Palladium Polyaniline Complex: A Simple and Efficient Catalyst for Batch and Flow Suzuki-Miyaura Cross-couplings

Dongliang Zhang ${ }^{\mathrm{a}, \mathrm{b}}$, Fusong Wu ${ }^{\text {a, }, ~}$, Zhijian Wan ${ }^{\mathrm{a}}$, Yichun Wang ${ }^{\text {a }}$, Xuan He ${ }^{\text {a }}$, Bing Guo $^{\text {a }}$, Hengzhi You ${ }^{\text {a, } b *}$, Fen-Er Chen ${ }^{\text {a, b, }{ }^{\text {c* }} \text {. }}$
${ }^{a}$ School of Science, Harbin Institute of Technology (Shenzhen), Xili University Town, Shenzhen 518055, Guangdong China
${ }^{\mathrm{b}}$ Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Xili University Town, Shenzhen 518055, China
${ }^{c}$ Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China
* Corresponding authors
E-mail addresses: youhengzhi@hit.edu.cn; rfchen@fudan.edu.cn.

Table of Contents

General information... A 1
The preparation of Pd@PANI ..S1
Catalyst evaluation through Suzuki-Miyaura cross-couplings ...S1
Characterization of Pd@PANI ... S 2
Optimization of the reaction conditions in batch...S4
The example calculation for molecular ppm .. S5
The example calculation for TON and TOF.. 6
General procedure for peparing iodobenzene derivatives of D-fructose.....................................S6
The Pd@PANI catalyzed Suzuki-Miyaura cross-couplings under batch conditionsS7
The Pd@PANI catalyzed Suzuki-Miyaura cross-couplings under flow conditions......................S7
Catalyst lifetime testing under continuous flow ... S 8
Failed examples ... S9
Characterization data of the products ..S10
References...S16
Copies of ${ }^{1} \mathrm{H}$ NMR ${ }^{13} \mathrm{C}$ Spectra of the Products ... S 17

General information

Chemicals and solvents were all purchased and used as received. Products were all purified by column chromatography. A ThermoFisher Nicolet iS50 IR spectrometer was used to determine infrared (IR) spectrums. Field emission scanning electron microscopy (FE-SEM) image was determined on Zeiss Supra55 field emission scanning electron microscope. The Agilent 7700X inductively coupled plasma spectrometer was used for the ICPOES study. The gel permeation chromatography analyses were performed on a Waters 1515 GPC system, which was calibrated with polystyrene standards. CDCl_{3} or $\mathrm{DMSO}-d 6$ as the solvent and $\mathrm{Me}_{4} \mathrm{Si}$ as the internal standard were used to record ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrums on a QOne Instruments Quantum-I Plus 400 M spectrometer (400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$ NMR spectroscopy). Chemical shifts for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were related to $\mathrm{Me}_{4} \mathrm{Si}$ (0 ppm) and J-values were displayed in Hz. An Agilent 7890B-5977B spectrometer or a Thermo Fisher Trace ISQ were used to record MS spectra. A Waters ACQUITYUPLC H-Class/Xevo G2-XS Qtof spectrometer was used to record HR-MS spectra.

The preparation of Pd@PANI

In 100 mL of aqueous $\mathrm{HBr}(1 \mathrm{~mol} / \mathrm{L})$, aniline ($931 \mathrm{mg}, 10 \mathrm{mmol}$) and $160 \mu \mathrm{~L}$ of PdCl_{2} aqueous solution $\left\{\mathrm{PdCl}_{2}(177.3 \mathrm{mg}, 1 \mathrm{mmol})\right.$ was dissolved in 10 mL of aqueous $\left.\mathrm{HBr}(1 \mathrm{~mol} / \mathrm{L})\right\}$ were added at room temperature and stirred for 5 min . Then, 21 mL of $\mathrm{H}_{2} \mathrm{O}_{2}(3.25 \mathrm{wt} . \%)$ was added and the mixture was stirred for 8-64 hours at room temperature. The pH of the solution was subsequently adjusted to 7 by adding $1 \mathrm{~mol} / \mathrm{L}$ of NaOH aqueous solution. Centrifugation was used to isolate the Pd@PANI which was subsequently washed with deionized water and dried in a vacuum at $60^{\circ} \mathrm{C}$ for 12 hours.

Catalyst evaluation through Suzuki-Miyaura cross-couplings

In a sealed tube charged with $\mathrm{N}_{2}, \operatorname{Pd} @$ PANI catalyst (1.5 mg), iodobenzene (0.5 mmol), 4-tolylboronic acid (0.5 mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{mmol})$ were added and then added $\mathrm{EtOH}(2 \mathrm{~mL})$ as solvent. Then, the mixture was stirred for 12 hours at $100^{\circ} \mathrm{C}$. The tube was cooled to room temperature, and $60 \mu \mathrm{~L}$ of n-dodecane was added as an internal standard for GC-MS analysis.

Characterization of Pd@PANI

Fig. S1 Dependence of yield for the Suzuki reactions and Mw for polyaniline on the preparation time for Pd@PANI.

Fig. S2 (a) FT-IR spectrum, (b) FE-SEM image and (c) EDS elemental mapping analysis of Pd@PANI.

