## **Supporting Information**

## Multicolor photonic patterns through an intensity-controlled single

## photopolymerization step

Yari Foelen<sup>1</sup>, Nieké J. M. van Gils<sup>1</sup>, Mart D.T. Claessen<sup>1</sup>, Albertus P. H. J. Schenning<sup>1,2,3,\*</sup>

| Table S1              | Mixture composition                                 |  |
|-----------------------|-----------------------------------------------------|--|
| Figure S1             | SEM image                                           |  |
| Figure S2             | FT-IR spectra of monomer and polymers               |  |
| Figure S3             | DSC measurements                                    |  |
| Figure S4             | UV lamp irradiance and initiator absorption spectra |  |
| Materials and methods | Experimental details                                |  |

| Compound | Mixture 1 (wt %) | Mixture 2 (wt %) | Mixture 3 (wt %) |
|----------|------------------|------------------|------------------|
| 1        | 4                | 0                | 4 (5*)           |
| 2        | 6                | 0                | 3,5              |
| 3        | 52               | 92               | 56 (55*)         |
| 4        | 35               | 0                | 31               |
| 5        | 3                | 0                | 3                |
| 6        | 4                | 4                | 0,5              |
| 7        | 0                | 0                | 2                |
| 8        | 0                | 8                | 0                |

Table S1. Mixture composition (\*compositional change to produce a blue reflecting CLC phase).

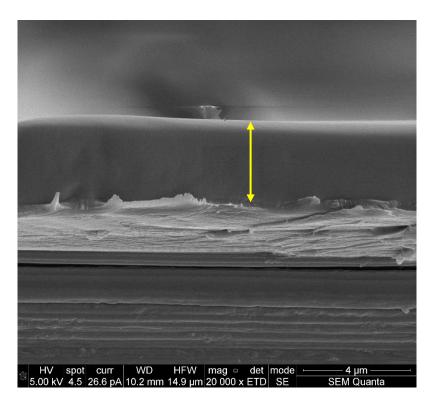



Figure S1. SEM image: a cross section of a polymer coating from mixture 1 on a PET substrate, indicating an average coating thickness  $\sim$ 3.5 µm.

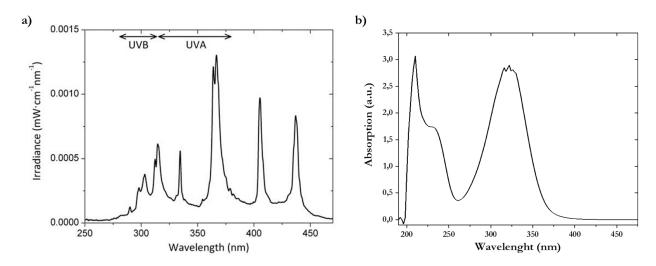



Figure S2. a) Spectrum of the OmniCure 2000 UV lamp irradiance (from specifications) b) Absorption spectrum of Initiator **6**.

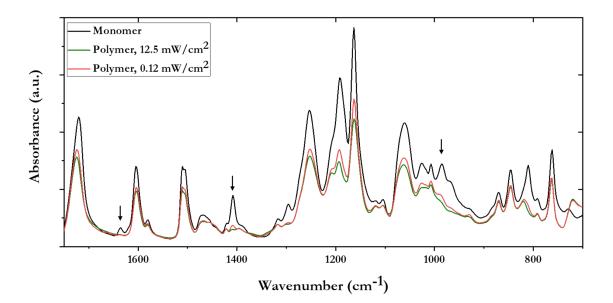



Figure S3. FT-IR spectra of monomer mixture **1** and the parts of the polymer coating polymerized at high (12.5 mW/cm<sup>2</sup>) and low (0.12 mW/cm<sup>2</sup>) UV intensity.

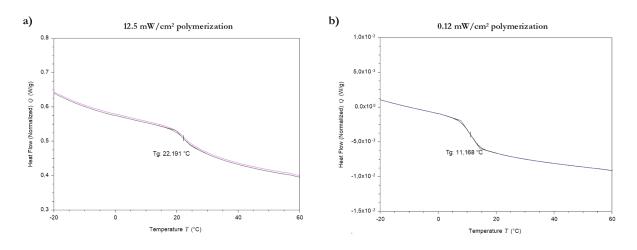



Figure S4. DSC measurements of photopolymerized mixture **1**, a) showing a Tg around 22°C for the (green) coating polymerized at 12.5 mW/cm<sup>2</sup> and b) a Tg around 11°C for the (red) coating polymerized at 0.12 mW/cm<sup>2</sup>.

Materials and methods.

*Ink preparation:* The components were dissolved in cyclopentanone with surfactant BYK-361 N (0.1 wt%) (2:1 solids:solvent ratio), and the resulting solutions were filtered through a 0.2  $\mu$ m PTFE syringe filter.

*Gravure Printing*: The ink was printed at a speed of 0.5 m s–1 on black flexible biaxially oriented PET substrates (Tenolan OCN0003, 36  $\mu$ m thickness) using an IGT F1 printability tester in a gravure printing mode. Afterward, the solvent was allowed to evaporate for  $\approx$ 2 min at 70 °C and cooled for 60s at room temperature to align the CLC phase.

*Polymerization:* Photopolymerization was carried out with an Omnicure series 2000 EXFO lamp in a nitrogen box, additional ND filters (Thorlabs) were used to tune the exact UV intensity. The stepwise ND filter was applied with a ND of 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1.0.

*Embossing:* A modified hot-stamp machine from KBA-Metronic GmbH was used to compress the surface of the coating into a rubberized metal sheet ( $Ra \approx 1 \ \mu m$ ) for 30 s at a pressure of 4.5 bar. The machine was fitted with a brass stamp heated to 40°C.

*Characterization:* UV intensity of the polymerization setup was measured with a radiometer RM12 from Opsytec Dr. Gröbel with a UV-A (400-315 nm) sensor. The reflection of the CLC coatings was measured through ultraviolet–visible spectroscopy, using a PerkinElmer LAMBDA 750 with a 150 mm integrating sphere over a range of 400–750 nm. A Varian 670 FT-IR spectrometer with slide-on ATR (Ge) was used to record IR spectra. Thermogravimetric analysis was performed in a TA Instruments TGA Q500 with a constant heating rate of 5 °C/min. Thermal transitions of the liquid crystalline coatings were analyzed by differential scanning calorimetry using a TA Instruments DSC Q2000 calorimeter with constant heating and cooling rates of 10 °C/min. GPC was performed on a Shimadzu Prominence-I LC-2030C high-performance liquid

chromatography (HPLC) equipped with photodiode array and refractive index detectors. Polystyrene (PS) standards and a 1 mL min<sup>-1</sup> CHCl<sub>3</sub> flow rate were used.