Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Table of Contents	S1
General Information	S2
Reaction Optimization	S2
General Procedure for Acrylate Synthesis	S3
General Procedure for Photoredox Reaction	S4
Gram-scale Reaction	S4
Mechanistic Studies	S4
Characterization Data for Photoredox Products	S8
Spectra of Prepared Compounds	S22
References	S63

1. General Information

Unless otherwise noted, Reagents were purchased from commercial sources and were used as received. ¹H and ¹³C Nuclear Magnetic Resonance (NMR) spectra were recorded on Bruker Avance 400 Ultrashield NMR spectrometers. Chemical shifts (δ) were given in parts per million (ppm) and were measured downfield from internal tetramethylsilane. High-resolution mass spectrometry (HRMS) data were obtained on an FTICR-MS instrument (Ionspec 7.0 T). UV-Vis spectra was obtained on a UV-VIS-NIR spectrophotometer (SHIMADZU UV-3600). The melting points were determined on an X-4 microscope melting point apparatus and are uncorrected. Conversion was monitored by thin layer chromatography (TLC). Flash column chromatography was performed over silica gel (100-200 mesh). Blue LEDs (25 W, 440 - 445 nm) purchased from JIADENG (LS) were used for blue light irradiation. A fan attached to the apparatus was used to maintain the reaction temperature at room temperature.

2. Reaction Optimizationa

[Fe] (10 mol%) LiCI (50 mol%) SO₂Ph + Ph₂SiH₂ SiHPh₂ MeCN, Ar 3b 2 25 W blue LEDs Entrv Iron catalyst Yield^b(%) 1 Fe(acac)₃ 0 2 79 FeCl₃ 3 FeCl₂ 0 4 0 Fe(acac)₂

Table S1: Screening of the of iron catalyst^a

[a] Standard reaction conditions: 1 (0.3 mmol, 1.0 equiv.), 2 (2.4 mmol, 8.0 equiv.), iron catalyst (10 mol%), LiCl (50 mol%), MeCN (1 mL), 440 nm blue LEDs, room temperature (RT), Ar, 24 h. [b] Isolated yields are provided.

Table S2: Screening of the amount of iron catalyst^a

 [[]a] Standard reaction conditions: 1 (0.3 mmol, 1.0 equiv.), 2 (2.4 mmol, 8.0 equiv.), FeCl₃ (x mol%), LiCl (50 mol%), MeCN (1 mL), 440 nm blue LEDs, room temperature (RT), Ar, 24 h. [b] Isolated yields are provided.

Table S3: Screening of the chlorine ion source^{*a*}

\neg		-SO ₂ Ph + Ph ₂ SiH ₂ 2	FeCl ₃ (10 mol%) [Cl ⁻] (50 mol%) MeCN, Ar 25 W blue LEDs		<mark>-</mark> SiHPh ₂
	Entry	Chlorine ion source		Yield ^b (%)	
	1	KCl		45	
	2	LiCl		79	
	3	<i>n</i> Bu ₄ NCl		20	
	4	NaCl		40	

[a] Standard reaction conditions: **1** (0.3 mmol, 1.0 equiv.), **2** (2.4 mmol, 8.0 equiv.), FeCl₃ (10 mol%), Cl⁻ source (50 mol%), MeCN (1 mL), 440 nm blue LEDs, room temperature (RT), Ar, 24 h. [b] Isolated yields are provided.

Table S4: Screening of the amount of LiCl^a

[a] Standard reaction conditions: 1 (0.3 mmol, 1.0 equiv.), 2 (2.4 mmol, 8.0 equiv.), FeCl₃ (10 mol%), LiCl (x mol%), MeCN (1 mL), 440 nm blue LEDs, room temperature (RT), Ar, 24 h. [b] Isolated yields are provided.

3. General Synthesis of substrates^[1, 2]

 0° C, to a suspension of 4-ethynyl-benzoic acid (1.5 g, 10.0 mmol, 1.0 equiv.) and DMF (35 µL, 0.5 mmol, 0.05 equiv.) in DCM (20 mL) was added SOCl₂ (0.9 mL, 6.0 mmol, 1.2 equiv.) in 10 min. The mixture was degassed by Ar and reacted at room temperature overnight until the acid was completely dissolved. The mixture was concentrated in *vacuo* and without further purification to go through next step.

 0° C, to a suspension of Geraniol (1.0 equiv), DMAP (0.2 equiv) and Et₃N (1.5 equiv.) in DCM (20 mL) was added benzoyl chloride (1.0 equiv.). The mixture was degassed by Ar and reacted at room temperature overnight. The mixture was quenched by saturated NaHCO₃ and extracted with DCM. The combined organic phases were washed with H₂O (20 mL), brine (20 mL), dried with NaSO₄, then filtered and concentrated in *vacuo*. The crude product was purified by flash column

chromatography.

$$Ar \longrightarrow + PhSO_2Na + I_2 + TBHP \longrightarrow Ar \longrightarrow SO_2Ph$$

To a suspension of benzenesulfinic acid sodium salt (1.64 g, 10.0 mmol, 2.0 equiv.) in THF (25 mL) was added Alkynes (5.0 mmol, 1.0 equiv.) followed by iodine (0.2 g, 2.5 mmol, 0.5 equiv.), TBHP (15 mmol, 3.0 equiv). The mixture was stirred for 16 h at room temperature before the excess iodine quenched with 10% aq. sodium thiosulfate. The product extracted into EA (3 x 20 mL). The combined organic phases were washed with H₂O (20 mL), brine (20 mL), dried with NaSO₄, then filtered and concentrated in *vacuo*. The crude product was purified by flash column chromatography. The spectral data is consistent with the literature data.

$$Ar \rightarrow PhSO_2Na + I_2 + NaOAc \rightarrow Ar \rightarrow SO_2Ph$$

To a suspension of benzenesulfinic acid sodium salt (2.46 g, 15.0 mmol, 3.0 equiv.) and NaOAc (0.62 g, 7.5 mmol, 1.5 equiv.) in MeCN (20 mL) was added olefin (5.0 mmol, 1.00equiv.) followed by iodine (1.9 g, 7.5 mmol, 1.5 equiv.). The mixture was heated to reflux for 1 h before being allowed to cool and the excess iodine quenched with 10% aq. sodium thiosulfate. The product extracted into EA (3 x 20 mL). The combined organic phases were washed with H_2O (20 mL), brine (20 mL), dried with NaSO₄, then filtered and concentrated in *vacuo*. The crude product was purified by flash column chromatography. The spectral data is consistent with the literature data.