Optimization of the reaction conditions in batch

According to the preliminary exploration, our Pd@ PANI showed excellent catalytic activity for Suzuki-Miyaura cross-couplings in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in EtOH (Table S1, entry 1). When using ethanol/water (1:1) instead of ethanol as solvent (Table S1, entry 2), the yield of the target product decreased slightly. Satisfactorily, the dosage of $\mathrm{K}_{2} \mathrm{CO}_{3}$ was reduced to 1 equivalent providing the target product with 99% GC yield and 97% isolated yield (Table S1, entry 3). Further reducing the amount of base (Table S1, entry 4) or using water as the solvent (Table S1, entry 5) resulted in a significant decrease in yield. In addition, we used TMSOK instead of $\mathrm{K}_{2} \mathrm{CO}_{3}$ as base and the reaction provided the desired product with 86% yield in ethanol/water (1:1) (Table S1, entry 6). Encouragingly, the reaction was performed in the presence of TMSOK as base and n-propanol as solvent affording the corresponding product in 99% yield (Table S1, entry 7).

Table S1. Optimization of the reaction conditions in batch ${ }^{a}$

${ }^{a} 0.5 \mathrm{mmol}$ of 1a, 0.5 mmol of 2a, Pd $@$, PANI ($16 \mathrm{ppm}, 1.5 \mathrm{mg}, 0.0579 \mathrm{wt} \%$), $0.25-1.0 \mathrm{mmol}$ of base and 2 mL of solvent were employed; the reactions were conducted in a sealed tube. ${ }^{b}$ GC yield. ${ }^{c}$ Isolated yield.

The example calculation for molecular ppm

Scheme S1 Suzuki-Miyaura Cross-coupling Reaction of Aryl Iodides

$\mathrm{n}(\mathrm{Pd})=(1.5 \mathrm{mg} * 579 \mathrm{mg} / \mathrm{kg}) /(106.4 \mathrm{~g} / \mathrm{mol})=8.16 * 10^{-9} \mathrm{~mol}$
Note: The Pd@PANI contained $579 \mathrm{mg} / \mathrm{kg}$ of palladium was detected through ICP analysis.
$\mathrm{n}(\mathrm{PANI})=[1.5 \mathrm{mg}-(1.5 \mathrm{mg} * 579 \mathrm{mg} / \mathrm{kg})] /(9312 \mathrm{~g} / \mathrm{mol})=161 * 10^{-9} \mathrm{~mol}$
Note: The molecular weight of polyaniline was detected through GPC analysis.
$\mathrm{n}(\mathrm{EtOH})=(1.0 \mathrm{ml} * 0.789 \mathrm{~g} / \mathrm{ml}) /(46.07 \mathrm{~g} / \mathrm{mol})=0.0171 \mathrm{~mol}$
$\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}\right)=(1.0 \mathrm{ml} * 0.998 \mathrm{~g} / \mathrm{ml}) /(18.01 \mathrm{~g} / \mathrm{mol})=0.0554 \mathrm{~mol}$
The total number of moles was calculated from each species including solvent.
$\left(0.0005+0.0005+0.0005+0.0171+0.0554+8.16^{*} 10^{-9}+161 * 10^{-9}\right) \mathrm{mol}=0.0740 \mathrm{~mol}$
Then, the mole contribution of catalyst compared to the total number of moles was calculated:
$\left(8.16 * 10^{-9} \mathrm{~mol}\right) /(0.0740 \mathrm{~mol})=110 * 10^{-9}=1.10 * 10^{-7}$
Multiplication by 1×10^{6} gives the molecular ppm of (pre)catalyst:
$1.10 * 10^{-7} \times 10^{6}=0.11 \mathrm{ppm}$
Scheme S2 Suzuki-Miyaura Cross-coupling Reaction of Aryl Bromides

$\mathrm{n}(\mathrm{Pd})=(5.0 \mathrm{mg} * 579 \mathrm{mg} / \mathrm{kg}) /(106.4 \mathrm{~g} / \mathrm{mol})=27.2 * 10^{-9} \mathrm{~mol}$
Note: The Pd@PANI contained $579 \mathrm{mg} / \mathrm{kg}$ of palladium was detected through ICP analysis.
$\mathrm{n}(\mathrm{PANI})=[5.0 \mathrm{mg}-(5.0 \mathrm{mg} * 579 \mathrm{mg} / \mathrm{kg})] /(9312 \mathrm{~g} / \mathrm{mol})=537 * 10^{-9} \mathrm{~mol}$
Note: The molecular weight of polyaniline was detected through GPC analysis.

$$
\mathrm{n}(\mathrm{EtOH})=(1.0 \mathrm{ml} * 0.789 \mathrm{~g} / \mathrm{ml}) /(46.07 \mathrm{~g} / \mathrm{mol})=0.0171 \mathrm{~mol}
$$

$$
\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}\right)=(1.0 \mathrm{ml} * 0.998 \mathrm{~g} / \mathrm{ml}) /(18.01 \mathrm{~g} / \mathrm{mol})=0.0554 \mathrm{~mol}
$$

