.074414
С	1.363805	2.528816	0.047171
Ο	2.83094	0.120627	0.023387
С	1.675026	-2.354473	-0.057593
Ο	-1.145263	-2.418475	-0.096983
С	-2.710601	-0.181966	0.016926
Ν	2.676608	2.760924	0.04267
С	3.287949	4.029052	0.001451
С	4.60019	4.148641	0.469771
С	5.247012	5.378803	0.44564
С	4.561959	6.480297	-0.043416
С	3.264201	6.388425	-0.521048
С	2.628522	5.150889	-0.509163
Ν	-3.564854	0.840178	0.064574

С	-4.968896	0.747583	0.108563
С	-5.714548	1.870194	-0.265609
С	-7.103821	1.83521	-0.238017
С	-7.730796	0.664605	0.159822
С	-7.016851	-0.459419	0.543459
С	-5.626165	-0.412746	0.528288
Ν	1.217924	-3.605984	-0.100884
С	2.003712	-4.774318	-0.0872
С	1.443016	-5.953401	-0.588226
С	2.174384	-7.135655	-0.590854
С	3.468989	-7.116791	-0.095402
С	4.046817	-5.964361	0.412718
С	3.30355	-4.787847	0.426915
Н	0.699414	3.389353	0.074711
Н	2.752935	-2.209602	-0.056601
Н	-3.123621	-1.186747	-0.032781
Н	3.252092	1.913185	0.066655
Н	5.109229	3.274193	0.864001
Н	6.262564	5.492884	0.807298
Н	2.772733	7.271854	-0.912703
Н	-3.113031	1.760877	0.063479
Н	-5.199825	2.770381	-0.588162
Н	-7.698844	2.694542	-0.525477
Н	-7.548011	-1.348381	0.864546
Н	0.19652	-3.676807	-0.147873
Н	0.43259	-5.938138	-0.985678
Н	1.758796	-8.059669	-0.976465
Н	5.056182	-5.999434	0.806862
Н	1.629164	5.063077	-0.920993
Н	-5.064023	-1.277176	0.863692
Н	3.735269	-3.892498	0.860379
F	5.180222	7.677246	-0.062509
F	4.186014	-8.258037	-0.100079
F	-9.077678	0.621149	0.182512

R1(OMe)	Х	Y	Ζ
Н	-2.836071	2.224038	0.012768
С	1.466515	-0.162807	-0.006203
С	0.861814	1.164584	-0.005023
С	-0.591593	1.352442	0.003065
С	-1.438652	0.165559	0.009065
С	-0.87464	-1.187461	0.008057
С	0.576981	-1.327431	0.000413
0	-1.617929	-2.191016	0.013406

С	-2.817698	0.252738	0.014927
С	1.62633	2.315741	-0.012392
0	2.707357	-0.304757	-0.012841
С	1.191575	-2.565042	-0.001405
Ν	-3.47908	1.419407	0.016369
С	-4.846963	1.701713	0.020557
С	-5.206399	3.053204	0.01947
С	-6.533268	3.456901	0.022967
С	-7.535158	2.487212	0.02769
С	-7.203317	1.126274	0.029033
С	-5.871715	0.726162	0.025533
С	-8.920792	2.872529	0.031033
Ν	-10.037485	3.179077	0.033522
Ν	0.512425	-3.721274	0.004013
С	0.950473	-5.047341	0.002514
С	-0.041677	-6.032765	0.00285
С	0.269096	-7.384503	0.002103
С	1.609228	-7.769626	0.000944
С	2.623146	-6.803535	0.000696
С	2.306948	-5.449331	0.00156
С	1.96558	-9.162993	0.000131
Ν	2.256352	-10.283889	-0.000479
Ν	2.967243	2.305801	-0.020628
С	3.896087	3.348824	-0.030666
С	5.245798	2.982586	-0.038373
С	6.260702	3.92763	-0.049337
С	5.924378	5.280959	-0.052972
С	4.58061	5.675652	-0.045072
С	3.566102	4.724767	-0.033772
С	6.952802	6.286237	-0.065711
Ν	7.778492	7.098137	-0.076433
Н	-3.389446	-0.665213	0.018284
Н	1.115496	3.269254	-0.01161
Н	2.272532	-2.59989	-0.007659
Η	-4.414861	3.796931	0.015527
Η	-6.790768	4.509559	0.021923
Η	-7.999575	0.392807	0.032909
Η	-0.505739	-3.56675	0.009332
Н	-1.080947	-5.717252	0.003614
Н	-0.515438	-8.132226	0.002348
Н	3.655717	-7.128604	-0.000009
Н	3.343342	1.346965	-0.020329
Н	5.492541	1.924927	-0.035772
Н	7.300441	3.622161	-0.055285