4. General Procedure for Photoredox Reactions

An oven-dried 10 mL tube equipped with a magnetic stirring bar was charged with a ethynyl phenyl sulfones (0.3 mmol, 1.0 equiv.), a hydrosilane (2.4 mmol, 8.0 equiv.), FeCl₃ (5 mg, 10 mol%), LiCl (6.4 mg, 50 mol%), and MeCN (1 mL). The reaction mixture was degassed by bubbling with Ar for 15 s with an outlet needle, and the tube was then sealed with PTFE cap. The mixture was then stirred rapidly under irradiation with 25 W blue LEDs (440–445 nm, placed approximately 2 cm from the tube) at room temperature for 24 h. The reaction mixture was concentrated in *vacuo* to remove the MeCN, and the residue was purified by flash chromatography on silica gel with elution by petroleum ether to afford the desired product.

5. Gram-scale Reaction

An oven-dried 100 mL three-neck Schlenk flask with magnetic stirring bar was charged with ethynyl phenyl sulfones (768 mg, 3 mmol, 1.0 equiv.), the diphenyl silanes (4.4 mL, 24 mmol, 8.0

equiv.), FeCl₃ (50 mg, 10 mol%), LiCl (64 mg, 50%) and MeCN (10 mL). The reaction mixture was degassed by bubbling with Ar. The mixture was then stirred rapidly and irradiated with 25 W Blue LEDs at room temperature for 72 h. The reaction mixture was concentrated in *vacuo* to remove the MeCN. The mixture was diluted with DCM (50 mL) then concentrated in *vacuo*. Purification of the crude product by flash chromatography on silica gel using the solvent system to afford the desired product (petroleum ether).

6. Mechanistic Studies

6.1 Radical trapping experiments

An oven-dried 10 mL tube equipped with a magnetic stirring bar was charged with ethynyl phenyl sulfones (77 mg, 0.3 mmol, 1.0 equiv.), diphenylsilane (440 μ L, 2.4 mmol, 8.0 equiv.), FeCl₃ (5 mg, 10 mol%), LiCl (6.4 mg, 50 mol%), TEMPO (93.6 mg, 0.6 mmol, 2.0 equiv.) and MeCN (1 mL). The reaction mixture was degassed by bubbling with Ar for 15 s with an outlet needle and the vial was sealed with PTFE cap. The mixture was then stirred rapidly and irradiated with 25 W Blue LEDs (approximately 2 cm away from the light source) at room temperature for 24 h. The reaction was suppressed.

An oven-dried 10 mL tube equipped with a magnetic stirring bar was charged with ethynyl phenyl sulfones (77 mg, 0.3 mmol, 1.0 equiv.), diphenylsilane (440 μ L, 2.4 mmol, 8.0 equiv.), FeCl₃ (5 mg, 10 mol%), LiCl (6.4 mg, 50 mol%), 1,1'-(1,2-ethenediyl) dibenzene (0.18 mL, 0.6 mmol, 2.0 equiv.) and MeCN (1 mL). The reaction mixture was degassed by bubbling with Ar for 15 s with an outlet needle and the vial was sealed with PTFE cap. The mixture was then stirred rapidly and irradiated with 25 W Blue LEDs (approximately 2 cm away from the light source) at room temperature for 24 h. The reaction was suppressed. The radical trapping product **6** can be observed by HRMS (positive mode ESI).

Figure S1. HRMS of product 6.

An oven-dried 10 mL tube equipped with a magnetic stirring bar was charged with Diphenylsilanes (56 μ L, 0.3 mmol, 1.0 equiv.), FeCl₃ (0.6 mg, 1.25 mol%), LiCl (0.8 mg, 6.25%) and MeCN (1 mL). The vial was sealed with PTFE cap. The mixture was then stirred rapidly and irradiated with 25 W Blue LEDs (approximately 2 cm away from the light source) at room temperature for 24 h. The reaction mixture was concentrated in vacuum to remove the MeCN. The mixture was diluted with DCM (10 mL) then concentrated in *vacuo*. Purification of the crude product by flash chromatography on silica gel using the solvent system to afford the desired product (petroleum ether/ethyl acetate = 20/1).

6.2 Light/dark experiment

Seven standard reaction mixtures in 10 mL glass vials were charged with ethynyl phenyl sulfones (77 mg, 0.3 mmol, 1.0 equiv.), diphenylsilane (440 μ L, 2.4 mmol, 8.0 equiv.), FeCl₃ (5 mg, 10 mol%), LiCl (6.4 mg, 50 mol%) and MeCN (1 mL). The reaction mixtures were degassed by bubbling with Ar for 15 s with an outlet needle and the vials were sealed with PTFE caps. The mixtures were then stirred rapidly and irradiated with 25 W Blue LEDs (approximately 2 cm away from the light source) at room temperature. After 2 h, the Blue LEDs were turned off, and one vial was removed from the irradiation setup for analysis. The remaining six vials was stirred in the absence of light for an additional 2 h. Then, one tube was removed for analysis, and the Blue LEDs were turned back on to irradiate the remaining five reaction mixtures. After an additional 2 h of irradiation, the Blue LEDs were turned off, and one vial was removed for analysis. The remaining

four vials were stirred in the absence of light for an additional 2 h. Then, a vial was removed for analysis, and the Blue LEDs were turned back on to irradiate the remaining three reaction mixtures. After 2 h, the Blue LEDs were turned off, and one vial was removed for analysis. The remaining two vials were stirred in the absence of light for an additional 2 h, then, a vial was removed for analysis and the Blue LEDs were turned back on to irradiate the remaining one reaction mixtures. After 2 h, it was analyzed. The yield was determined by ¹H NMR spectroscopy using dibromomethane as the internal standard.