The total number of moles was calculated from each species including solvent.
$\left(0.0005+0.0005+0.0005+0.0171+0.0554+27.2 * 10^{-9}+537 * 10^{-9}\right) \mathrm{mol}=0.0740 \mathrm{~mol}$
Then, the mole contribution of catalyst compared to the total number of moles was calculated:
$\left(27.2 * 10^{-9} \mathrm{~mol}\right) /(0.0740 \mathrm{~mol})=368 * 10^{-9}=3.68 * 10^{-7}$
Multiplication by 1×10^{6} gives the molecular ppm of (pre)catalyst:
$3.68 * 10^{-7} \times 10^{6}=0.368 \approx 0.37 \mathrm{ppm}$
Scheme S3 Suzuki-Miyaura Cross-coupling Reaction (Previous Report) ${ }^{1}$

$\mathrm{n}(\mathrm{Pd})=(3.0 \mathrm{mg} * 0.75 \%) /(106.4 \mathrm{~g} / \mathrm{mol})=211 * 10^{-9} \mathrm{~mol}$
Note: The Pd@PANI contained 0.75% of Pd (weight ratio) was detected through ICP analysis.
Note: The molecular weight of PANI was not reported in the literature ${ }^{1}$, so we had to ignore the moles of polyaniline.
$\mathrm{n}(\mathrm{EtOH})=(4.0 \mathrm{ml} * 0.789 \mathrm{~g} / \mathrm{ml}) /(46.07 \mathrm{~g} / \mathrm{mol})=0.0684 \mathrm{~mol}$
The total number of moles was calculated from each species including solvent.
$\left(0.001+0.001+0.002+0.0684+211 * 10^{-9}\right) \mathrm{mol}=0.0724 \mathrm{~mol}$
Then, the mole contribution of catalyst compared to the total number of moles was calculated:
$\left(211 * 10^{-9} \mathrm{~mol}\right) /(0.0724 \mathrm{~mol})=2.91 * 10^{-6}$
Multiplication by 1×10^{6} gives the molecular ppm of (pre)catalyst:
$2.91 * 10^{-6} \times 10^{6}=2.91 \approx 2.9 \mathrm{ppm}$

The example calculation for TON and TOF

Scheme S4 Suzuki-Miyaura Cross-coupling Reaction of Iodobenzene with 4-Tolylboronic acid

Scheme S5 Suzuki-Miyaura Cross-coupling Reaction of Bromobenzene with 4-Tolylboronic acid

$\mathrm{n}($ Cat. $)=\mathrm{n}(\mathrm{Pd})=(5.0 \mathrm{mg} * 579 \mathrm{mg} / \mathrm{kg}) /(106.4 \mathrm{~g} / \mathrm{mol})=27.2 * 10^{-9} \mathrm{~mol}$
n (Product) $=(0.5 \mathrm{mmol}) \times 88 \%=0.44 \mathrm{mmol}$
TON $=\mathrm{n}($ Product $) / \mathrm{n}($ Cat. $)=(0.44 \mathrm{mmol}) /\left(27.2 * 10^{-9} \mathrm{~mol}\right)=1.61 \times 10^{4}$
TOF $=$ TON $/$ Time $=1.61 \times 10^{4} /(12 \mathrm{~h})=1348 \mathrm{~h}^{-1}$

General procedure for peparing iodobenzene derivatives of D-fructose

A flask containing the alcohol ($780.9 \mathrm{mg}, 1.0$ equiv) was purged with nitrogen and charged with DMF ($30 \mathrm{ml}, 10$ $\mathrm{mL} / \mathrm{mmol} \mathrm{OH}$). A nitrogen purge was installed and $\mathrm{NaH}(132.0 \mathrm{mg}, 1.1$ equiv, 60% in mineral oil) and the substituted benzyl bromide ($979.9 \mathrm{mg}, 1.1$ equiv) were added. The reaction was stirred at room temperature for 30 min then quenched by dropwise addition of water, diluted with EtOAc and washed with water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo and purified by flash column chromatography on silica gel. ${ }^{2}$

The Pd@PANI catalyzed Suzuki-Miyaura cross-couplings under batch conditions

In a sealed tube charged with $\mathrm{N}_{2}, \mathrm{Pd} @$ PANI catalyst $(1.5 \mathrm{mg}$ catalyst for aryl iodide and 5.0 mg catalyst for aryl bromide), 0.5 mmol of aryl halide, 0.5 mmol of boronic acid, and 0.5 mmol of $\mathrm{K}_{2} \mathrm{CO}_{3}$ were added. Then, $\mathrm{EtOH}(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ were introduced, and the mixture was stirred at $100^{\circ} \mathrm{C}$ for 12 hours. After cooling to ambient temperature, the reaction was transferred to a 50 mL separatory funnel with 10 mL of ethyl acetate. The organic layer was washed with brine and 0.1 M aqueous citric acid $(3 \times 10 \mathrm{~mL})$. Ethyl acetate was used to extract the aqueous layers $(3 \times 10 \mathrm{~mL})$. The organic layers were mixed and dried over anhydrous sodium sulfate before being filtered. Rotary evaporation was used to concentrate the resultant organic layer. After that, the crude material was purified by flash column chromatography to obtain the desired product.