Н	4.346107	6.732337	-0.048159
0	-1.08908	2.498228	0.00442
0	-5.484238	-0.571813	0.026553
Ο	3.239595	-4.46688	0.001855
Ο	2.249123	5.041673	-0.025496
С	-6.483626	-1.577719	0.029648
Н	-7.105579	-1.507343	0.928448
Н	-7.110033	-1.50838	-0.866134
Н	-5.945976	-2.524557	0.028908
С	1.882829	6.411719	-0.027455
Н	2.266146	6.918788	0.864564
Н	2.250038	6.911908	-0.930054
Н	0.794215	6.42432	-0.017658
С	4.609451	-4.833392	0.002615
Н	4.858375	-5.410277	0.899704
Н	4.85967	-5.409325	-0.89472
Н	5.16377	-3.896284	0.003495
R1=F	X	Y	Ζ
C	-0.626243	-1.318708	-0.053476
С	0.825302	-1.162472	-0.0517
С	1.462586	0.159123	-0.050005
С	0.602116	1.338481	-0.055046
С	-0.861015	1.229932	-0.056195
С	-1.450828	-0.105876	-0.064857
0	-1.577282	2.248789	-0.047149
С	1.123018	2.615391	-0.051234
0	2.703852	0.268293	-0.04079
С	1.671176	-2.251357	-0.039746
0	-1.151806	-2.448453	-0.042314
С	-2.816746	-0.29213	-0.067703
Ν	2.440311	2.8728	-0.04868
С	3.107972	4.09542	-0.026014
С	4.499423	4.076711	0.153855
С	5.242494	5.24499	0.180824
С	4.60208	6.479933	0.0273
С	3.217811	6.527062	-0.158839
С	2.500876	5.347452	-0.185168
С	5.362897	7.699871	0.056898
Ν	5.980869	8.678311	0.082
Ν	-3.703664	0.714405	-0.068693
С	-5.096375	0.639156	-0.031778
С	-5.814925	1.760438	0.405533
С	-7.199953	1.757375	0.449461

C	-7.905446	0.615168	0.054147
С	-7.212971	-0.511386	-0.398701
С	-5.833492	-0.478567	-0.441327
С	-9.342671	0.595716	0.107255
Ν	-10.499157	0.582117	0.1534
Ν	1.239	-3.521838	-0.034642
С	1.976571	-4.703787	0.006944
С	1.29407	-5.894159	0.298026
С	1.951109	-7.112447	0.345584
С	3.327894	-7.169565	0.101048
С	4.03059	-5.999367	-0.199646
С	3.350665	-4.798766	-0.245986
С	4.023465	-8.427049	0.155545
Ν	4.580032	-9.44091	0.202322
Н	0.429921	3.448709	-0.047887
Н	2.739467	-2.067026	-0.029603
Н	-3.191304	-1.310256	-0.061593
Н	3.009372	2.014979	-0.035874
Н	4.991721	3.116909	0.277788
Н	6.316378	5.207059	0.322988
Н	2.692261	7.4663	-0.288789
Н	-3.260537	1.642441	-0.037009
Н	-5.261444	2.639677	0.720642
Н	-7.738934	2.632399	0.79425
Н	-7.731463	-1.404812	-0.727922
Н	0.212341	-3.592499	-0.020694
Н	0.227395	-5.844322	0.494461
Н	1.405078	-8.019864	0.576286
Н	5.094954	-6.010449	-0.405317
F	1.171313	5.42337	-0.381983
F	-5.188612	-1.559017	-0.916751
F	4.047419	-3.690716	-0.560044
R1=Me	Х	Y	Ζ
С	-0.677161	-1.326279	-0.335321
С	0.776132	-1.213151	-0.319839
С	1.458224	0.084689	-0.287776
С	0.634686	1.286996	-0.252719
С	-0.83056	1.228261	-0.252938
С	-1.459999	-0.086787	-0.288709
0	-1.515347	2.269371	-0.225351
С	1.204143	2.543326	-0.243306
0	2.702893	0.156112	-0.29075
С	1.582116	-2.331295	-0.336313