6.3 Parallel kinetic isotope effect experiment

Triphenylsilanes(2.4 mmol, 8.0 equiv.) or [D]-triphenylsilanes(2.4 mmol, 8.0 equiv.), ethynyl phenyl sulfones (0.3 mmol, 1.0 equiv.), FeCl₃ (5 mg, 10 mol%), LiCl (6.4 mg, 50%) and MeCN (1 mL) were placed in two separated tube charged with a stirring bar. The reaction mixture was degassed by bubbling with Ar. The mixture was then stirred rapidly and irradiated with 25 W Blue LEDs at room temperature for 4 h. The reaction mixture was concentrated in *vacuo* to remove the MeCN. The mixture was diluted with DCM (50 mL) then concentrated in *vacuo*. Purification of the crude product by flash chromatography on silica gel using the solvent system to afford the desired product (petroleum ether). (27% and 18%). The ratio is determined to be 1.5, indicating that Si–H bond cleavage might not be the kinetically rate-determining step in this reaction.

6.4 UV-Vis experiment

Figure S2. Absorbance spectrum of iron(III) species in MeCN.

Figure S3. Absorbance spectrum of 100 μ M FeCl₃ and 250 μ M solution of LiCl in MeCN after irradiation for 24 h.

7. Characterization Data for Photoredox Products

diphenyl(phenylethynyl)silane 3a

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3a** as a colorless oil (63.9 mg, 75% yield).

 $\mathbf{R}\mathbf{f} = 0.7$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** δ 7.73 (d, J = 6.1 Hz, 4H), 7.57 – 7.52 (m, 2H), 7.46 – 7.38 (m, 6H), 7.35 – 7.29 (m, 3H), 5.31 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 135.3, 134.4, 132.3, 130.2, 129.2, 128.4, 128.2, 122.5, 109.6, 87.2. HRMS (ESI): Calcd for C₂₀H₁₆SiNa [M+Na]⁺: 307.0913; found: 307.0915

diphenyl(p-tolylethynyl)silane 3b

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3b** as a white solid (70.8 mg, 79% yield).

M. p. = 66°C–67°C;

 $\mathbf{R}\mathbf{f} = 0.7$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.75 – 7.71 (m, 4H), 7.47 – 7.39 (m, 8H), 7.14 (d, J = 7.2 Hz, 2H), 5.30 (s, 1H), 2.36 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 139.4, 135.2, 132.3, 132.1, 130.1, 129.0, 128.1, 119.4, 109.9, 86.3, 21.6.

HRMS (ESI): Calcd for C₂₁H₁₈SiNa [M+Na]⁺: 321.1070; found: 321.1073

((4-ethylphenyl)ethynyl)diphenylsilane 3c

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3c** as a yellow oil (62.7 mg, 67% yield).

 $\mathbf{R}\mathbf{f} = 0.7$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** δ 7.77 – 7.69 (m, 4H), 7.47 (d, J = 8.2 Hz, 2H), 7.44 – 7.36 (m, 6H), 7.15 (d, J = 8.2 Hz, 2H), 5.30 (s, 1H), 2.64 (q, J = 7.6 Hz, 2H), 1.22 (t, J = 7.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 145.7, 135.2, 132.3, 132.2, 130.1, 128.1, 127.9, 119.7, 109.9, 86.3, 28.9, 15.3.

HRMS (ESI): Calcd for C₂₂H₂₀SiNa [M+Na]⁺: 335.1226; found: 335.1227

diphenyl((4-propylphenyl)ethynyl)silane 3d

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3d** as a colorless oil (62.6 mg, 64% yield).

 $\mathbf{R}\mathbf{f} = 0.7$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** δ 7.72 (d, J = 7.4 Hz, 4H), 7.47 (d, J = 7.8 Hz, 2H), 7.43 – 7.37 (m, 6H), 7.14 (d, J = 7.0 Hz, 2H), 5.30 (s, 1H), 2.58 (t, J = 7.6 Hz, 2H), 1.63 (dt, J = 14.9, 7.4 Hz, 2H), 0.92 (t, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.2, 135.2, 132.3, 132.1, 130.1, 128.5, 128.1, 119.7, 109.9, 86.3, 38.0, 24.3, 13.7.

((4-methoxyphenyl)ethynyl)diphenylsilane 3e

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3e** as a colorless oil (69.7 mg, 74% yield).

 $\mathbf{Rf} = 0.5$ (Petroleum ether /EtOAc = 20:1);

¹**H NMR (400 MHz, CDCl₃)** δ 7.74 – 7.71 (m, 4H), 7.49 (d, J = 8.8 Hz, 2H), 7.42 – 7.38 (m, 6H), 6.84 (d, J = 8.8 Hz, 2H), 5.29 (s, 1H), 3.79 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 160.3, 135.2, 133.8, 132.4, 130.1, 128.1, 114.6, 113.9, 109.8, 85.5, 55.3.

HRMS (ESI): Calcd for C₂₁H₁₈OSiNa [M+Na]⁺: 337.1019; found: 337.1014

((4-butylphenyl)ethynyl)diphenylsilane 3f

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3f** as a colorless oil (63.2 mg, 62% yield).

 $\mathbf{R}\mathbf{f} = 0.7$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** δ 7.76 – 7.69 (m, 4H), 7.46 (d, J = 8.0 Hz, 2H), 7.43 – 7.36 (m, 6H), 7.13 (d, J = 8.0 Hz, 2H), 5.30 (s, 1H), 2.60 (t, J = 7.7 Hz, 2H), 1.62 – 1.53 (m, 2H), 1.38 – 1.29 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.4, 135.2, 132.3, 132.2, 130.1, 128.4, 128.1, 119.6, 110.0, 86.3, 35.7, 33.3, 22.3, 13.9.