The Pd@PANI catalyzed Suzuki-Miyaura cross-couplings under flow conditions

$\operatorname{Pd} @$ PANI was filled in a packed bed reactor $(180 \mathrm{mg}$ of catalyst, 5.0 g of glass beads, Column: $4.6 \times 100 \mathrm{~mm}$, 3.7 mL volume, with cotton filling the remaining space). 5 mmol aryl halide, 5 mmol boronic acid, and 5 mmol TMSOK (Potassium trimethylsilanolate) were introduced to a Schlenk tube filled with $\mathrm{N}_{2} .40 \mathrm{~mL} n$-propanol was added to the tube, and the mixture was stirred at room temperature for 10 minutes. The prepared solution was pumped into a packed bed reactor with the reaction conditions (reaction temperature $=75^{\circ} \mathrm{C}$, flow rate $=0.1$ $\mathrm{ml} / \mathrm{min}$, and residence time $=37 \mathrm{mins}$) set. The sample was collected for 185 minutes after reaching steady state (5 residence times, 185 minutes) and used to calculate the isolated yield. The reaction solution was transferred to a 150 mL separatory funnel with 50 mL of ethyl acetate. The organic layer was then washed with brine and 0.1 M aqueous citric acid $(3 \times 50 \mathrm{~mL})$. Ethyl acetate was used to extract the aqueous layers that resulted $(3 \times 50 \mathrm{~mL})$. The organic layers were mixed and dried over sodium sulfate before being filtered. Rotary evaporation was used to concentrate the resultant organic layer. After that, the crude material was purified by flash column chromatography to obtain the desired product.

Catalyst lifetime testing under continuous flow

Pd@PANI was filled in a packed bed reactor (180 mg of catalyst, 5.0 g of glass beads, 3.7 mL volume), with cotton filling the remaining space. Iodobenzene (1 eq.), 4-tolylboronic acid (1 eq.), TMSOK (Potassium trimethylsilanolate, 1 eq.) and n-dodecane (0.5 eq.) were introduced to a Schlenk tube filled with N_{2}. In the tube, 1 propanol was added, and the mixture $(0.125 \mathrm{~mol} / \mathrm{L}$ iodobenzene) was stirred for ten minutes at room temperature. The prepared solution was pumped into a packed bed reactor with the reaction parameters established (reaction temperature $=75{ }^{\circ} \mathrm{C}$, flow rate $=0.1 \mathrm{ml} / \mathrm{min}$, and residence time $=37 \mathrm{mins}$). The solution was collected and analyzed by GC-MS

Fig. S3 Catalyst lifetime testing of Pd@PANI under continuous flow

Failed examples

Table S2. Some failed examples under standard batch conditions

$X=1$

$x=1$

$\mathrm{X}=\mathrm{Br}$

$\mathrm{X}=\mathrm{Br}$

$\mathrm{X}=\mathrm{Br}$

Reaction conditions: 0.5 mmol of $\mathbf{1}, 0.5 \mathrm{mmol}$ of 2, Pd@ PANI $(1.5 \mathrm{mg}$ for aryl iodide and 5.0 mg for aryl bromide), 0.5 mmol of $\mathrm{K}_{2} \mathrm{CO}_{3}, 2 \mathrm{~mL}$ of $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(1: 1), 100^{\circ} \mathrm{C}$ for 12 h ; the reactions were conducted in sealed tubes.

Characterization data of the products

(3aR,5R,5aS,8aS,8bR)-5-(((4-iodobenzyl)oxy)methyl)-2,2,7,7-tetramethyltetrahydro-5H-
bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran (1w): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.09 (d, $J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.43(\mathrm{~m}, 3 \mathrm{H}), 4.34-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.03-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.57(\mathrm{~m}, 2 \mathrm{H})$, $1.53(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 137.90,137.19,129.39,109.04$, 108.35, 96.18, 92.84, 72.40, 71.01, 70.47, 70.37, 68.91, 66.78, 25.96, 25.86, 24.82, 24.33 ppm . HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 499.05880$, found: 499.05792. IR (ATR) $v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 2987,2933,1484,1382$, 1372, 1255, 1212, 1168, 1104, 1071, 1007, 891, 800.

4-Methylbiphenyl(3a): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.648(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.564(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.487(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.384(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.313(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.461(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 141.15,138.35,136.97,129.45,128.68,126.97,126.94,21.06$. MS (EI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{12}$ $[\mathrm{M}]^{+}: 168.1$, found: 168.1. IR (ATR) v ($\left.\mathrm{cm}^{-1}, \mathrm{KBr}\right): 3055,3030,2925,2855,1601,1568,1488,1445,1403,1129$, $910,823,755,690 .^{3}$

4-phenoxy-1,1'-biphenyl (3b): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.646-7.552(\mathrm{~m}, 4 \mathrm{H}), 7.465(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.426-7.330 (m, 3 H), 7.197-7.063 (m, 5 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 157.10,156.81,140.51,136.23$, 129.76, 128.75, 128.40, 127.00, 126.87, 123.35, 119.00 ppm . MS (EI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}$ [M] ${ }^{+}: 246.1$, found: 246.1. IR (ATR) $v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 3056,3036,1590,1520,1485,1271,1258,1072,876,842,751,722,689 .{ }^{4}$