0	-1.23489	-2.439662	-0.381991
С	-2.83239	-0.222297	-0.294509
Ν	2.516468	2.790849	-0.242081
С	3.107515	4.072129	-0.28739
С	4.195546	4.239487	-1.151807
С	4.838292	5.461915	-1.252651
С	4.381364	6.533694	-0.478722
С	3.310172	6.357317	0.400123
С	2.659789	5.129178	0.526284
С	5.025093	7.817867	-0.572583
Ν	5.541879	8.850893	-0.650397
Ν	-3.705894	0.78693	-0.251533
С	-5.110835	0.648937	-0.278658
С	-5.82283	1.526387	-1.104765
С	-7.203976	1.461927	-1.182456
С	-7.881843	0.501608	-0.42422
С	-7.170468	-0.357237	0.416496
С	-5.780171	-0.297194	0.51931
С	-9.316592	0.407456	-0.494127
Ν	-10.470274	0.330874	-0.552205
Ν	1.155467	-3.596525	-0.363566
С	2.002842	-4.727337	-0.361242
С	1.707993	-5.759728	-1.258367
С	2.495258	-6.898788	-1.308589
С	3.594638	-7.002591	-0.4501
С	3.872784	-5.980276	0.459827
С	3.082733	-4.832845	0.535131
С	4.4314	-8.17348	-0.487493
Ν	5.103739	-9.115366	-0.5174
Н	0.53435	3.399158	-0.258228
Н	2.657608	-2.172491	-0.341606
Н	-3.236461	-1.229505	-0.356839
Н	3.101795	1.951293	-0.308295
Н	4.51794	3.39836	-1.757793
Н	5.676006	5.594781	-1.928082
Н	2.991615	7.192191	1.017353
Н	-3.276614	1.717977	-0.275205
Н	-5.273211	2.249895	-1.698951
Н	-7.756706	2.13643	-1.826838
Н	-7.716544	-1.074159	1.022626
Н	0.139896	-3.704809	-0.44049
Н	0.862453	-5.647621	-1.930001
Н	2.273362	-7.696775	-2.008349
Н	4.710311	-6.093102	1.141871

С	1.565428	4.973367	1.553627
Н	0.571029	5.144814	1.129512
Н	1.571109	3.972024	1.992813
Н	1.708434	5.699326	2.356509
С	-5.074242	-1.192525	1.508087
Н	-4.741664	-2.130887	1.053028
Н	-4.196412	-0.701666	1.936533
Н	-5.753673	-1.447523	2.323951
С	3.379249	-3.800824	1.595794
Н	4.033113	-3.004059	1.227433
Н	2.462323	-3.333843	1.964782
Н	3.884002	-4.275117	2.439861

References:

- [1] K. Teramura, K. Maeda, T. Saito, T. Takata, N. Saito, Y. Inoue,; K. Domen, J. Phys. Chem.
 B. 2005, 109, 46, 21915–21921.
- [2] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; taroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09 (Revision D.01) I. Gaussian, Wallingford, CT, **2013**.
- [3] Zhao, Y. and Truhlar, D. G. Density Functionals with Broad Applicability in Chemistry, *Acc. Chem. Res.* **2008**, 41(2), 157–167.
- [4] Jacquemin, D.; Perpète E. A.; Ciofini, I.; Adamo, C.; Valero, R.; Zhao, Y.; Truhlar, D. G. On the Performances of the M06 Family of Density Functionals for Electronic Excitation Energies, *J. Chem. Theory Comput.* **2010**, 6, 2071–2085.
- [5] Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104–154119.
- [6] Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465.

[7] Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. *J. Comput. Chem.* **2012**, 33, 580–592.

[8] Humphrey, W.; Dalke, A.; Schulten. K. VMD: Visual Molecular Dynamics. *J. Mol. Grap.* **1996**, 14, 33-38.