HRMS (ESI): Calcd for C₂₄H₂₄SiNa [M+Na]⁺: 363.1539; found: 363.1535

((4-(tert-butyl)phenyl)ethynyl)diphenylsilane 3g

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3g** as a colorless oil (66.3 mg, 65% yield).

 $\mathbf{R}\mathbf{f} = 0.7$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.74 – 7.71 (m, 4H), 7.52 – 7.47 (m, 2H), 7.42 – 7.38 (m, 6H), 7.36 – 7.33 (m, 2H), 5.30 (s, 1H), 1.30 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 152.6, 135.2, 132.4, 132.0, 130.1, 128.1, 125.3, 119.5, 109.9, 86.3, 34.9, 31.1.

HRMS (ESI): Calcd for C₂₄H₂₄SiNa [M+Na]⁺: 363.1539; found: 363.1538

((4-pentylphenyl)ethynyl)diphenylsilane 3h

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3h** as a colorless oil (64.8 mg, 61% yield).

 $\mathbf{R}\mathbf{f} = 0.7$ (Petroleum ethe);

¹**H NMR (400 MHz, CDCl₃)** δ 7.76 – 7.69 (m, 4H), 7.46 (d, J = 8.0 Hz, 2H), 7.43 – 7.35 (m, 6H), 7.13 (d, J = 8.0 Hz, 2H), 5.30 (s, 1H), 2.59 (t, 2H), 1.60 (dd, J = 14.7, 7.5 Hz, 2H), 1.35 – 1.26 (m, 4H), 0.88 (t, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.5, 135.2, 132.4, 132.2, 130.1, 128.4, 128.1, 119.6, 110.0, 86.3, 35.9, 31.4, 30.9, 22.5, 14.0.

HRMS (ESI): Calcd for C₂₅H₂₆SiNa [M+Na]⁺: 377.1696; found: 377.1694

((4-fluorophenyl)ethynyl)diphenylsilane 3i

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3i** as a colorless oil (57.1 mg, 63% yield).

 $\mathbf{R}\mathbf{f} = 0.7$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.73 – 7.70 (m, 4H), 7.53 (dd, J = 8.6, 5.5 Hz, 2H), 7.44 – 7.39 (m, 6H), 7.02 (t, J = 8.6 Hz, 2H), 5.29 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 162.2 (d, J = 249 Hz), 135.2, 134.3 (d, J = 8 Hz), 132.0, 130.2, 128.2, 118.6, 115.7 (d, J = 22 Hz), 108.3, 87.0.

HRMS (EI): Calcd for C₂₀H₁₅FSi [M]⁺: 302.0927; found: 302.0920

((4-chlorophenyl)ethynyl)diphenylsilane 3j

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3j** as a colorless oil (57.2 mg, 60% yield).

 $\mathbf{R}\mathbf{f} = 0.7$ (Petroleum ether);

¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.69 (m, 4H), 7.49 – 7.46 (m, 2H), 7.44 – 7.39 (m, 6H), 7.32 – 7.29 (m, 2H), 5.29 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 135.3, 135.2, 133.4, 131.8, 130.2, 128.7, 128.2, 120.9, 108.1, 88.4. HRMS (EI): Calcd for C₂₀H₁₅ClSi [M]⁺: 318.0632; found: 318.0622

4-((diphenylsilyl)ethynyl)benzonitrile 3k

NC SiHPh₂

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3k** as a colorless oil (51.9 mg, 56% yield).

 $\mathbf{Rf} = 0.5$ (Petroleum ether /EtOAc = 20:1);

¹**H NMR (400 MHz, CDCl₃)** δ 7.73 – 7.68 (m, 4H), 7.62 (s, 4H), 7.45 – 7.40 (m, 6H), 5.31 (s, 1H). ¹³**C NMR (101 MHz, CDCl₃)** δ 135.2, 134.3, 132.7, 132.0, 131.3, 130.4, 128.3, 127.2, 112.5, 107.0, 92.6.

HRMS (EI): Calcd for C₂₁H₁₅NSi [M]⁺: 309.0974; found: 309.0967

diphenyl(m-tolylethynyl)silane 31

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **31** as a colorless oil (68.8 mg, 77% yield).

 $\mathbf{R}\mathbf{f} = 0.7$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** δ 7.76 – 7.71 (m, 4H), 7.44 – 7.37 (m, 8H), 7.24 – 7.20 (m, 1H), 7.16 (d, J = 7.6 Hz, 1H), 5.30 (s, 1H), 2.32 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 138.0, 135.8, 135.2, 132.8, 132.2, 130.1, 129.3, 128.2, 122.3, 109.8, 100.0, 86.7, 21.2.

HRMS (ESI): Calcd for C₂₁H₁₈SiNa [M+Na]⁺: 321.1070; found: 321.1066

((3-methoxyphenyl)ethynyl)diphenylsilane 3m

MeO <mark>─</mark>─SiHPh₂

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3m** as a colorless oil (62.2 mg, 66% yield).

 $\mathbf{Rf} = 0.6$ (Petroleum ether /EtOAc = 20:1);

¹**H NMR (400 MHz, CDCl₃)** δ 7.72 (dd, J = 7.5, 1.5 Hz, 4H), 7.43 – 7.39 (m, 6H), 7.23 – 7.20 (m, 1H), 7.16 (d, 1H), 7.07 (s, 1H), 6.91 (dd, J = 8.2, 1.8 Hz, 1H), 5.30 (s, 1H), 3.78 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.3, 135.2, 132.1, 130.2, 129.4, 128.2, 124.8, 123.4, 116.8, 116.0, 109.4, 87.0, 55.3.