4-Hydroxybiphenyl (3c): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.570-7.515(\mathrm{~m}, 2 \mathrm{H}), 7.510-7.459(\mathrm{~m}, 2 \mathrm{H}), 7.447-$ $7.383(\mathrm{~m}, 2 \mathrm{H}), 7.337-7.277(\mathrm{~m}, 1 \mathrm{H}), 6.942-6.869(\mathrm{~m}, 2 \mathrm{H}), 4.774(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:$ 155.06, 140.73, 133.99, 128.69, 128.36, 126.69, 115.62 ppm . MS (EI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}[\mathrm{M}]^{+}: 170.1$, found: 170.1. IR (ATR) $v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 3413,3038,1652,1610,1597,1523,1488,1461,1259,1242,1114,833,758 .{ }^{5}$

tert-butyl [1,1'-biphenyl]-4-ylcarbamate (3d): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8: 7.602-7.529$ (m, 4 H), 7.485-7.405 (m, 4 H), $7.333(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.646(\mathrm{~s}, 1 \mathrm{H}), 1.565(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 152.73$,
$140.57,137.63,135.84,128.68,127.54,126.86,126.70,118.79,80.56,28.31 \mathrm{ppm}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 270.1489$, found: 270.1498. IR (ATR) $v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 3368,3065,3006,2979,2934,1702$, $1589,1529,1507,1405,1319,1264,1233,1161,1057,836,755,689 .{ }^{6}$

4-vinyl-1,1'-biphenyl (3e): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.644-7.562(\mathrm{~m}, 4 \mathrm{H}), 7.521-7.425(\mathrm{~m}, 4 \mathrm{H}), 7.390-$ $7.332(\mathrm{~m}, 1 \mathrm{H}), 6.777(\mathrm{dd}, J=10.8,17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.812(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.293(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 140.72,140.57,136.58,136.39,128.76,127.30,127.21,126.95,126.62,113.87 \mathrm{ppm}$. MS (EI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{12}[\mathrm{M}]^{+}: 180.1$, found: 180.1. IR (ATR) $v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 3085,3056,3033,2923,1626$, $1486,1401,993,905,844,770,734,690 .{ }^{7}$

4-Carboxaldehydebiphenyl (3f): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 10.054(\mathrm{~s}, 1 \mathrm{H}), 7.948(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.746$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.637(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.528-7.387(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 191.75$, $147.05,139.60,135.13,130.15,128.92,128.38,127.56,127.26 \mathrm{ppm}$. MS (EI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}[\mathrm{M}]^{+}: 182.1$, found: 182.1. IR (ATR) $v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 3031,2847,2738,1701,1604,1214,1168,837,762,696 .{ }^{5}$

4-Methoxybiphenyl (3g): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.629-7.534(\mathrm{~m}, 4 \mathrm{H}), 7.453(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.341$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.018(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.880(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 159.11,140.78$, $133.72,128.69,128.11,126.69,126.62,114.16,55.28 \mathrm{ppm}$. MS (EI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}[\mathrm{M}]^{+}$: 184.1, found: 184.1. IR (ATR) $v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 3056,3001,2961,2926,2836,1605,1581,1521,1486,1462,1365,1308,1287$, $1270,1250,909,833,759 .{ }^{3,8}$

4-(tert-butyl)-1,1'-biphenyl (3h): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 150.19,141.04,138.30,128.67,126.99,126.95,126.77,125.68,34.49,31.36 \mathrm{ppm} . \mathbf{M S}(\mathrm{EI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{18}[\mathrm{M}]^{+}: 210.1$, found: 210.2. IR (ATR) $v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 3034,2961,1637,1485,1405,835,765,729$, $690 .{ }^{9}$

4-Chloridebiphenyl (3i): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.601-7.509(\mathrm{~m}, 4 \mathrm{H}), 7.499-7.348(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$

NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 139.95,139.63,133.35,128.88,128.85,128.36,127.56,126.95 \mathrm{ppm} . \operatorname{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{Cl}[\mathrm{M}]^{+}: 188.0$, found: 188.0. IR (ATR) $v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 3058,3032,1583,1478,1449,1399,1261$, 1098, 1004, 832, 758, 688. ${ }^{5}$

4-Acetylbiphenyl (3j): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.039(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.690(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.633$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.479(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.407(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.643(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 197.74,145.71,139.79,135.76,128.91,128.87,128.19,127.21,127.16,26.64 \mathrm{ppm}$. MS (EI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}[\mathrm{M}]^{+}: 196.1$, found: 196.1. IR (ATR) $v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 3030,2918,1680,1602,1404,1356,1263,961$, $833,765,691 .{ }^{5}$

[1,1'-biphenyl]-4-carbonitrile (3k): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.745-7.662(\mathrm{~m}, 4 \mathrm{H}), 7.619-7.572(\mathrm{~m}, 2 \mathrm{H})$, 7.525-7.409 (m, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 145.55,139.05,132.50,129.03,128.58,127.63,127.13$, 118.87, 110.80 ppm . MS (EI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}[\mathrm{M}]^{+}: 179.1$, found: 179.1. IR (ATR) $v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 3076$, $2226,1605,1483,1396,1077,770,723,697 .{ }^{5}$

3-Nitrobiphenyl (3I): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.453(\mathrm{~s}, 1 \mathrm{H}), 8.202(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.918(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.650-7.587(\mathrm{~m}, 3 \mathrm{H}), 7.526-7.414(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 148.68,142.82,138.61$, 132.99, 129.66, 129.12, 128.50, 127.11, 121.98, 121.89 ppm . MS (EI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}_{2}[\mathrm{M}]^{+}: 199.1$, found: 199.1. IR (ATR) $v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 3081,1530,1501,1351,1080,898,875,768,732,695 .{ }^{5}$

4'-methyl-[1,1'-biphenyl]-2-carbonitrile (3m): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.751(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.626(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.506(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.469(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.425(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.307(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.428(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right)$ §: 145.51, 138.65, 135.25, 133.67, 132.71, 129.94, $129.40,128.57,127.23,118.81,111.18,21.20 \mathrm{ppm}$. MS (EI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}[\mathrm{M}]^{+}: 193.1$, found: 193.1. IR (ATR) $v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 3058,3022,2922,2854,2225,1595,1562,1479,813,764,745 .{ }^{10,11}$

1-phenylnaphthalene (3n): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.047-7.906(\mathrm{~m}, 3 \mathrm{H}), 7.645-7.466(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta: 140.73,140.23,133.77,131.59,130.04,128.22,127.60,127.19,126.89,125.99$,
$125.72,125.34 \mathrm{ppm}$. MS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{12}[\mathrm{M}]^{+}: 204.1$, found: 204.1. IR (ATR) $v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 3057,1637$, $1617,1592,1507,1493,1395,802,778,703 .{ }^{12}$

2-(4-phenoxyphenyl) thiophene (3o): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.60-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 2 \mathrm{H})$,
7.25-7.20(m, 2H), 7.16-6.97(m, 6H) ppm. ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 156.97,156.77,143.81,129.78$, $129.63,127.99,127.34,124.39,123.42,122.67,119.12,118.94 \mathrm{ppm}$. MS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{OS}[\mathrm{M}]^{+}: 252.1$, found: 251.9. IR (ATR) $v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 3056,2924,2854,1589,1531,1498,1490,1281,1258,841,821,785,747$, 700, 692, 682. ${ }^{13}$

2-chloro-4-phenylpyridine (3p): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.433(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.640-7.595(\mathrm{~m}, 2 \mathrm{H})$, $7.551(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.532-7.463(\mathrm{~m}, 3 \mathrm{H}), 7.436(\mathrm{dd}, J=5.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 152.19,151.55,149.97,136.83,129.66,129.24,127.02,122.04,120.47 \mathrm{ppm} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ClN}[\mathrm{M}]^{+}: 189.0$, found: 189.0. IR (ATR) $v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 3058,3023,1605,1590,1534,1503,1458,1375$, $1089,859,802,756,728,708,690 .{ }^{14}$

5-Phenylfuran-2-carbaldehyde (3q): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.633(\mathrm{~s}, 1 \mathrm{H}), 7.850-7.770(\mathrm{~m}, 2 \mathrm{H}), 7.470-$ $7.350(\mathrm{~m}, 3 \mathrm{H}), 7.309(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.831(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 177.16$, $159.35,151.96,129.61,128.88,125.22,123.48,107.62 \mathrm{ppm}$. MS (EI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{2}[\mathrm{M}]^{+}: 172.1$, found: 172.1. IR (ATR) $v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 1675,1522,1474,1451,1398,765 .{ }^{15}$

5-(4-hydroxyphenyl) furan-2-carbaldehyde (3r): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 10.04(\mathrm{~s}, 1 \mathrm{H}), 9.52(\mathrm{~s}, 1 \mathrm{H})$, $7.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta: 177.07,159.29,159.16,151.05,126.98,126.19,119.80,116.08,106.59 \mathrm{ppm}$. MS (EI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{3}[\mathrm{M}]^{+}: 188.0$, found: 188.0. IR (ATR) $v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 3413,1640,1608,1591,1491,1447$, $1390,1239,830 .{ }^{16}$

5-(thiophen-3-yl) furan-2-carbaldehyde (3s): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.595(\mathrm{~s}, 1 \mathrm{H}), 7.806-7.733(\mathrm{~m}, 1 \mathrm{H})$, 7.453-7.347 (m, 2H), $7.285(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.657(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $176.89,155.96,151.27,130.68,126.89,124.92,123.86,123.29,107.44 \mathrm{ppm}$. MS (EI) m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{~S}$
$[\mathrm{M}]^{+}: 178.0$, found: 178.0. IR (ATR) $v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 3079,1672,1587,1541,1400,1371,1339,1281,1207,1089$, 1028, $961 .{ }^{17}$

[1,1'-biphenyl]-4-yltrimethylsilane (3t): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.75-7.67(\mathrm{~m}, 6 \mathrm{H}), 7.54(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.42(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 141.59,141.15,139.16,133.81$, $128.74,127.30,127.15,126.49,-1.07 \mathrm{ppm}$. MS (EI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{Si}[\mathrm{M}]^{+}: 226.1$, found: 226.2. IR (ATR) v $\left(\mathrm{cm}^{-1}, \mathrm{KBr}\right): 3026,2951,2892,1596,1486,1386,1248,1118,840,828,753,698,657 .{ }^{18}$