HRMS (ESI): Calcd for C₂₁H₁₈OSiNa [M+Na]⁺: 337.1019; found: 337.1017

((3-fluorophenyl)ethynyl)diphenylsilane 3n

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3n** as a colorless oil (48.9 mg, 54% yield).

 $\mathbf{R}\mathbf{f} = 0.5$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.74 – 7.69 (m, 4H), 7.45 – 7.39 (m, 7H), 7.34 – 7.30 (m, 1H), 7.27 – 7.22 (m, 1H), 7.09 – 7.02 (m, 1H), 5.30 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 162.2 (d, J = 250 Hz), 135.2, 131.8, 130.3, 130.0 (d, J = 9 Hz), 128.2, 128.1(d, J = 3 Hz), 124.3, 119.0 (d, J = 23 Hz), 116.6 (d, J = 21 Hz), 107.9, 88.5. HRMS (EI): Calcd for C₂₀H₁₅FSi [M]⁺: 302.0927; found: 302.0921

((3-chlorophenyl)ethynyl)diphenylsilane 30

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **30** as a colorless oil (55.3 mg, 58% yield).

 $\mathbf{R}\mathbf{f} = 0.7$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** δ 7.73 – 7.69 (m, 4H), 7.54 (s, 1H), 7.44 – 7.39 (m, 7H), 7.34 (d, J = 8.4 Hz, 1H), 7.25 (t, J = 3.9 Hz, 1H), 5.29 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 135.2, 132.0, 131.7, 130.3, 130.2, 129.5, 129.4, 128.2, 128.1, 124.2, 107.6, 88.8.

HRMS (EI): Calcd for C₂₀H₁₅ClSi [M]⁺: 318.0632; found: 318.0626

diphenyl(o-tolylethynyl)silane 3p

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3p** as a colorless oil (70.6 mg, 79% yield).

 $\mathbf{R}\mathbf{f} = 0.6$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.78 – 7.70 (m, 4H), 7.52 (d, J = 7.6 Hz, 1H), 7.44 – 7.36 (m, 6H), 7.26 – 7.19 (m, 2H), 7.13 (t, J = 7.2 Hz, 1H), 5.33 (s, 1H), 2.49 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 141.1, 135.2, 132.6, 132.4, 130.1, 129.5, 129.2, 128.2, 125.6, 122.3, 108.6, 91.0, 20.9.

HRMS (EI): Calcd for C₂₁H₁₈Si [M]⁺: 298.1178; found: 298.1170

((2-methoxyphenyl)ethynyl)diphenylsilane 3q

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3q** as a colorless oil (66.5 mg, 75% yield).

 $\mathbf{R}\mathbf{f} = 0.5$ (Petroleum ether /EtOAc = 20:1);

¹**H NMR (400 MHz, CDCl₃)** δ 7.76 (dd, J = 7.5, 1.7 Hz, 4H), 7.50 (dd, J = 7.6, 1.6 Hz, 1H), 7.41 - 7.38 (m, 6H), 7.34 - 7.30 (m, 1H), 6.91 - 6.85 (m, 2H), 5.33 (s, 1H), 3.88 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 160.9, 135.3, 134.1, 132.5, 130.7, 130.0, 128.1, 120.4, 111.8, 110.7, 106.1, 91.3, 55.8.

((2-chlorophenyl)ethynyl)diphenylsilane 3r

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3r** as a colorless oil (53.4 mg, 56% yield).

 $\mathbf{R}\mathbf{f} = 0.7$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** δ 7.75 (d, J = 7.4 Hz, 4H), 7.59 – 7.55 (m, 1H), 7.44 – 7.38 (m, 7H), 7.30 – 7.25 (m, 1H), 7.24 – 7.19 (m, 1H), 5.33 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 136.6, 135.3, 134.3, 133.9, 131.9, 130.2, 129.3, 128.2, 126.4, 122.5, 105.6, 93.0.

HRMS (ESI): Calcd for C₂₀H₁₅ClSiNa [M+Na]⁺: 341.0524; found: 341.0521

((2-bromophenyl)ethynyl)diphenylsilane 3s

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3s** as a colorless oil (56.5 mg, 52% yield).

 $\mathbf{R}\mathbf{f} = 0.7$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** δ 7.76 (d, J = 7.4 Hz, 4H), 7.58 – 7.54 (m, 2H), 7.43 – 7.38 (m, 6H), 7.26 – 7.17 (m, 2H), 5.33 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 135.3, 134.3, 134.1, 132.5, 131.9, 130.2, 128.2, 127.0, 126.0, 124.7, 107.2, 92.4.

HRMS (ESI): Calcd for C₂₀H₁₅BrSiNa [M+Na]⁺: 385.0019; found: 385.0013

1-(4-((diphenylsilyl)ethynyl)phenyl)ethan-1-one 3t

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3t** as a colorless oil (57.7 mg, 59% yield).

 $\mathbf{Rf} = 0.2$ (Petroleum ether /EtOAc = 20:1);

¹**H NMR (400 MHz, CDCl₃)** δ 7.92 (d, J = 8.2 Hz, 2H), 7.72 (d, J = 6.7 Hz, 4H), 7.63 (d, J = 8.2 Hz, 2H), 7.49 – 7.38 (m, 6H), 5.32 (s, 1H), 2.60 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 197.2, 136.9, 135.2, 132.4, 131.6, 130.3, 128.2, 128.2, 127.2, 108.2, 91.0, 26.7.

HRMS (ESI): Calcd for C₂₂H₁₉OSiNa [M+H]⁺: 327.1200; found: 327.1194

methyl 4-((diphenylsilyl)ethynyl)benzoate 3u

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3u** as a white solid (59.5 mg, 58% yield).