(4'-methoxy-[1,1'-biphenyl]-4-yl) trimethylsilane (3u): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.66-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.06$ $-6.99(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 159.17,141.17,138.40,133.78$,
133.63, 128.13, 126.05, 114.17, 55.28, -1.08 ppm . MS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{OSi}[\mathrm{M}]^{+}: 256.1$, found: 256.1. IR $(\mathrm{ATR}) v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 2955,1604,1522,1490,1459,1387,1284,1251,1208,1181,1114,1035,845,814,757 .{ }^{19}$

Trimethyl(3'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl) silane (3v): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.91(\mathrm{~s}, 1 \mathrm{H})$, $7.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.56(\mathrm{~m}, 6 \mathrm{H}), 0.38(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 141.97,140.35$, $140.07,134.02,131.17(\mathrm{q}, ~ J=32.3 \mathrm{~Hz}), 130.39,129.23,126.49,124.22(\mathrm{q}, J=273.4 \mathrm{~Hz}), 124.17-123.74(\mathrm{~m})$, $1.16 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:-62.50 \mathrm{ppm}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 295.1124$, found: 295.1119. IR (ATR) $v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 2957,2928,2856,1597,1400,1335,1265,1251,1167,1129,841,797$.

(3aR,5R,5aS,8aS,8bR)-5-(((4'-methoxy-[1,1'-biphenyl]-4-yl)methoxy)methyl)-2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran (3w): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.53$ (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}$), 7.40 (d, J $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.56(\mathrm{~m}, 3 \mathrm{H}), 4.35-4.27(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{td}, J$ $=10.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.64(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta: 159.08,140.09,136.67,133.47,128.18,128.04,126.62,114.15,109.17,108.50$, $96.34,73.04,71.14,70.61,70.56,68.83,66.87,55.28,26.05,25.95,24.90,24.40 \mathrm{ppm}$. HRMS (ESI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 479.20402$, found: 479.20340. IR (ATR) $v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 2993,2961,2912,1608,1503$, $1254,1212,1169,1087,1075,1034,1009,810$.

4'-((($\mathbf{3 a R}, 5 R, 5 a S, 8 a S, 8 b R)-2,2,7,7-t e t r a m e t h y l t e t r a h y d r o-5 H-b i s([1,3] d i o x o l o)[4,5-b: 4 ', 5 '-d] p y r a n-5-~$

yl)methoxy)methyl)-[1,1'-biphenyl]-4-carbaldehyde (3x): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 10.05(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.56$ (d, $J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.73-4.57(\mathrm{~m}, 3 \mathrm{H}), 4.36-4.25(\mathrm{~m}, 2 \mathrm{H}), 4.08-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.64(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.35$ $(\mathrm{s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 191.87,146.93,138.90,138.82,135.14,130.25,128.27$, 127.57, 127.30, 109.23, 108.54, 96.36, 72.84, 71.19, 70.64, 70.55, 69.08, 66.94, 26.07, 25.97, 24.91, 24.43 ppm. HRMS (ESI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 477.18837$, found: 477.18793. IR (ATR) $v\left(\mathrm{~cm}^{-1}, \mathrm{KBr}\right): 3029$, 2988, 2934, 1702, 1605, 1382, 1255, 1211, 1170, 1103, 1070, 1005, 808.

References

1 Q. Wang, X. Jing, J. Han, L. Yu and Q. Xu, Mater. Lett., 2018, 215, 65-67.
2 O. J. Plante, S. L. Buchwald and P. H. Seeberger, J. Am. Chem. Soc., 2000, 122, 7148-7149.
3 A. Ohno, T. Sato, T. Mase, Y. Uozumi and Y. M. A. Yamada, Adv. Synth. Catal., 2020, 362, 4687-4698.
4 E. Niknam, F. Panahi and A. Khalafi-Nezhad, Appl. Organomet. Chem., , DOI:10.1002/aoc.5470.
5 L. Bai and J.-X. Wang, Adv. Synth. Catal., 2008, 350, 315-320.
6 S. Boz, M. Stöhr, U. Soydaner and M. Mayor, Angew. Chem. Int. Ed., 2009, 48, 3179-3183.
7 M. Tang, S. Han, S. Huang, S. Huang and L.-G. Xie, Org. Lett., 2020, 22, 9729-9734.
8 R. Bandari, T. Höche, A. Prager, K. Dirnberger and M. R. Buchmeiser, Chem. - Eur. J., 2010, 16, 4650-4658.
9 Y. Sato, K. Nakamura, Y. Sumida, D. Hashizume, T. Hosoya and H. Ohmiya, J. Am. Chem. Soc., 2020, 142, 9938-9943.