M. p. = 47° C- 48° C;

 $\mathbf{Rf} = 0.4$ (Petroleum ether /EtOAc = 30:1);

¹**H NMR (400 MHz, CDCl₃)** δ 8.01 (d, J = 8.2 Hz, 2H), 7.72 (d, J = 7.0 Hz, 4H), 7.61 (d, J = 8.2 Hz, 2H), 7.46 – 7.41 (m, 6H), 5.31 (s, 1H), 3.92 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.4, 135.2, 132.1, 131.6, 130.3, 129.9, 129.4, 128.2, 127.0, 108.2, 90.6, 52.3.

HRMS (ESI): Calcd for C₂₂H₁₉O₂Si [M+H]⁺: 343.1149; found: 343.1148

methyl 3-((diphenylsilyl)ethynyl)benzoate 3v

MeO₂C -SiHPh₂

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3v** as a colorless oil (65.7 mg, 64% yield).

 $\mathbf{Rf} = 0.4$ (Petroleum ether /EtOAc = 20:1);

¹**H NMR (400 MHz, CDCl₃)** *δ* 8.22 (s, 1H), 8.04 – 8.01 (m, 1H), 7.73 – 7.71 (m, 4H), 7.45 – 7.41 (m, 8H), 5.31 (s, 1H), 3.92 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.2, 136.3, 135.2, 134.3, 133.3, 131.8, 130.2, 130.1, 128.5, 128.2, 122.9, 108.1, 88.5, 52.3.

HRMS (ESI): Calcd for C₂₂H₁₈O₂SiNa [M+Na]⁺: 365.0968; found: 365.0962

((3,5-dimethoxyphenyl)ethynyl)diphenylsilane 3w

MeO SiHPh₂

MeÓ

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3w** as a colorless oil (55.7 mg, 54% yield).

 $\mathbf{Rf} = 0.5$ (Petroleum ether /EtOAc = 20:1);

¹**H NMR (400 MHz, CDCl₃)** δ 7.68 – 7.62 (m, 4H), 7.37 – 7.32 (m, 6H), 6.63 (d, J = 2.2 Hz, 2H), 6.41 (t, J = 2.2 Hz, 1H), 5.22 (s, 1H), 3.71 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 159.4, 134.5, 134.2, 133.2, 131.0, 129.1, 127.1, 127.0, 108.9, 101.7, 54.4.

HRMS (ESI): Calcd for C₂₂H₂₁O₂Si [M+H]⁺: 345.1305; found: 345.1300

([1,1'-biphenyl]-4-ylethynyl)diphenylsilane 3x

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3x** as a white solid (74.5 mg, 69% yield).

M. p. = 60°C–61°C;

 $\mathbf{R}\mathbf{f} = 0.7$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** δ 7.74 (d, J = 7.2 Hz, 4H), 7.62 (d, J = 7.3 Hz, 2H), 7.57 (t, J = 8.0 Hz, 4H), 7.46 – 7.38 (m, 9H), 5.33 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 141.9, 140.2, 135.3, 134.3, 132.7, 132.2, 130.2, 128.9, 128.2, 127.8, 127.0, 121.3, 109.5, 87.9.

HRMS (EI): Calcd for C₂₆H₂₀Si [M]⁺: 360.1334; found: 360.1324

dimethyl(phenyl)(p-tolylethynyl)silane 3y

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3y** as a colorless oil (54.0 mg, 72% yield).

 $\mathbf{R}\mathbf{f} = 0.6$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** δ 7.69 (d, J = 2.6 Hz, 2H), 7.39 (s, 5H), 7.11 (d, J = 7.1 Hz, 2H), 2.34 (s, 3H), 0.48 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 139.0, 137.3, 133.8, 132.1, 129.5, 129.1, 128.0, 119.9, 107.1, 91.2, 21.6, -0.6.

HRMS (ESI): Calcd for C₁₇H₁₈SiNa [M+Na]⁺: 273.1070; found: 273.1064

methyldiphenyl(p-tolylethynyl)silane 3z

SiPh₂Me

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3z** as a colorless oil (65.5 mg, 70% yield).

 $\mathbf{R}\mathbf{f} = 0.4$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** δ 7.70 (d, J = 7.4 Hz, 4H), 7.46 – 7.40 (m, 2H), 7.39 – 7.32 (m, 6H), 7.10 (t, J = 6.6 Hz, 2H), 2.33 (s, 3H), 0.75 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 139.2, 135.6, 134.7, 132.2, 129.7, 129.1, 128.0, 119.9, 108.7, 89.5, 21.6, -1.7.

HRMS (ESI): Calcd for C₂₂H₂₁Si [M+H]⁺: 313.1407; found: 313.1403

triphenyl(p-tolylethynyl)silane 3aa

SiPh₃

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3aa** as a

colorless oil (84.1 mg, 75% yield).

 $\mathbf{R}\mathbf{f} = 0.4$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** δ 7.74 – 7.69 (m, 6H), 7.47 (d, J = 8.0 Hz, 2H), 7.41 – 7.35 (m, 9H), 7.11 (d, J = 8.0 Hz, 2H), 2.32 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 139.4, 135.7, 133.8, 132.2, 130.0, 129.1, 128.1, 119.7, 110.0, 88.3, 21.7.

HRMS (ESI): Calcd for C₂₇H₂₂SiNa [M+Na]⁺: 397.1383; found: 397.1378

benzyldimethyl(p-tolylethynyl)silane 3ab

-SiMe₂Bn

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3ab** as a colorless oil (45.2 mg, 57% yield).

 $\mathbf{R}\mathbf{f} = 0.5$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** δ 7.36 – 7.31 (m, 2H), 7.24 (d, J = 4.8 Hz, 2H), 7.12 (s, 5H), 2.34 (s, 3H), 2.27 (s, 2H), 0.19 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 139.2, 138.9, 131.9, 129.1, 128.5, 128.2, 124.4, 120.0, 106.7, 91.8, 26.5, 21.6, -1.9.

HRMS (ESI): Calcd for C₁₈H₂₁Si [M+H]⁺: 265.1407; found: 265.1402

triethyl(p-tolylethynyl)silane 3ac

SiEt₃

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3ac** as a colorless oil (42.8 mg, 62% yield).

 $\mathbf{R}\mathbf{f} = 0.8$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** δ 7.36 (d, J = 7.9 Hz, 2H), 7.09 (d, J = 7.8 Hz, 2H), 2.34 (s, 3H), 1.04 (t, J = 7.9 Hz, 9H), 0.67 (d, J = 7.9 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 138.5, 131.9, 128.9, 120.2, 106.6, 90.6, 21.5, 7.5, 4.4. HRMS (EI): Calcd for C₁₅H₂₂Si [M]⁺: 230.1491; found: 230.1481

triisopropyl(p-tolylethynyl)silane 3ad

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3ad** as a colorless oil (32.7 mg, 40% yield).

 $\mathbf{R}\mathbf{f} = 0.8$ (Petroleum ethe);

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.37 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 7.8 Hz, 2H), 2.34 (s, 3H), 1.57 (s, 3H), 1.12 (s, 18H).

¹³C NMR (101 MHz, CDCl₃) δ 138.4, 131.9, 128.9, 120.5, 107.3, 89.5, 21.5, 18.6, 11.3. HRMS (EI): Calcd for C₁₈H₂₈Si [M]⁺: 272.1960; found: 272.1955

diethyl(methyl)(p-tolylethynyl)silane 3ae

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3ae** as a colorless oil (34.4 mg, 53% yield).

 $\mathbf{R}\mathbf{f} = 0.8$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.36 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 7.9 Hz, 2H), 2.34 (s, 3H), 1.04 (t, J = 7.9 Hz, 3H), 0.66 (q, J = 7.9 Hz, 2H), 0.20 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 138.7, 132.0, 129.0, 120.2, 105.8, 92.5, 21.6, 8.3, 7.5, -2.0. HRMS (EI): Calcd for C₁₄H₂₀Si [M]⁺: 216.1334; found: 216. 1328

tert-butyldimethyl(p-tolylethynyl)silane 3af

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3af** as a colorless oil (40.0 mg, 58% yield).

 $\mathbf{R}\mathbf{f} = 0.8$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.46 (d, J = 8.1 Hz, 2H), 7.20 (d, J = 7.9 Hz, 2H), 2.44 (s, 3H), 1.10 (s, 9H), 0.28 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 138.5, 131.9, 128.9, 120.2, 106.0, 91.5, 26.1, 21.5, 16.7, -4.5. HRMS (ESI): Calcd for C₁₅H₂₃Si [M+H]⁺: 231.1564; found: 231.1559

(E)-3,7-dimethylocta-2,6-dien-1-yl 4-((diphenylsilyl)ethynyl)benzoate 3ag

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **3ag** as a colorless oil (62.7 mg, 45% yield).

 $\mathbf{R}\mathbf{f} = 0.6$ (Petroleum ether /EtOAc = 20:1);

¹**H NMR (400 MHz, CDCl₃)** δ 8.01 (d, J = 8.5 Hz, 2H), 7.75 – 7.69 (m, 4H), 7.60 (d, J = 8.5 Hz, 2H), 7.48 – 7.38 (m, 6H), 5.46 (dd, J = 7.1, 6.0 Hz, 1H), 5.31 (s, 1H), 5.09 (dd, J = 7.3, 6.1 Hz, 1H), 4.84 (d, J = 7.1 Hz, 2H), 2.15 – 2.06 (m, 4H), 1.76 (s, 3H), 1.67 (s, 3H), 1.60 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.9, 142.6, 135.2, 132.1, 131.9, 131.7, 130.7, 130.3, 129.5, 128.2, 126.8, 123.7, 118.2, 108.3, 90.5, 62.1, 39.5, 26.3, 25.7, 17.7, 16.6.

HRMS (ESI): Calcd for C₃₁H₃₃O₂Si [M+H]⁺: 465.2244; found: 465.2242

(E)-diphenyl(styryl)silane 4a

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **4a** as a colorless oil (55.8 mg, 65% yield).

$\mathbf{Rf} = 0.7$ (Petroleum ether);

¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.60 (m, 4H), 7.48 – 7.45 (m, 2H), 7.43 – 7.36 (m, 6H), 7.34 – 7.27 (m, 3H), 7.09 (d, J = 19.0 Hz, 1H), 6.71 (dd, J = 19.0, 3.2 Hz, 1H), 5.25 (d, J = 3.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 149.1, 137.8, 135.5, 133.6, 129.8, 128.6, 128.6, 128.1, 126.7, 121.5. HRMS (EI): Calcd for C₂₀H₁₈Si [M]⁺: 286.1178; found: 286.1168

(E)-(4-(tert-butyl)styryl)diphenylsilane 4b

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **4b** as a colorless oil (53.4 mg, 52% yield).

 $\mathbf{Rf} = 0.7$ (Petroleum ether);

¹**H** NMR (400 MHz, CDCl₃) δ 7.64 – 7.59 (m, 4H), 7.44 – 7.36 (m, 10H), 7.07 (d, J = 19.0 Hz, 1H), 6.66 (dd, J = 19.0, 3.2 Hz, 1H), 5.24 (d, J = 3.2 Hz, 1H), 1.31 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 151.9, 148.9, 135.5, 135.1, 133.7, 129.7, 128.0, 126.5, 125.5, 120.3, 34.7, 31.2.

HRMS (ESI): Calcd for C₂₄H₂₆SiNa [M+Na]⁺: 365.1696; found: 365.1690

(E)-(4-fluorostyryl)diphenylsilane 4c

SiHPh₂

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **4c** as a colorless oil (59.3 mg, 65% yield).

 $\mathbf{R}\mathbf{f} = 0.7$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** δ 7.66 – 7.56 (m, 4H), 7.46 – 7.36 (m, 8H), 7.05 – 6.99 (m, 3H), 6.61 (dd, J = 19.0, 3.1 Hz, 1H), 5.24 (d, J = 3.0 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 162.9 (d, J = 247 Hz), 147.7, 135.5, 134.1 (d, J = 3 Hz), 133.5, 129.8, 128.4 (d, J = 8 Hz), 128.1, 121.3, 115.5 (d, J = 22 Hz).

HRMS (EI): Calcd for C₂₀H₁₇FSi [M]⁺: 304.1084; found: 304.1073

(E)-(4-chlorostyryl)diphenylsilane 4d

SiHPh₂

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **4d** as a colorless oil (59.5 mg, 62% yield).

 $\mathbf{R}\mathbf{f} = 0.7$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** δ 7.61 (d, J = 7.6 Hz, 4H), 7.44 – 7.36 (m, 8H), 7.29 (d, J = 8.5 Hz, 2H), 7.01 (d, J = 19.0 Hz, 1H), 6.68 (dd, J = 19.0, 3.1 Hz, 1H), 5.23 (d, J = 2.7 Hz, 1H). ¹³**C NMR (101 MHz, CDCl₃)** δ 147.6, 136.3, 135.5, 134.3, 133.3, 129.9, 128.7, 128.1, 127.9, 122.5. **HRMS** (EI): Calcd for C₂₀H₁₇ClSi [M]⁺: 320.0788; found: 320.0777

(E)-(4-bromostyryl)diphenylsilane 4e

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **4e** as a colorless oil (54.6 mg, 50% yield).

 $\mathbf{R}\mathbf{f} = 0.7$ (Petroleum ether);

¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 7.5 Hz, 4H), 7.46 – 7.36 (m, 8H), 7.30 (d, J = 8.4 Hz, 2H), 6.99 (d, J = 19.0 Hz, 1H), 6.70 (dd, J = 19.0, 3.0 Hz, 1H), 5.23 (d, J = 2.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.7, 136.7, 135.5, 133.3, 131.7, 129.9, 128.2, 128.1, 122.7, 122.6. HRMS (EI): Calcd for C₂₀H₁₇BrSi [M]⁺: 364.0283; found: 364.0272

(E)-4-(2-(diphenylsilyl)vinyl)phenyl acetate 4f

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **4f** as a white solid (59.9 mg, 58% yield).

M. p. = 71° C -72° C;

 $\mathbf{Rf} = 0.4$ (Petroleum ether /EtOAc = 20:1);

¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.58 (m, 4H), 7.47 (d, J = 8.6 Hz, 2H), 7.44 – 7.36 (m, 6H), 7.09 – 7.02 (m, 3H), 6.66 (dd, J = 19.0, 3.2 Hz, 1H), 5.24 (d, J = 3.2 Hz, 1H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 150.8, 147.9, 135.6, 135.5, 133.4, 129.8, 128.1, 127.7, 121.9,

```
121.7, 21.1.
```

HRMS (ESI): Calcd for C₂₂H₂₀O₂SiNa [M+Na]⁺: 367.1125; found: 367.1121

bis((3-ethynylphenyl)ethynyl)diphenylsilane 5a

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was

purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give **5b** as a colorless oil (45.4 mg, 35% yield).

 $\mathbf{R}\mathbf{f} = 0.3$ (Petroleum ether);

¹**H NMR (400 MHz, CDCl₃)** δ 7.57 (d, J = 22.4 Hz, 4H), 7.42 (d, J = 8.0 Hz, 6H), 7.34 – 7.28 (m, 4H), 6.99 (d, J = 16.3 Hz, 2H), 6.37 (d, J = 16.2 Hz, 2H), 3.10 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 140.6, 136.4, 135.0, 132.2, 131.8, 129.9, 128.8, 126.7, 123.6, 122.5, 108.9, 89.2, 82.7, 77.8.

HRMS (EI): Calcd for C₃₂H₂₀Si [M]⁺: 432.1334; found: 432.1330

(2-chloroethene-1,1-diyl)dibenzene 6

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, petroleum ether) to give **6** as a colorless oil (5.8 mg, 9% yield).

 $\mathbf{R}\mathbf{f} = 0.6$ (Petroleum ether);

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.31 (m, 5H), 7.22 – 7.15 (m, 5H), 6.78 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 130.7, 128.2, 128.1, 127.7, 127.3, 126.0.

diphenylsilanol 7

Ph₂HSi-OH

On 0.3 mmol scale. Photoredox was conducted following the general procedure. The crude material was purified by flash column chromatography (silica gel, 5% EtOAc in petroleum ether) to give 7 as a colorless oil (19.2 mg, 32% yield).

 $\mathbf{Rf} = 0.4$ (Petroleum ether /EtOAc = 10:1);

¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 4H), 7.43-7.33 (m, 6H), 5.65 (s, 1H), 2.89 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 134.3, 130.3, 128.0, 127.8.

8. Spectra of prepared compounds

¹H NMR spectrum of compound **3a**

¹³C NMR spectrum of compound **3a**

¹H NMR spectrum of compound **3b**

¹H NMR spectrum of compound **3i**

¹H NMR spectrum of compound 3j

---0.00

¹H NMR spectrum of compound **30**

¹H NMR spectrum of compound **3r**

¹³C NMR spectrum of compound **3r**

¹H NMR spectrum of compound **3**w

¹H NMR spectrum of compound 3aa

100 90 fl (ppm)

100 90 fl (ppm)

¹H NMR spectrum of compound 4a

¹H NMR spectrum of compound **4b**

¹H NMR spectrum of compound 4c

¹H NMR spectrum of compound 4d

. 140 100 90 fl (ppm)

¹H NMR spectrum of compound **4f**

60

¹H NMR spectrum of compound **5a**

-3.10

---0.00

9. Reference

[1] Noble, A. MacMillan, D. W. C. J. Am. Chem. Soc., 2014, 136, 11602

[2] Jin, W. W.; Wu, M. C.; Xiong, Z. M. Zhu, G. G. Chem. Commun., 2018, 54, 7924