10 J. Hassan, C. Hathroubi, C. Gozzi and M. Lemaire, Tetrahedron, 2001, 57, 7845-7855.
11 X. Li, T. Zhang, R. Hu, H. Zhang, C. Ren and Z. Yuan, Org. Biomol. Chem., 2020, 18, 4748-4753.
12 X.-X. Zeng, D.-H. Li, Z. Zhou, C. Xu and F.-S. Liu, J. Organomet. Chem., 2021, 938, 121749.
13 A. Xia, X. Qi, X. Mao, X. Wu, X. Yang, R. Zhang, Z. Xiang, Z. Lian, Y. Chen and S. Yang, Org. Lett., 2019, 21, 3028-3033.

14 S. Panda, A. Coffin, Q. N. Nguyen, D. J. Tantillo and J. M. Ready, Angew. Chem. Int. Ed., 2016, 55, 22052209.

15 M. R. Kumar, K. Park and S. Lee, Adv. Synth. Catal., 2010, 352, 3255-3266.
16 T. Hosoya, H. Aoyama, T. Ikemoto, Y. Kihara, T. Hiramatsu, M. Endo and M. Suzuki, Bioorg. Med. Chem., 2003, 11, 663-673.

17 Y. M. A. Yamada, T. Watanabe, T. Beppu, N. Fukuyama, K. Torii and Y. Uozumi, Chem. - Eur. J., 2010, 16, 11311-11319.

18 J. Duan, K. Wang, G. Xu, S. Kang, L. Qi, X. Liu and X. Shu, Angew. Chem. Int. Ed., 2020, 59, 23083-23088.
19 M. Danz and G. Hilt, Adv. Synth. Catal., 2011, 353, 303-308.

Copies of ${ }^{1} \mathrm{H}$ NMR ${ }^{13} \mathrm{C}$ Spectra of the Products

(3aR,5R,5aS,8aS,8bR)-5-(((4-iodobenzyl)oxy)methyl)-2,2,7,7-tetramethyltetrahydro-5H-
bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran (1w)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

4-Methylbiphenyl(3a)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

4-phenoxy-1,1'-biphenyl (3b)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

4-Hydroxybiphenyl (3c)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

tert-butyl [1,1'-biphenyl]-4-ylcarbamate (3d)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

4－vinyl－1，1＇－biphenyl（3e）

${ }^{1} \mathrm{H}$ NMR， $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR， $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

우웅ㅇㅇ수운응	$\begin{aligned} & \stackrel{N}{\infty} \\ & \stackrel{\omega}{\sim} \\ & \stackrel{1}{\mid} \end{aligned}$
O	
「「－年	

4-Carboxaldehydebiphenyl (3f)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR $, \mathrm{CDCl}_{3}, 101 \mathrm{MHz}$
In
Foig
今気

4-Methoxybiphenyl (3g)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

\bigcirc	$\stackrel{9}{1}$	
$\stackrel{\circ}{10}$	\%	¢్ల్ర¢
1	\|	¢V

4-(tert-butyl)-1,1'-biphenyl (3h)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

4－Chloridebiphenyl（3i）

${ }^{1} \mathrm{H}$ NMR， $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR， $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

	¢88
	今大\％
ソ \u	\checkmark

4-Acetylbiphenyl (3j)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

$\stackrel{\text { N゙ }}{\text { N }}$

[^0]
[1,1'-biphenyl]-4-carbonitrile (3k)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

¢		®	$\stackrel{\text { ¢ }}{\sim}$	\%
$\stackrel{\sim}{\sim}$	\% ~్లNowin	$\stackrel{\infty}{\square}$	운	\%
\|	¢ ¢i/	I	1	,

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100
 Chemical Shift(ppm) | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

3-Nitrobiphenyl (3I)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

4＇－methyl－［1，1＇－biphenyl］－2－carbonitrile（3m）

${ }^{1} \mathrm{H}$ NMR， $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR， $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

	$\stackrel{\text { ® }}{\square}$	「0\％
－	$\underset{1}{ }$	成兄

1-phenylnaphthalene (3n)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

2-(4-phenoxyphenyl)thiophene (30)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

2-chloro-4-phenylpyridine (3p)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

5-Phenylfuran-2-carbaldehyde (3q)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

5-(4-hydroxyphenyl)furan-2-carbaldehyde (3r)

${ }^{1} \mathrm{H}$ NMR, DMSO- $d_{6}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, DMSO- $d_{6}, 101 \mathrm{MHz}$

5-(thiophen-3-yl)furan-2-carbaldehyde (3s)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

[1,1'-biphenyl]-4-yltrimethylsilane (3t)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

[^1](4'-methoxy-[1,1'-biphenyl]-4-yl)trimethylsilane (3u)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

¢	
$\stackrel{\text { \% }}{\text { ¢ }}$	
I	11×11

ion

Trimethyl(3'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)silane (3v)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

${ }^{19} \mathrm{~F}$ NMR, $\mathrm{CDCl}_{3}, 376 \mathrm{MHz}$

(3aR,5R,5aS,8aS,8bR)-5-(((4'-methoxy-[1,1'-biphenyl]-4-yl)methoxy)methyl)-2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran (3w)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

[^2]
4'-((((3aR,5R,5aS,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-

yl)methoxy)methyl)-[1,1'-biphenyl]-4-carbaldehyde (3x)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

${ }^{13} \mathrm{C}$ NMR, $\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$

[^0]:

[^1]:

[^2]:

