Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Directed cis-hydrosilylation of borylalkynes to borylsilylalkenes

Kinga Stefanowska^a, Tomasz Sokolnicki^{a,b}, Jędrzej Walkowiak^a Agnieszka Czapik^b and Adrian Franczyk^{a,*}

^aCenter for Advanced Technology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, Poznań 61-614, Poland

E-mail: adrian.franczyk@amu.edu.pl

^bFaculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland

Table of Contents

1. Optimization of the reaction conditions	2
2. Literature screening	7
3. General information	11
3.1 Materials	11
3.2 NMR analyses	11
3.3 GC-MS analysis	11
3.4 Elemental analyses	11
3.5 Melting points	11
3.6 Electrospray ionization mass spectrometry (ESI MS)	11
3.7 FT-IR analysis	12
3.8 X-ray crystallography	12
3.9 Products purification	12
4. General procedures	13
4.1 Hydrosilylation of alkynes 2a–e with silanes 1a-g in the presence of Karstedt's catalyst and Pt(PPl	h3)4 13
4.2 Hydrosilylation of alkyne 2a with silanes 1a-f in the presence of PtO ₂ /XPhos system	13
4.3 Hydrosilylation of alkynes 2a, 2b, 2c, 2d and 2e with silane 1a-g in the presence of [CpRu(CH3CN)3][PF6]	13
5. Products characterization	14
6. NMR spectra	26
7. ESI spectra	82
8. X-Ray crystallography	86
9. References	93

1. Optimization of the reaction conditions

Table S1. Hydrosilylation of 2-ethynyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2a) with silanes 1a-f.

 1a-f
 2a
 3aa-fa
 4aa-fa
 5aa-fa

 SiR¹₃ = SiEt₃ (1a), SiPh₃ (1b), SiMe₂(OEt) (1d), SiMe₂Ph (1e), SiMe₂Bn (1f); Bn= benzyl
 SiAa-fa
 Saa-fa

 $[M] = PtO_2/XPhos (1:2) (I), [M] = Pt_2(dvs)_3 (II), Pt(PPh_3)_4 (III), [CpRu(CH_3CN)_3][PF_6] (IV), Ru(CO)Cl(H)(PCy_3)_2 (V), Ru=CHPh(Cl)_2(PCy_3)_2 (VIII), RhCl(PPh_3)_3 (IX), [M] = PtCl_2/XPhos (1:4) (X)$

Entry	P.C.H	Allarna	[M]	[1].[2].[M]	+ [b]	Tomn	Conversion of 1 [%]	Soloctivity of 2/1/5 [%]
Entry	1	2 AIKylie		[1],[2],[191]	ιμη	Iemp.		NMR (GC-MS)
1 THF, Ar	1a	- 2a	I	1.1.10-2	48	60	100	aa 96/4/0 (97/3/0)
7THF, Ar	14		•	1.1.10	10	100	100	aa $100/0/0$ (93/7/0)
- 3Tol., Air			II	1.1.10-4	24	60	100	aa 55/45/0 (51/49/0)
4Tol., Air			ш	1.1.10 $1.1.10^{-2}$	24	60	100	aa, 60/10/0 (53/47/0)
5DCM, Ar,a			V	1:1:10-2	24	rt	100	aa , 100/0/0 (100/0/0)
6DCM, Ar, a			•	2:1:10-2		rt	50	aa , $100/0/0$ (96/4/0)
7Ar,b			VIII	$1:1.5:10^{-2}$	24	65	100	aa , $100/0/0$ (100/0/0)
8Tol., Ar, c			IX	$1:1:1.1\times10^{-2}$	24	rt	100	aa, 54/16/30 (60/18/22)
9 Tol., Ar, c						100	100	aa , 64/0/36 (66/0/34)
10 DCM, Ar			IV	1:1:2x10 ⁻²	48	rt	100	aa , 10/81/8 (11/80/9)
11 ^{THF, Ar}	1b		I	1:1:10-2	48	100	100	ba , 87/13/0 (88/12/0)
12 ^{Tol., Air}			II	1:1:4x10-4	48	100	100	ba , 92/8/0 (92/8/0)
13 ^{DCM, Ar}			V	1:1:10-2	48	rt	0	ba, -
14 DCM, Ar						40	0	ba, -
15 ^{Tol.,} Ar, c			IX	1:1:1.1x10-2	48	100	47	ba , (97/2/1)
16 ^{Tol., Ar, c}						rt	36	ba , 100/0/0 (100/0/0)
17 ^{MeCN, Ar}			IV	1:1:2x10 ⁻²	24	rt	100	ba , 0/100/0 (0/100/0)*
18 ^{THF, Ar}	1c		I	1:1:10-2	24	100	100	ca, 94/6/0 (94/6/0)
19 ^{THF, Ar}	1d		I	1:1:10-2	48	40	50	da, complex mixture
20 ^{THF, Ar}						100	63	da, complex mixture
21 ^{THF, Ar}	1e		Ι	1:1:10-2	48	100	100	ea, 78/7/15
22 ^{THF, Ar}						60	100	ea , 84/5/11
23 ^{THF, Ar}	1f		Ι	1:1:10-2	24	100	100	fa,95/5/0 (97/3/0)
24 ^{DCM, Ar}			V	1:1:10-2	24	rt	82	fa,94/6/0 (99/1/0)
25 ^{THF, Air, d}			x	1.5:1:2x10-2	24	50	67	fa, 73/27/0**

The results in gray are listed in Table 1 in the manuscript. Reaction conditions: $m_{1a} = 0.0414g$, $m_{1b} = 0.0934g$, $m_{1d} = 0.042g$, $m_{1e} = 0.05g$, $m_{1f} = 0.055g$, 2 ml of solvent; $^{a}m_{1a}/V_{DCM} = 0.116g/ml$; ^bwithout solvent; ^caddition of 5mol% of NaI, $m_{1a}/V_{ToL} = 0.038g/ml$, NaI and silane was mixed for 2h at room temperature. Then the mixture was cooled to 0°C and alkyne was added; $^{d}m_{1f}/V_{THF} = 0.208g/ml$; *product precipitated as a white solid during the process. **complex mixture of products observed on 29 Si NMR. Dvs= 1,3-divinyl-1,1,3,3-tetramethyldisiloxane; XPhos= 2-dicyclohexylphosphino-2',4',6'-tri*iso*propylbiphenyl. Conversions of reagents were determined by ¹H NMR spectroscopy and GC-MS. The selectivity was determined by ¹H, ¹³C and ²⁹Si NMR spectroscopy.

Table S2. Hydrosilylation of 1,2-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyne (2b) with silanes 1a-f.

SIR¹₃ = SiEt₃ (1a), SiPh₃ (1b), SiMe(OSiMe₃)₂ (1c), SiMe₂(OEt) (1d), SiMe₂Ph (1e), SiMe₂Bn (1f); Bn= benzyl [M] = Pt₂(dvs)₃ (II), Pt(PPh₃)₄ (III), PtCl₂ (VI), PtO₂ (VII)

Entry	R₃Si H	Alkyne	[M]	[1]:[2]:[M]	t [h]	Temp.	Conversion of 1 [%]	Selectivity of 3=4/5 [%]
	1	2				[°C]		NMR (GC-MS)
1 ^{Tol., Air}	1a	2b	II	1:1:10-4	24	rt	62	ab , 100/0 (99/1)
2 ^{Tol., Air}				1:1:10-3		rt	94	ab , 100/0 (99/1)
3 ^{Tol., Air}				1:1:10-2		rt	94	ab , 100/0 (99/1)
4 ^{Tol., Air}					48	rt	100	ab , 100/0 (99/1)
5 ^{Tol., Air}				1:1:10-4	24	60	81	ab , (95/5)
6 ^{Tol., Air}					48	60	93	ab , (96/4)
7 ^{Tol., Air}			III	1:1:10-2	24	rt	94	ab , 100/0 (100/0)
8 ^{Tol., Air}					48	rt	97	ab , 100/0 (100/0)
9 ^{Tol., Air}					120	rt	100	ab , 100/0 (100/0)
10 ^{Tol., Air}					24	60	94	ab , 95/5 (95/5)
11 ^{Tol., Air}					48	60	99	ab , 95/5 (94/6)
12 ^{Tol., Air}						100	98	ab , 93/7 (94/6)
13 ^{Tol., Ar}			VI	1:1:10-2	24	rt	100	ab , (100/0)
14 ^{Tol., Ar}					48	60	100	ab , 95/5
15 ^{Tol., Air}	1b		III	1:1:10-2	24	100	100	bb , 95/5
16 ^{Tol., Air}						120	100	bb , 100/0 (100/0)
17 ^{Tol., Air}	1c		III	1:1:10-2	24	60	100	cb , 96/4 (96/4)
18 ^{Tol., Ar}			VII	1:1:10-2	24	60	84	cb , 100/0
19 ^{Tol., Ar}					48	60	90	cb , 100/0
20 ^{Tol., Air}	1d		II	1:1:10-2	48	50	24	db , complex mixture
21 ^{Tol., Air}						rt	12	db , complex mixture
22 ^{Tol., Air}			III	1:1:10-2	48	60	33	db , complex mixture
23 ^{Tol., Ar}			VI	1:1:10-2	48	60	8	db , complex mixture
24 ^{Tol., Ar}			VII	1:1:10-2	48	60	36	db , complex mixture
25 ^{Tol., Ar}				1:1.05:10-2		60	42	db , complex mixture
26 ^{Tol., Air}	1e		II	1:1:10-2	48	rt	60	eb , 87/13
27 ^{Tol., Air}	1f		III	1:1:10-2	24	100	100	fb , 100/0 (93/7)

The results in gray are listed in Table 1 in the manuscript. Reaction conditions: $m_{1a} = 0.0414g$, $m_{1b} = 0.0934g$, $m_{1c} = 0.0802g$, $m_{1d} = 0.04g$, $m_{1e} = 0.05g/ml$, $m_{1f} = 0.055g$; 2 ml of toluene. dvs= 1,3-divinyl-1,1,3,3-tetramethyldisiloxane; Conversions of reagents were determined by ¹H NMR spectroscopy and GC-MS. The selectivity was determined by ¹H, ¹³C and ²⁹Si NMR spectroscopy.

ł

Table S3. Hydrosilylation of 2-((*tert*-butyldimethylsilanyl)ethynyl)-4,4,5,5-tetramethyl-(1,3,2)dioxaborolane(2c) with silanes 1a-f.

R ¹ ₃ SiH + 1a-f SiR ¹ ₃ = SiE [M] = Pt ₂ (dv	Si = 2 t ₃ (1a), SiPh ∕s) ₃ (II), Pt(P	С 3 (1b), SiMe Ph ₃) ₄ (III), [e(OSiM	[M] solvent e ₃) ₂ (1c), SiMe CH ₃ CN) ₃][PF ₆]	Si R ¹ ₃ Si <u>3</u> 2Ph (1e), (IV), PtCI	B-O H ac-fc SiMe ₂ Bn (₂ (VI)	+ Si H SiR 4ac-fc (1f); Bn= benzyl	+ other products ¹ 3 5ac-fc
Entry	R₃Si H	Alkyne	[M]	[1]:[2]:[M]	t [h]	Temp.	Conversion of 1 [%]	Selectivity of 3/4/5 [%]
	1	2				[°C]		NMR (GC-MS)
1 ^{Tol., Air}	1a	2c	II	1:1:10-4	168	rt	0	ac,-
2 ^{Tol., Air}					48	60	61	ac , (41/59/0)
3 ^{Tol., Air}			III	1:1:10-2	24	60	100	ac, 0/100/0 (3/97/0)
4 ^{Tol, Ar}			VI	1:1:10-2	48	60	93	ac , 0/100/0 (0/100/0)
5 ^{Tol., Ar}				1.05:1:10-2	48	60	96	ac , 0/100/0 (0/100/0)
6 ^{Tol., Ar}					24	100	90	ac , 0/100/0 (0/100/0)
7 ^{Tol., Air}	1b		II	1:1:4x10-4	92	60	0	bc, -
8 ^{Tol., Air}					24	100	100	bc , 0/100/0
9 Tol., Air			III	1.05:1:10-2	24	60	20	bc , complex mixture
10 ^{Tol., Air}						100	44	bc , complex mixture
$11^{ ext{Tol., Air}}$				1.1:1:10-2	48	120	45	bc , complex mixture
12 ^{Tol., Air}				1:1:10-2	24	120	82	bc , (8/92/0)
13 ^{Tol., Air}						100	52	bc , (8/92/0)
14 ^{Tol., Air}	1c		II	1:1:4x10-4	48	60	0	cc, -
15 ^{Tol., Air}			III	1:1:10-2	24	60	100	cc , 5/95/0
16 ^{Tol., Ar}			IV	1:2:10-1	24	rt	0	cc, -
17 ^{Tol., Ar}				1:1:10-1	24	100	0	cc, -
18 ^{Tol., Air}	1d		III	1:1:10-2	24	60	100	dc , 0/100/0
19 ^{Tol., Air}	1e		II	1:1:4x10-4	24	100	100	ec , 0/100/0
20 ^{Tol., Ar}			IV	1:1:10-1	24	rt	93	ec , (10/15/75)
21 ^{DCM, Ar}						38	100	ec , (3/18/79)
22 ^{Tol., Air}	1f		II	1:1:4x10-4	24	100	100	fc , 0/100/0
23 ^{Tol., Ar}			III	1:1:10-2	24	100	100	fc, (3/97/0)
$24^{\mathrm{DCM}, \mathrm{Ar}}$			IV	$1:1:10^{-1}$	96	rt	87	fc , (9/45/46)
25 ^{DCM, Ar}						38	86	fc , (11/43/46)
26 ^{1,4-dioxane, Ar}				1:1:2x10-1	24	rt	38	fc, complex mixture

The results in gray are listed in Table 1 in the manuscript. Reaction conditions: $m_{1a} = 0.0414g$, $m_{1b} = 0.0934g$, $m_{1c} = 0.0802g$, $m_{1d} = 0.04g$, $m_{1e} = 0.05g$, $m_{1f} = 0.055g$, 2ml of solvent. Dvs= 1,3-divinyl-1,1,3,3-tetramethyldisiloxane; Conversions of reagents were determined by ¹H NMR spectroscopy and GC-MS. The selectivity was determined by ¹H, ¹³C and ²⁹Si NMR spectroscopy.

Table S4. Hydrosilylation of 2-phenyl-1-ethynylboronic acid pinacol ester (2d) with silanes 1a-g.

The results in gray are listed in Table 1 in the manuscript. Reaction conditions: $m_{1a} = 0.0414g$, $m_{1c} = 0.0802g$, $m_{1d} = 0.04g$, $m_{1e} = 0.05g$ /ml, $m_{1f} = 0.055g$, $m_{1g} = 0.064g$; 2ml of solvent; dvs= 1,3-divinyl-1,1,3,3-tetramethyldisiloxane; Conversions of reagents were determined by ¹H NMR spectroscopy and GC-MS. The selectivity was determined by ¹H, ¹³C and ²⁹Si NMR spectroscopy.

Table S5. Hydrosilylation of 3-methoxy-1-propyn-1-ylboronic acid pinacol ester (2e) with silanes 1b-g.

 $SiR_{3}^{1} = SiPh_{3}$ (1b), $SiMe(OSiMe_{3})_{2}$ (1c), $SiMe_{2}Bn$ (1f); Bn = benzyl, $Si(OSiMe_{3})_{3}$ (1g) $[M] = Pt_2(dvs)_3 (II), Pt(PPh_3)_4 (III), [CpRu(CH_3CN)_3][PF_6] (IV)$ Conversion of 1 [%] R₃SiH Alkyne [M] [1]:[2]:[M] t [h] Temp. Selectivity of 3/4/5 [%] Entry NMR (GC-MS) 1 2 [°C] 1^{Tol., Air} 1b Π 1:1:4x10-4 100 2e 24 100 be, (0/52/48) 2^{Tol., Air} 1:1:10-2 100 **be**, (0/40/60) rt 3^{Tol., Air} 60 100 **be**, (0/40/60) 4^{Tol., Air} 100 100 **be**, (0/67/33) 5^{Tol., Air} III 1:1:10-2 24 **be**, (14/86/0) 120 100 6^{Tol., Air} Π 1:1:10-2 1c 24 rt 100 ce, (0/55/45) 7^{Tol., Air} 1:1:4x10-4 60 100 ce, (0/40/60) 8Tol., Air 1:1:10-2 100 ce, 17/51/32 (9/54/37) 60 9^{Tol., Air} III 1:1:10-2 24 rt 0 ce, -10^{Tol., Air} 100 III 1:1:10-2 ce, (31/79/0) 24 60 11^{Tol., Ar} IV 1:1:2x10-1 24 rt 100 ce, 100/0/0 (96/2/2) 12^{DCM, Ar, a} 1:1:10-2 rt 100ce, 71/29/0 (68/25/7) 13^{Tol., Air} Π 1:1:4x10-4 1f 48rt 100 fe, 3/88/9 (7/85/8) 14^{Tol., Air} 1:1:10-2 24 100 fe, (0/80/20) rt 15^{Tol., Air} 1:1:10-2 III 24 rt 100fe, (31/69/0) **16**^{Tol., Ar} IV 1:1:2x10-1 24 100 fe, (80/10/10) rt $17^{DCM, Ar, b}$ 1.5:1:10-2 fe, (84/7/9*) rt 67 **18**^{Tol., Ar} 1:1:2x10-1 ge, 100/0/0 (100/0/0) IV 24 100 1g rt

The results in gray are listed in Table 1 in the manuscript. Reaction conditions: $m_{1b} = 0.0934g$, $m_{1c} = 0.0802g$, $m_{1f} = 0.055g$, $m_{1g} = 0.064g$, 2 ml of solvent; $a_{m1f}/V_{DCM} = 0.029g/ml$; $b_{m1f}/V_{DCM} = 0.022g/ml$; * side-products were observed on ²⁹Si NMR. Dvs - 1,3-divinyl-1,1,3,3-tetramethyldisiloxane; Conversions of reagents were complete in each experiment and determined by ¹H NMR spectroscopy and for processes with **1b-f** confirmed by GC-MS. The selectivity was determined by ¹H, ¹³C and ²⁹Si NMR spectroscopy.

2. Literature screening

Table S6. Synthesis methods of borylsilylalkenes 3aa, 3ba, 4ba and 5ba, described in the literature.

Entry	Compound	Synthesis method	Catalyst	Reaction yield of product (Isolated yield) [%]	Reaction conditions	Characterization method
1	\times	Hydroboration of	Ru(CO)Cl(H)(PPh ₃) ₃	94 (78)	60°C, 24h, solvent: PEG	¹ H and ¹³ C NMR, MS
	o /	(triethylsilyl)acetylene with	(1mol%)		10, Argon atmosphere,	
	H B-O	pinacolborane			20% excess of pinacolborane.	
2	Et ₃ Si H	Hydroboration of	Ru(CO)Cl(H)(PPh ₃) ₃	69-91 (82) for IL	100°C, 15 min., solvent:	¹ H NMR, MS
	3aa	(triethylsilyl)acetylene with	(1mol%)	(([EMPyrr][OTf])	IL/scCO ₂ , Argon	
		pinacolborane ²		70-91 (-) for IL	atmosphere, 20%	
				([EMPyrr]	excess of	
				[NTf2])	pinacolborane.	
				10 catalytic		
				cycles		
3		Hydroboration of	Ru(CO)Cl(H)(PPh ₃) ₃	97 (99)	100°C, 3h, solvent:	¹ H, ¹³ C, ²⁹ Si and ¹¹ B
		(triethylsilyl)acetylene with	(1mol%)		scCO ₂ , Argon	NMR, MS, Elemental.
		pinacolborane ³			atmosphere, 20%	Anal.
					excess of	
4					1000C Ob with such	
4				95 (-)	100°C, 3n, without	
					atmosphere 20%	
					avcass of	
					ninacolhorane	
5				60 (-)	100°C 3h solvent:	
5				00 (-)	toluene Argon	
					atmosphere. 20%	
					excess of	
					pinacolborane	

6	$\langle \rangle$	Hydroboration of	Ru(CO)Cl(H)(PPh ₃) ₃	3 (-)	100°C, 3h, solvent:	-
		(triethylsilyl)acetylene with	(1mol%)		toluene. Obtained as a	
	0-в н	pinacolborane ³			side product.	
7		Hydroboration of	Ru(CO)Cl(H)(PPh ₃) ₃	5 (-)	60°C, 24h, solvent: PEG	-
	Et ₂ Si H	(triethylsilyl)acetylene with	(1mol%)		10. Obtained as a side	
	4aa	pinacolborane ¹			product.	
8		Hydroboration of	Ru(CO)Cl(H)(PPh ₃) ₃	4 -7 (-)	100°C, 15min – 1.5h,	-
		(triethylsilyl)acetylene with	(1mol%)		solvent: [EMPyrr][OTf]	
		pinacolborane ²			or [EMPyrr][NTf2].	
					Obtained as a side	
					product.	
9	\bigvee	Hydroboration of	Ru(CO)Cl(H)(PPh ₃) ₃	3 (-)	100°C, 3h, solvent:	IR, ¹ H and ¹³ C NMR
	•	(triphenylsilyl)acetylene with	(1mol%)		toluene. Obtained as a	
	н в-0	pinacolborane ³			side product.	
10	\rightarrow	Hydroboration of	Ru(CO)Cl(H)(PPh ₃) ₃	58 (52)	100°C, 3h, solvent:	¹ H, ¹³ C, ²⁹ Si and ¹¹ B
	Ph ₃ Si H	(triphenylsilyl)acetylene with	(1mol%)		scCO ₂ ; 20% excess of	NMR, MS
	3ba	pinacolborane ³			pinacolborane	
11				90 (-)	100°C, 3h, without	
					solvent; 20% excess of	
					pinacolborane	
12				81 (78)	100°C, 3h, solvent:	
					toluene; 20% excess of	
					pinacolborane	
13	$\langle \rangle$	Gem-silylborylation of 1-bromo-1-	-	-	-110°C, 10 min., solvent:	¹ H and ¹³ C NMR, MS,
	+	lithioethene with			THF, Et2O.	HRMS
	Ò —в́ н	(triphenylsilyl)(pinacolato)borane ⁴				
14	\succ	Hydroboration of	Ru(CO)Cl(H)(PPh ₃) ₃	5 (-)	100°C, 3h, solvent:	-
	Ph ₃ Si H	(triphenylsilyl)acetylene with	(1mol%)		toluene. Obtained as a	
	4ba	pinacolborane ³			side product.	

Scheme S1. Methods for the synthesis of borylsilylalkenes described in our work.

3. General information

3.1 Materials

2-Ethynyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (90%, Sigma-Aldrich), 1,2-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyne (97%, Sigma-Aldrich), 2-((tert-Butyldimethylsilanyl)ethynyl)-4,4,5,5tetramethyl-(1,3,2)dioxaborolane (97%, Sigma-Aldrich), 2-Phenyl-1-ethynylboronic acid pinacol ester (90%, Sigma-Aldrich), 3-methoxy-1-propyn-1-ylboronic acid pinacol ester (96%, Sigma-Aldrich), (3,3-Dimethyl-1-butynyl)boronic acid diisopropyl ester (97%, Sigma-Aldrich), Triethylsilane (97%, Sigma-Aldrich), Triphenylsilane (97%, Sigma-Aldrich), 1,1,1,3,5,5,5-Heptamethyltrisiloxane (97%, Sigma-Aldrich), Dimethylethoxysilane (94%, Acros Organics), Dimethylphenylsilane (>98%, Sigma-Aldrich), Benzyldimethylsilane (98%, Fluorochem), Tris(trimethylsiloxy)silane (≥98%, Sigma-Aldrich), Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane (Karstedt's catalyst, solution in xylene, Pt 2%, Sigma-Aldrich), platinum (IV) oxide (surface area \geq 75m²/g, Sigma-Aldrich), XPhos (97%, Sigma-Aldrich), Tetrakis(triphenylphosphine)platinum(0) (97%, Sigma-Aldrich), platinum(II) chloride (98%, Sigma- Aldrich), Tris(acetonitrile)cyclopentadienylruthenium(II) hexafluorophosphate (98%, Acros Organics), Grubbs catalyst (97%, Sigma-Aldrich), The ruthenium catalyst [Ru(CO)Cl(H)(PCy₃)₂] was prepared according to literature procedures.²⁴ Tris(triphenylphosphine)rhodium(I) chloride (99.9%, Sigma-Aldrich), chloroform-d (99.96 atom% D, Sigma-Aldrich), benzene d⁶ (99.6 atom% D, Sigma-Aldrich), dichloromethane (anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer, Sigma-Aldrich), 1,4-dioxane (anhydrous, 99.8%, Sigma-Aldrich), acetone (suitable for HPLC, ≥99.9%, Sigma-Aldrich), *n*-pentane (Lach-Ner). Toluene and tetrahydrofuran were dried using standard procedures, deoxygenated and stored over molecular sieves 4 Å under argon atmosphere (toluene). Argon (99,999%) was purchased from Linde. Silica gel (MN-Kieselgel 60, 0.04-0.063 mm (230-400 mesh ASTM; Sigma-Aldrich)) was used as received.

3.2 NMR analyses

¹H, ¹³C, ²⁹Si and ¹¹B NMR spectra were recorded at 25°C on a Bruker Ultra Shield 300 MHz and Bruker Ascend 400 MHz NANOBAY spectrometers. CDCl₃ or C₆D₆ were used as a solvents and for internal deuterium lock. Chemical shifts are reported in ppm with reference to the residual portion solvent peak for ¹H and ¹³C NMR, to TMS for ²⁹Si NMR and to BF₃-Et₂O for ¹¹B NMR. The multiplicities were reported as follow: singlet (s), doublet (d), triplet (t) and multiplet (m). To prove the regioselectivity of the process 2D Heteronuclear single quantum correlation (HSQC) and selective gradient NOE experiments for selected products were performed.

3.3 GC-MS analysis

GC-MS analyses were performed on a Bruker 450-GC with a 30 m Varian DB-5 0.25 mm capillary column and a Scion SQ-MS mass spectrometry detector. Two temperature programs were used a) 80°C (3 min), 10°C/min, 250°C (30 min), b) 150°C (3 min), 10°C/min, 280°C (44.5 min).

3.4 Elemental analyses

Elemental analyses were carried out on a Vario EL III analyzer. The content of hydrogen and carbon was obtained as data in percentage.

3.5 Melting points

Melting points were determined using Buchi Switzerland Melting Point M-565 instrument.

3.6 Electrospray ionization mass spectrometry (ESI MS)

High resolution mass spectra (HRMS) were obtained using Impact HD mass spectrometer (Q-TOF type instrument equipped with electrospray ion source; Bruker Daltonics, Germany). The sample solutions (DCM:MeOH) were infused into the ESI source by a syringe pump (direct inlet) at the flow rate of 3 μ L/min. The instrument was operated under the following optimized settings: end plate voltage 500 V;

capillary voltage 4.2 kV; nebulizer pressure 0.3 bar; dry gas (nitrogen) temperature 200°C; dry gas flow rate 4 L/min. The spectrometer was previously calibrated with the standard tune mixture.

3.7 FT-IR analysis

FT-IR spectra were measured on a Nicolet iS50 FT-IR spectrometer (Thermo Scientific) equipped with a built-in ATR accessory with ATR diamond unit. In all experiments, 16 scans at a resolution of 2 cm⁻¹ were used to record the spectra.

3.8 X-ray crystallography

A colourless single crystals of **3ba**, **4ba**, **3bb**, **3fb**, **6dc** suitable for X-ray structural analysis were obtained by slow evaporation of dichloromethane (3ba), hexane (4ba), hexane (3bb), hexane (3fb), and chloroform (6dc). The diffraction data were collected at 130 K with an Oxford Diffraction SuperNova diffractometer using Cu K α radiation ($\lambda = 1.54184$ Å) equipped with mirror monochromator. The intensity data were collected and processed using CrysAlis PRO software.²⁵ The structures were solved by direct methods with the program SHELXT 2018/2²⁶ and refined by full-matrix least-squares method on F² with SHELXL 2018/3.²⁷ The carbon-bound hydrogen atoms were refined as riding on their carriers and their displacement parameters were set equal to 1.5Ueq(C) for the methyl groups and 1.2Ueq(C) for the remaining H atoms. Absolute structures of the compounds were confirmed using Flack parameter.²⁸ A summary of the crystallographic data is given in Table S7 and selected geometrical data are juxtaposed in Table S8. Molecular graphics were generated with Olex2²⁹ and Mercury 2021.1.0 software.³⁰ ORTEP representation of the molecular structures of the reported compounds are presented in Figures S117-121. Asymmetric unit of crystal of compound 3ba consist six symmetrically independent molecules (Z'=6, Z=12) additionally four of them are disordered. Assuming the phenyl rings remain stationary, the tail of molecule ended with the Bpin may take an alternative orientation as shown in Figure S118. Refined occupancy factors for disordered fragment are 0.88 and 0.12. For lower occupied fragment the reasonable relative motion of atoms was imposed and the anisotropic displacement parameters for atom C1C' was restrained to behave more isotropically. Molecule of compound (3bb) is disordered in crystal structure - one of the Bpin group swings around the C1-B1 bond (as showed in the Figure 122) and refined occupancy factors for disordered fragment are 0.82 and 0.12. For lower occupied fragment reasonable relative motion of atoms was imposed (RIGU 0.002 0.002 restrains were used). In crystal of compound **6dc**, the molecule is located on special position (Z'=1/2, Z=4) with O3 atom situated on two-fold axis. X-ray measurement for the compound 3fb was performed on a twinned crystal and the volume ratio of the domain in crystal is 0.72: 0.28. Assymetric unit consist two independent molecules and both of them are disordered and the Bpin group swings around the C1-B1 bond (as showed in the Figure 123). Refined occupancy factors for disordered fragment are 0.55 and 0.45. For disordered fragment reasonable relative motion of atoms was imposed (RIGU and ISOR restrains were used).

CCDC 2083476, 2107079, 2107080, 2184400 and 2193621 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

3.9 Products purification

Purification of **3aa**, **4aa**, **3ba**, **4ba**, **3ca**, **3fa**, **4ac**, **4bc**, **4cc**, **4dc**, **4fc**, **4ad**, **4bd**, **3cd**, **4ed**, **4fd**, **3gd**, **4be**, **3ce**, **4fe**, **3fe**, **3ge**.

The UV-absorbing products were purified on silica by flash chromatography (Biotage IsoleraOne chromatograph) with UV detector (λ_1 = 255 nm, λ_2 = 280 nm). Purification details: cartridge 10 g, flow rate: 8 mL/min, length: 10 CV (CV = column volume), phase: hexane/ethyl acetate (step 1: hexane 100%)

by 4 CV, step 2: gradient 10%/CV by 4 CV, step 3: hexane 50% by 2 CV). The non-aromatic products were purified on silica using standard column chromatography using n-hexane/ethyl acetate (97/3–8/2) as eluents. Products were characterized by GC-MS or ESI MS, ¹H, ¹³C, ¹¹B, ²⁹Si NMR, FT-IR analyses. For new compounds in solid state, melting points were estimated as well.

Purification of 3ab, 3bb, 3cb, 3fb, 4ea.

The reaction mixture was evaporated to remove all volatiles. Subsequently, the crude product was dissolved in *n*-pentane and filtered through the syringe filter (0.2 μ m). After evaporation of *n*-pentane, the product was heated (approx. 70-130 °C) and condensed at cold-finger trap under vacuum (<10⁻³ mbar). The products were dried for 6 hours under vacuum. Isolated products were characterized by ¹H, ¹³C, ²⁹Si, ¹¹B NMR, GC-MS or ESI MS.

4. General procedures

4.1 Hydrosilylation of alkynes 2a-e with silanes 1a-g in the presence of Karstedt's catalyst and Pt(PPh_3)_4.

To a solution of silane **1a-g** (40 – 93.4 mg, 0.298 - 0.358 mmol) and an appropriate borylalkyne (**2a-e**) (0.298 - 0.358 mmol) in 2 ml of toluene, Karstedt's catalyst or $Pt(PPh_3)_4$ was added, depending on the experiment in the amount of $4x10^{-4}$ – 10^{-2} mmol of Pt. Subsequently, the reaction mixture was heated to 60 - 120°C or kept at room temperature and stirred for 24 or 48h. Since the THF boiling point is 65-57°C, the reaction in this solvent at 120°C was performed in a Schlenk flask with a Rotaflo® stopcock. Afterwards, crude reaction mixture was analyzed by GC-MS and ¹H NMR analyzes and purified according to the procedure in 3.7 subsection.

4.2 Hydrosilylation of alkyne 2a with silanes 1a-f in the presence of PtO₂/XPhos system.

All reactions were carried out under an argon atmosphere. To a Schlenk flask with a Rotaflo® stopcock equipped with a magnetic stirrer PtO₂ (1mol%) and 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (2 mol%) (XPhos) were added. The catalyst and XPhos were dried under vacuum for 1 hour. Then the flask was flushed quickly with argon and 1ml of anhydrous and degassed THF was added. The mixture was stirred at 60°C for 30 minutes until the homogeneous system was obtained. After this time 2-ethynyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane **2a** (0.356 - 0.358 mmol), an appropriate silane (41.4 – 93.4 mg, 0.356 - 0.358 mmol) and 1mL of THF were added. Reactions were carried out at 60°C or 100°C and stirred for 24 or 48h, depending on the experiment. Afterwards, crude reaction mixture was analyzed by GC-MS and ¹H NMR analyzes and purified according to the procedure in 3.7 subsection.

4.3 Hydrosilylation of alkynes 2a, 2b, 2c, 2d and 2e with silane 1a-g in the presence of [CpRu(CH₃CN)₃][PF₆].

All reactions were carried out under an argon atmosphere. To a Schlenk flask with a Rotaflo® stopcock equipped with a magnetic stirrer $[CpRu(CH_3CN)_3][PF_6]$ and 2mL of toluene/THF/DCM/1,4-dioxane, CH₃CN or acetone were added. Than a silane **1a-g** (40 – 93.4 mg, 0.298 - 0.358 mmol) and an appropriate borylalkyne (**2a-e**) (0.298 - 0.358 mmol) were added. Subsequently, the reaction mixture was heated to 60 - 120°C or kept at room temperature and stirred for 24 or 48h. Since the THF boiling point is 65-57°C, the reaction in this solvent at 120°C was performed in a Schlenk flask with a Rotaflo® stopcock. Afterwards, crude reaction mixture was analyzed by GC-MS and ¹H NMR analyzes and purified according to the procedure in 3.7 subsection.

5. Products characterization (*E*)-Triethyl(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)silane (3aa)

¹H NMR (CDCl₃, 300 MHz, δ, ppm): 0.58 (q, 6H, *J*_(H,H)= 7.45 Hz), 0.93 (t, 9H, *J*_(H,H)= 7.88 Hz), 1.28 (s, 12H), 6.26 (d, 1H, *J*_(H,H)= 22.04 Hz), 7.06 (d, 1H, *J*_(H,H)= 21.98 Hz). ¹³C NMR (CDCl₃, 75 MHz, δ, ppm): 3.13, 7.45, 24.96, 83.47, 154.83. Signal from carbon atom BC= is not observed.²⁹Si NMR (CDCl₃, 79 MHz, δ, ppm): - 0.62. GC-MS (EI, 70 eV) m/z (rel. int., %): 253.1 (M⁺ - 15.18, 2.7), 239.0 (32.7), 210.9 (41.2), 157.0 (15.2), 154.9 (15.7), 110.9 (10.1), 85.0 (20.1), 84.1 (18.1), 83.0 (100.0), 58.9 (18.5), 55.0 (15.5). FT-IR (cm⁻¹): 2954, 2911, 2875, 1599, 1493, 1451, 1371, 1354, 1295, 1245, 1206, 1142, 1108, 1071, 1057, 856, 831, 792, 760, 698. Elem. Anal. calcd for C₁₄H₂₉BO₂Si: C, 62.68; H, 10.90; found C, 62.78; H, 10.95. Isolated yield = 93%, colorless oil.

Triethyl(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)silane (4aa)

¹**H NMR** (CDCl₃, 300 MHz, δ, ppm): 0.63 (q, 6H, *J*_(H,H)= 7.88 Hz), 0.91 (t, 9H, *J*_(H,H)= 7.82 Hz), 1.24 (s, 12H), 6.22 (d, 1H, *J*_(H,H)= 5.34 Hz), 6.67 (d, 1H, *J*_(H,H)= 5.63 Hz). ¹³**C NMR** (CDCl₃, 75 MHz, δ, ppm): 3.26, 7.55, 24.89, 83.04, 144.91. Signal from carbon atom BC= is not observed. ²⁹**Si NMR** (CDCl₃, 79 MHz, δ, ppm): 2.74. ¹¹**B NMR** (CDCl₃, 96 MHz, δ, ppm): 30.92. **GC-MS** (EI, 70 eV) m/z (rel. int., %): 253.1 (M⁺ - 15.18, 0.7), 239.0 (10.6), 156.9 (22.9), 154.9 (7.6), 85.0 (9.1), 84.1 (9.1), 83.0 (100.0), 58.9 (9.1), 55.0 (24.2). **Elem. Anal.** calcd for C₁₄H₂₉BO₂Si: C, 62.68; H, 10.90; found C, 62.83; H, 10.97. Isolated yield = 57%, colorless oil.

(E)-Triphenyl(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)silane (3ba)

¹H NMR (CDCl₃, 300 MHz, δ, ppm): 1.29 (s, 12H), 6.39 (d, 1H, *J*_(H,H)= 21.64 Hz), 7.59 (d, 1H, *J*_(H,H)= 21.62 Hz), 7.33-7.54 (m, 16H). ¹³C NMR (CDCl₃, 75 MHz, δ, ppm): 24.98, 83.67, 127.99, 129.70, 133.87, 136.21, 150.68. Signal from carbon atom BC= is not observed. ²⁹Si NMR (CDCl₃, 79 MHz, δ, ppm): -17.53. ¹¹B NMR (CDCl₃, 96 MHz, δ, ppm): 29.46. GC-MS (EI, 70 eV) m/z (rel. int., %): 397.1 (M⁺ - 15.3, 0.9), 355.0 (19.5), 259.0 (13.4), 225.0 (10.3), 206.9 (10.9), 180.9 (17.3), 104.8 (11.7), 83.9 (100.0), 68.9 (30.6). FT-IR (cm⁻): 3067, 1588, 1484, 1427, 1368, 1324, 1266, 1141, 1111, 1018, 997, 968, 892, 847, 763, 689, 615, 511, 480, 454.

Elem. Anal. calcd for C₂₆H₂₉BO₂Si: C, 75.72; H, 7.09; found C, 76.04; H, 7.23. **mp** = 138.5 °C. Isolated yield = 81%, white solid.

X-ray determined for the first time, data presented on page 86.

Triphenyl(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)silane (4ba)

¹**H NMR** (CDCl₃, 300 MHz, δ, ppm): 1.14 (s, 12H), 6.29 (d, 1H, *J*_(H,H)= 5.38 Hz), 6.96 (d, 1H, *J*_(H,H)= 5.39 Hz), 7.33-7.60 (m, 15H). ¹³**C NMR** (CDCl₃, 75 MHz, δ, ppm): 24.72, 83.48, 127.66, 129.30, 134.89, 136.52, 149.99. Signal from carbon atom BC= is not observed. ²⁹**Si NMR** (CDCl₃, 79 MHz, δ, ppm): -13.57. ¹¹**B NMR** (CDCl₃, 96 MHz, δ, ppm): 31.62. **FT-IR** (cm⁻¹): 3067, 3047, 2979, 1588, 1571, 1482, 1380, 1371, 1360, 1356, 1323, 1301, 1217, 1149, 1129, 1108, 992, 970, 850, 735, 698, 625, 547, 516, 490, 468, 433. **Elem. Anal.** calcd for C₂₆H₂₉BO₂Si: C, 75.72; H, 7.09; found C, 75.98; H, 7.16. **mp** = 145.0 °C. Isolated yield = 72%, white solid.

X-ray determined for the first time, data presented on page 86.

¹H NMR (CDCl₃, 300 MHz, δ, ppm): 0.08 (s, 21H), 1.27 (s, 12H), 6.28 (d, 1H, *J*_(H,H)= 21.76 Hz), 6.36 (d, 1H, *J*_(H,H)= 5.92 Hz, 4ca), 6.61 (d, 1H, *J*_(H,H)= 6.13 Hz, 4ca), 6.89 (d, 1H, *J*_(H,H)= 21.87 Hz). ¹³C NMR (CDCl₃, 75 MHz, δ, ppm): 1.99, 24.72, 24.92, 24.97, 83.51, 154.11. Signal from carbon atom BC= is not observed. ²⁹Si NMR (CDCl₃, 79 MHz, δ, ppm): -36.02, 8.29. ¹¹B NMR (CDCl₃, 96 MHz, δ, ppm): 29.54. Traces of product 4ca are visible on spectras. ESI MS (m/z) ([M+Na]): 397.2. FT-IR (cm⁻¹): 2979, 2958, 1598, 1371, 1328, 1282, 1252, 1146, 1040, 970, 836, 800, 780, 753, 615. Elem. Anal. calcd for C₁₅H₃₅BO₄Si₃: C, 48.11; H, 9.42; found C, 48.15; H, 9.43. Isolated yield = 91%, colorless oil.

(E) - Benzyldimethyl (1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) vinyl) silane (3fa/4fa = 95/5)

¹**H** NMR (CDCl₃, 300 MHz, δ, ppm): 0.05 (s, 6H), 1.29 (s, 12H), 2.16 (s, 2H), 6.28 (d, 1H, *J*_(H,H)= 21.87 Hz), 6.99-7.22 (m, 6H, multiplet and dublet overlapped). ¹³**C** NMR (CDCl₃, 75 Hz, δ, ppm): -3.82, 24.92, 25.43, 83.53, 124.15, 128.26, 128.36, 139.83, 155.88. Signal from carbon atoms BC= is not observed. ²⁹Si NMR (CDCl₃, 79 MHz, δ, ppm): -6.28. Traces of product **4fa** are visible on spectras. **GC-MS** (EI, 70 eV) m/z (rel. int., %): 302.3 (M⁺- 15.4, 4.1), 210.9 (68.6), 209.9 (17.7), 126.8 (18.3), 110.8 (17.4), 84.9 (29.4), 82.9 (100.0), 58.9 (18.6), 55.0 (15.6). **Elem. Anal.** calcd for C₁₇H₂₇BO₂Si: C, 67.55; H, 9.00; found C, 67.72; H, 9.02. Isolated yield = 86%, colorless oil.

(E)-(1,2-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)triethylsilane (3ab)

¹**H NMR** (CDCl₃, 300 MHz, δ, ppm): 0.62 (q, 6H, *J*_(H,H)= 7.79 Hz), 0.92 (t, 9H, *J*_(H,H)= 7.88 Hz), 1.26 (s, 12H), 1.32 (s, 12H), 6.57 (s, 1H). ¹³**C NMR** (CDCl₃, 75 MHz, δ, ppm): 3.32, 7.52, 24.67, 25.03, 25.36, 83.52, 83.63. Signals from carbon atoms BC= are not observed. ²⁹**Si NMR** (CDCl₃, 79 MHz, δ, ppm): 3.16. **FT-IR** (cm⁻¹): 2977, 2953, 2911, 2975, 1578, 1445, 1369, 1329, 1298, 1269, 1232, 1139, 1110, 1006, 968, 856, 789, 734, 671, 578. **GC-MS** (EI, 70 eV) m/z (rel. int., %): 368.3 (M⁺ - 25.94, 0.3), 365.1 (32.8), 364.0 (14.0), 253.1 (19.3), 182.9 (10.2), 55.0 (22.7), 101.0 (12.0), 84.1 (20.6), 83.0 (100.0), 69.0 (14.4). **Elem. Anal.** calcd for C₂₀H₄₀B₂O₄Si: C, 60.93; H, 10.23; found C, 61.17; H, 10,27. Isolated yield = 90%, pale yellow oil. The traces of alkyne **2b** are visible on spectras.

¹**H** NMR (CDCl₃, 300 MHz, δ, ppm): 0.96 (s, 12H), 1.19 (s, 12H), 6.65 (s, 1H), 7.21 – 7.53 (m, 15H). ¹³**C** NMR (CDCl₃, 75 MHz, δ, ppm): 25.01, 25.04, 83.69, 83.82, 127.67, 129.35, 134.43, 136.80. Signals from carbon atoms BC= are not observed. ²⁹Si NMR (CDCl₃, 79 MHz, δ, ppm): -14.97. ¹¹B NMR (CDCl₃, 96 MHz, δ, ppm): 22.34, 29.11. FT-IR (cm⁻¹): 3067, 3049, 2978, 2930, 1568, 1428, 1370, 1305, 1268, 1232, 1188, 1137, 1108, 1028, 969, 909, 846, 831, 786, 732, 698, 673, 646, 572, 498. ESI MS- (m/z) ([M+Na]): 561.3. Elem. Anal. calcd for C₃₂H₄₀B₂O₄Si: C, 71.39; H, 7.49; found C, 71.50; H, 7.50. mp = 132.9 °C. Isolated yield = 98%, white solid.

X-ray determined for the first time, data presented on page 87.

(*E*)-3-(1,2-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)-1,1,1,3,5,5,5-heptamethyltrisiloxane (3cb/4cb = 96/4)

¹**H** NMR (CDCl₃, 300 MHz, δ, ppm): 0.09 (s, 21H), 1.26 (s, 12H), 1.30 (s, 12H), 6.67 (s, 1H). ¹³**C** NMR (CDCl₃, 75 MHz, δ, ppm): 0.14, 2.08, 25.01, 25.20, 83.44, 83.64. Signals from carbon atoms BC= are not observed. ²⁹Si NMR (CDCl₃, 79 MHz, δ, ppm): -35.11, 7.83. ¹¹B NMR (CDCl₃, 96 MHz, δ, ppm): 28.69. Traces of product **4cb** are visible on spectras. **FT-IR** (cm⁻¹): 2978, 2958, 1585, 1370, 1331, 1302, 1250, 1232, 1140, 1039, 836, 801, 785, 753, 688, 578, 542. **ESI MS**- (m/z) ([M+Na]): 523.3. **Elem. Anal.** calcd for C₂₁H₄₆B₂O₆Si₃: C, 50.40; H, 9.26; found C, 50.51; H, 9.27. Isolated yield = 90%, colorless oil. MALDI TOF MS analysis from this sample was unsuccessful.

(E)-Benzyl(1,2-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)dimethylsilane (3fb)

¹H NMR (CDCl₃, 300 MHz, δ, ppm): 0.03 (s, 6H), 1.28 (s, 12H), 1.35 (s, 12H), 2.20 (s, 2H), 6.62 (s, 1H), 6.99 – 7.21 (m, 5H). ¹³C NMR (CDCl₃, 75 MHz, δ, ppm): -3.65, 25.04, 25.37, 25.56, 83.78, 83.79, 124.02, 128.21, 128.48, 140.26. Signals from carbon atoms BC= are not observed. ²⁹Si NMR (CDCl₃, 79 MHz, δ, ppm): -2.46. ¹¹B NMR (CDCl₃, 96 MHz, δ, ppm): 28.31. GC-MS (EI, 70 eV) m/z (rel. int., %): 370.4 (M⁺ - 57.86, 1.2), 337.4 (8.9), 237.3 (8.1), 83.2 (100.0), 55.1 (23.9). FT-IR (cm⁻¹): 2978, 1597, 1492, 1449, 1368, 1334, 1302, 1270, 1233, 1202, 1136, 1054, 970, 848, 814, 763, 700, 671, 579, 482. Elem. Anal. calcd for C₂₃H₃₈B₂O₄Si: C, 64.51; H, 8.94; found C, 64.68; H, 8.97. mp = 95.1 °C. Isolated yield = 91%, white solid.

X-ray determined for the first time, data presented on page 87.

(*E*)-*Tert*-butyldimethyl(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(triethylsilyl)vinyl)silane (4ac)

¹**H NMR** (CDCl₃, 300 MHz, δ, ppm): 0.10 (s, 6H), 0.62 (q, 6H, *J*_(H,H)= 7.34 Hz), 0.89 – 0.94 (m, 18H), 1.28 (s, 12H), 7.07 (s, 1H). ¹³**C NMR** (CDCl₃, 75 MHz, δ, ppm): -4.84, 3.53, 7.63, 16.94, 25.64, 26.69, 83.24, 160.01.

Signal from carbon atoms BC= is not observed. ²⁹Si NMR (CDCl₃, 79 MHz, δ, ppm): -2.40, 3.58. ¹¹B NMR (CDCl₃, 96 MHz, δ, ppm): 31.39. GC-MS (EI, 70 eV) m/z (rel. int., %): 369.3 (M⁺- 13.24, 0.2), 326.2 (27.0), 325.1 (100.0), 324.0 (22.7), 243.0 (41.2), 184.9 (45.2), 183.8 (11.0), 86.9 (11.1), 84.1 (10.1), 83.0 (70.9), 72.9 (29.2), 68.9 (10.5), 58.9 (17.2), 55.0 (18.7). FT-IR (cm⁻¹): 2978, 2951, 2875, 2856, 1540, 1462, 1415, 1371, 1295, 1245, 1142, 1110, 1005, 972, 855, 836, 823, 808, 792, 736, 717. Elem. Anal. calcd for C₂₀H₄₃BO₂Si₂: C, 62.80; H, 11.33; found C, 63.04; H, 11.37. Isolated yield = 89%, pale yellow oil.

(*E*)-*Tert*-butyldimethyl(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(triphenylsilyl)vinyl)silane (4bc)

¹**H NMR** (CDCl₃, 300 MHz, δ, ppm): 0.00 (s, 6H), 0.69 (s, 9H), 0.87 (s, 12H), 7.10-7.48 (m, 16H, overlapped singlet and multiplet). ¹³**C NMR** (CDCl₃, 75 MHz, δ, ppm): -4.91, 16.94, 25.30, 26.59, 83.47, 127.59, 129.24, 135.30, 136.77, 167.08. Signal from carbon atoms BC= is not observed. ²⁹**Si NMR** (CDCl₃, 79 MHz, δ, ppm): -14.53, -1.41. **GC-MS** (EI, 70 eV) m/z (rel. int., %): 511.4 (M⁺ - 15.27, 0.9), 471.4 (15.9), 470.4 (40.1), 469.3 (100.0), 309.2 (40.9), 291.2 (25.0), 259.2 (50.2), 197.2 (26.6), 181.2 (23.2), 135.1 (45.9), 105.1 (32.6), 83.2 (93.1), 84.2 (49.9), 73.2 (64.2), 69.3 (56.4), 68.3 (21.3). **FT-IR** (cm⁻¹): 3049, 2852, 1528, 1467, 1428, 1349, 1300, 1244, 1139, 1107, 972, 853, 823, 738, 504. **Elem. Anal.** calcd for C₃₂H₄₃BO₂Si₂: C, 72.98; H, 8.23; found C, 72.78; H, 8.21. **mp** = 87.2 °C. Isolated yield = 93%, white solid.

(*E*)-3-(2-(*Tert*-butyldimethylsilyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)-1,1,1,3,5,5,5-heptamethyltrisiloxane (4cc)

¹**H NMR** (CDCl₃, 300 MHz, δ, ppm): 0.09, 0.10 (s, 27H), 0.91 (s, 9H), 1.27 (s, 12H), 7.33 (s, 1H). ¹³**C NMR** (CDCl₃, 75 Hz, δ, ppm): -4.95, 0.27, 2.09, 16.92, 25.39, 26.65, 83.21, 161.67. Signal from carbon atoms BC= is not observed. ²⁹**Si NMR** (CDCl₃, 79 MHz, δ, ppm): -35.46, -2.10, 7.40. **Elem. Anal.** calcd for C₂₁H₄₉BO₄Si₄: C, 51.61; H, 10.11; found C, 51.72; H, 10.13. Isolated yield = 87%, colorless oil.

(*E*)-*Tert*-butyl(2-(ethoxydimethylsilyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)dimethylsilane (4dc)

¹**H NMR** (CDCl₃, 300 MHz, δ, ppm): 0.10 (s, 6H), 0.20 (s, 6H), 0.89 (s, 9H), 1.17 (t, 3H, *J*_(H,H)= 6.98 Hz), 1.29 (s, 12H), 3.64 (q, 2H, *J*_(H,H)= 6.99 Hz), 7.23 (s, 1H). ¹³**C NMR** (CDCl₃, 75 Hz, δ, ppm): -4.97, -1.42, 16.87, 18.58, 25.48, 26.67, 58.60, 83.43, 160.59. Signal from carbon atoms BC= is not observed. ²⁹**Si NMR** (CDCl₃, 79 MHz, δ, ppm): -1.62, 6.67. **GC-MS** (EI, 70 eV) m/z (rel. int., %): 313.1 (M⁺- 57.5, 24.2), 231.0 (100.0), 214.1 (19.8), 212.0 (24.5), 185.0 (46.3), 183.9 (12.0), 142.9 (16.5), 84.0 (12.3), 83.0 (30.0), 74.9 (29.7), 73.0 (48.6), 69.0 (20.4), 59.0 (16.3), 55.0 (21.0). **FT-IR** (cm⁻¹): 2978, 2953, 2927, 2856, 1541, 1438, 1371, 1297, 1244, 1142, 1054, 975, 857, 821, 785, 677. **Elem. Anal.** calcd for C₁₈H₃₉BO₃Si₂: C, 58.36; H, 10.61; found C, 58.34; H, 10.61. Isolated yield = 91%, colorless oil.

1,3-Bis((*E*)-2-(tert-butyldimethylsilyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)-1,1,3,3-tetramethyldisiloxane (6dc)

¹**H NMR** (CDCl₃, 300 MHz, δ, ppm): 0.09 (s, 12H), 0.16 (s, 12H), 0.90 (s, 18H), 1.27 (s, 24H), 7.25 (s, 2H). ¹³**C NMR** (CDCl₃, 75 Hz, δ, ppm): -4.86, 1.34, 16.92, 25.47, 26.72, 83.24, 159.63. Signals from carbon atoms BC= are not observed. ²⁹**Si NMR** (CDCl₃, 79 MHz, δ, ppm): -3.24, -2.14. ¹¹**B NMR** (CDCl₃, 96 MHz, δ, ppm): 31.86. **FT-IR** (cm⁻¹): 2983, 2953, 2933, 2922, 2849, 1536, 1470, 1381, 1369, 1352, 11330, 1296, 1242, 1145, 1086, 978, 933, 872, 858, 824, 800, 780, 760, 723, 659. **Elem. Anal.** calcd for C₃₂H₆₈B₂O₅Si₄: C, 57.64; H, 10.28; found C, 57.62; H, 10.28. Isolated yield = 85%, colorless oil.

X-ray determined for the first time, data presented on page 88.

(*E*)-*Tert*-butyl(2-(dimethyl(phenyl)silyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)dimethylsilane (4ec)

¹**H NMR** (CDCl₃, 300 MHz, δ, ppm): 0.03 (s, 6H), 0.32 (s, 6H), 0.80 (s, 9H), 1.09 (s, 12H), 7.06 (s, 1H), 7.24-7.47 (m, 5H). ¹³**C NMR** (CDCl₃, 75 Hz, δ, ppm): -4.95, -2.10, 16.94, 25.44, 26.66, 83.36, 127.59, 128.81, 134.52, 139.11, 160.99. Signal from carbon atoms BC= is not observed. ²⁹**Si NMR** (CDCl₃, 79 MHz, δ, ppm): -7.10, -1.93. ¹¹**B NMR** (CDCl₃, 96 MHz, δ, ppm): 31.38. **GC-MS** (EI, 70 eV) m/z (rel. int., %): 345.0 (M⁺- 57.3, 48.7), 185.0 (100.0), 186.0 (17.6), 183.9 (25.9), 142.9 (20.3), 134.9 (47.5), 104.9 (16.3), 82.9 (52.3), 72.9 (35.3), 55.0 (17.5). **FT-IR** (cm⁻¹): 2978, 2952, 2926, 2882, 2855, 1541, 1470, 1346, 1297, 1242, 1141, 1112, 974, 812, 772, 730, 698. **Elem. Anal.** calcd for C₂₂H₃₉BO₂Si₂: C, 65.64; H, 9.77; found C, 65.97; H, 9.91. Isolated yield = 89%, colorless oil. (*E*)-Benzyl(2-(tert-butyldimethylsilyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)dimethylsilane (4fc)

¹**H NMR** (CDCl₃, 300 MHz, δ, ppm): 0.05 (s, 6H), 0.10 (s, 6H), 0.86 (s, 9H), 1.32 (s, 12H), 2.20 (s, 2H), 6.97-7.17 (m, 6H, overlapped singlet and multiplet). ¹³**C NMR** (CDCl₃, 75 Hz, δ, ppm): -4.89, -3.25, 16.94, 25.62, 26.18, 26.64, 83.45, 123.83, 128.07, 128.51, 140.59, 160.90. Signal from carbon atoms BC= is not observed. ²⁹**Si NMR** (CDCl₃, 79 MHz, δ, ppm): -2.30, -2.29. ¹¹**B NMR** (CDCl₃, 96 MHz, δ, ppm): 31.55. **GC-MS** (EI, 70 eV) m/z (rel. int., %): 359.5 (M⁺⁻ 56.8, 31.9), 260.4 (23.7), 259.3 (100.0), 258.3 (23.6), 243.3 (25.4), 149.2 (17.9), 83.2 (82.0), 73.2 (81.0), 69.3 (20.6), 55.2 (31.5). **FT-IR** (cm⁻¹): 2951, 2856, 1597, 1469, 1335, 1298, 1239, 1155, 1057, 972, 854, 763, 698, 645, 477. **Elem. Anal.** calcd for C₂₃H₄₁BO₂Si₂: C, 66.32; H, 9.92; found C, 66.45; H, 9.95. **mp** = 62.1 °C. Isolated yield = 91%, white solid.

(E)-Triethyl(2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)silane (4ad)

¹**H NMR** (CDCl₃, 300 MHz, δ, ppm): 0.77 (q, 6H, *J*_(H,H)= 7.91 Hz), 1.04 (t, 9H, *J*_(H,H)= 7.87 Hz), 1.32 (s, 12H), 7.25 – 7.47 (m, 6H, overlapped singlet and multiplet). ¹³**C NMR** (CDCl₃, 75 MHz, δ, ppm): 3.76, 7.56, 25.26, 83.49, 127.77, 127.95, 128.10, 140.75, 151.30. Signal from carbon atoms BC= is not observed. ²⁹Si **NMR** (CDCl₃, 79 MHz, δ, ppm): 4.00. ¹¹**B NMR** (CDCl₃, 96 MHz, δ, ppm): 32.53. **FT-IR** (cm⁻¹): 2978, 2952, 2910, 2874, 1591, 1568, 1493, 1459, 1371, 1292, 1252, 1210, 1140, 1109, 1005, 976, 940, 856, 797, 747, 695. **Elem. Anal.** calcd for C₂₀H₃₃BO₂Si: C, 69.75; H, 9.66; found C, 69.86; H, 9,68. Isolated yield = 76%, colorless oil.

(E)-Triphenyl(2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)silane (4bd)

¹**H NMR** (CDCl₃, 300 MHz, δ, ppm): 0.96 (s, 12H), 7.26-7.70 (m, 21H, overlapped singlet and multiplet). ¹³**C NMR** (CDCl₃, 75 MHz, δ, ppm): 24.89, 83.69, 127.76, 128.17, 128.27, 128.35, 129.47, 134.85, 136.82, 140.25, 156.79. Signal from carbon atom SiBC= is not observed. ²⁹**Si NMR** (CDCl₃, 79 MHz, δ, ppm): -14.24. **FT-IR** (cm⁻¹): 3068, 2984, 2926, 1591, 1568, 1481, 1427, 1387, 1371, 1343, 1304, 1251, 1206, 1137, 1107, 978, 947, 854, 800, 740, 697, 592, 574, 493. **Elem. Anal.** calcd for C₃₂H₃₃BO₂Si: C, 78.68; H, 6.81; found C, 78.92; H, 6.83. Isolated yield = 85%, white solid.

(*E*)-1,1,1,3,5,5,5-Heptamethyl-3-(2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)trisiloxane (4cd)

¹**H NMR** (CDCl₃, 300 MHz, δ, ppm): 0.01 (s, 18H), 0.14 (s, 3H), 1.09 (s, 12H), 6.20 (s, 1H), 7.12-7.23 (m, 5H). ¹³**C NMR** (CDCl₃, 75 MHz, δ, ppm): -0.43, 1.86, 24.73, 83.35, 126.17, 127.52, 127.87, 143.92, 164.19. Signal from carbon atom SiBC= is not observed. ²⁹**Si NMR** (CDCl₃, 79 MHz, δ, ppm): -38.13, 8.16. **GC-MS** (EI, 70 eV) m/z (rel. int., %): 450.6 (M⁺, 3.5), 335.0 (12.2), 293.0 (7.7), 223.0 (7.4), 222.1 (12.6), 221.0 (57.2), 206.9 (19.8), 84.0 (100.0), 82.9 (7.9), 73.0 (53.4), 69.0 (10.9). **FT-IR** (cm⁻¹): 2958, 1725, 1588, 1499, 1371, 1346, 1252, 1144, 1046, 838, 783, 754, 698, 540. **Elem. Anal.** calcd for C₂₁H₃₉BO₄Si₃: C, 55.98; H, 8.72; found C, 55.78; H, 8.69. Isolated yield = 79%, colorless oil.

(E)-Dimethyl(phenyl)(2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)silane (4ed)

¹**H NMR** (CDCl₃, 300 MHz, δ, ppm): 0.38 (s, 6H), 1.05 (s, 12H), 7.12-7.52 (m, 11H, overlapped singlet and multiplet). ¹³**C NMR** (CDCl₃, 75 MHz, δ, ppm): -1.91, 25.06, 83.59, 127.76, 128.05, 128.08, 128.12, 129.08, 134.58, 138.53, 140.34, 152.25. Signal from carbon atom SiBC= is not observed. ²⁹**Si NMR** (CDCl₃, 79 MHz, δ, ppm): -6.29. **FT-IR** (cm⁻¹): 3068, 2978, 1624, 1592, 1569, 1494, 1449, 1427, 1378, 1371, 1351, 1246, 1210, 1140, 1111, 998, 974, 944, 856, 820, 790, 771, 748, 695, 643, 577, 469. **Elem. Anal.** calcd for C₂₂H₂₉BO₂Si: C, 72.52; H, 8.02; found C, 72.65; H, 8.04. Isolated yield = 88%, colorless oil.

(E)-Benzyldimethyl(2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)silane (4fd)

¹H NMR (CDCl₃, 300 MHz, δ, ppm): 0.21 (s, 6H), 1.36 (s, 12H), 2.36 (s, 2H), 7.11-7.47 (m, 11H, overlapped singlet and multiplet). ¹³C NMR (CDCl₃, 75 MHz, δ, ppm): -3.07, 25.22, 26.22, 83.63, 124.01, 127.95, 127.97, 128.10, 128.15, 128.54, 140.15, 140.45, 151.51. Signal from carbon atom SiBC= is not observed. ²⁹Si NMR (CDCl₃, 79 MHz, δ, ppm): -1.74. ¹¹B NMR (CDCl₃, 96 MHz, δ, ppm): 32.45. GC-MS (EI, 70 eV) m/z (rel. int., %): 363.1 (M⁺, -15.3, 1.5), 288.2 (17.3), 287.0 (81.6), 285.9 (18.7), 205.0 (77.7), 203.8 (19.1), 188.9 (45.8), 186.9 (39.1), 158.9 (26.5), 144.9 (36.9), 134.9 (42.8), 120.9 (35.4), 84.1 (18.3), 83.0 (100.0), 68.9 (15.3), 55.0 (51.7). FT-IR (cm⁻¹): 2960, 2865, 1592, 1570, 1493, 1451, 1371, 1294, 1251, 1206, 1140, 1086, 945, 908, 827,

791, 733, 697, 603, 558. **Elem. Anal.** calcd for C₂₃H₃₁BO₂Si: C, 73.01; H, 8.26; found C, 73.36; H, 8.28. Isolated yield = 83%, yellow oil.

(*E*)-Benzyldimethyl(1-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)silane (3fd/5fd = 89/11)

¹**H** NMR (CDCl₃, 300 MHz, δ, ppm): 0.01 (s, 6H), 1.04 (s, 12H), 2.12 (s, 2H), 6.16 (s, 1H), 6.19-7.23 (m, 10H). ¹³**C** NMR (CDCl₃, 75 MHz, δ, ppm): -3.48, 24.67, 24.99, 83.35, 124.14, 126.05, 127.28, 127.73, 128.23, 128.43, 139.81, 144.90, 166.16. Signal from carbon atom SiBC= is not observed. ²⁹Si NMR (CDCl₃, 79 MHz, δ, ppm): -3.68. GC-MS (EI, 70 eV) m/z (rel. int., %): 363.1 (M⁺, -15.3, 1.5), 288.2 (17.3), 287.0 (81.6), 285.9 (18.7), 205.0 (77.7), 203.8 (19.1), 188.9 (45.8), 186.9 (39.1), 158.9 (26.5), 144.9 (36.9), 134.9 (42.8), 120.9 (35.4), 84.1 (18.3), 83.0 (100.0), 68.9 (15.3), 55.0 (51.7). FT-IR (cm⁻¹): 3059, 3024, 2978, 1623, 1599, 1570, 1493, 1450, 1378, 1352, 1294, 1246, 1140, 1108, 1056, 1001, 975, 945, 903, 833, 749, 696, 623, 555, 474. Elem. Anal. calcd for C₂₃H₃₁BO₂Si: C, 73.01; H, 8.26; found C, 72.81; H, 8.24. Isolated yield = 86%, traces of product **5fd** are visible on spectras, colorless oil.

¹**H NMR** (CDCl₃, 300 MHz, δ, ppm): 0.03 (s, 27H), 1.10 (s, 12H), 6.27 (s, 1H), 7.17-7.23 (m, 5H). ¹³**C NMR** (CDCl₃, 75 MHz, δ, ppm): 1.79, 24.72, 83.30, 126.27, 127.45, 128.13, 143.84, 160.38. Signal from carbon atom SiBC= is not observed. ²⁹**Si NMR** (CDCl₃, 79 MHz, δ, ppm): -82.67, 8.49. **GC-MS** (EI, 70 eV) m/z (rel. int., %): 524.1 (M⁺, 9.6), 410.2 (11.4), 409.0 (29.0), 367.0 (10.5), 282.1 (13.9), 281.0 (49.9), 209.0 (12.5), 208.1 (20.2), 206.9 (100.0), 84.0 (42.5), 83.0 (23.4), 72.9 (95.3), 69.0 (16.7). FT-IR (cm⁻¹): 2959, 1590, 1443, 1371, 1348, 1251, 1051, 968, 837, 754, 734, 698, 602, 545. **Elem. Anal.** calcd for C₂₃H₄₅BO₅Si₄: C, 52.64; H, 8.64; found C, 52.60; H, 8.63. Isolated yield = 91%, colorless oil.

(E)-(3-Methoxy-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-1-yl)triphenylsilane (4be)

¹**H NMR** (CDCl₃, 300 MHz, δ, ppm): 0.93 (s, 12H), 3.26 (s, 3H), 4.07 (d, 2H, *J*_(H,H)= 4.37 Hz), 6.42 (t, 1H, *J*_(H,H)= 4.35 Hz), 7.21-7.54 (m, 15H). ¹³**C NMR** (CDCl₃, 75 MHz, δ, ppm): 24.87, 58.41, 74.60, 83.37, 127.65, 129.32, 134.88, 136.67, 156.91. Signal from carbon atom SiBC= is not observed. ²⁹**Si NMR** (CDCl₃, 79 MHz, δ, ppm): -14.34. **FT-IR** (cm⁻¹): 3068, 3048, 2979, 2927, 2821, 1597, 1483, 1428, 1371, 1299, 1256, 1190, 1141, 1107, 1030, 972, 910, 853, 737, 698, 491. **GC-MS** (EI, 70 eV) m/z (rel. int., %): 441.2 (M⁺- 15.3, 1.2), 380.2 (22.0), 379.0 (74.3), 377.9 (16.3), 260.1 (23.1), 259.0 (100.0), 219.0 (19.8), 212.9 (35.4), 183.0 (25.8), 180.9 (57.7), 179.0 (21.1), 174.9 (22.5), 104.9 (37.3), 82.9 (76.3), 58.9 (19.8), 55.0 (30.4). **Elem. Anal.** calcd for C₂₈H₃₃BO₃Si: C, 73.68; H, 7.29; found C, 73.83; H, 7.30. Isolated yield = 71%, colorless oil.

(*E*)-3-(3-Methoxy-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-1-yl)-1,1,1,3,5,5,5-heptamethyltrisiloxane (3ce)

¹**H** NMR (C₆D₆, 300 MHz, δ, ppm): 0.20 (s, 18H), 0.37 (s, 3H), 1.05 (s, 12H), 3.24 (s, 3H), 4.66 (s, 2H), 6.57 (s, 1H). ¹³**C** NMR (C₆D₆, 75 MHz, δ, ppm): 1.19, 2.05, 24.94, 57.94, 75.32, 83.12, 164.28. Signal from carbon atom SiBC= is not observed. ²⁹Si NMR (C₆D₆, 79 MHz, δ, ppm): -36.55, 7.39. FT-IR (cm⁻¹): 2978, 2958, 2819, 1601, 1449, 1371, 1251, 1146, 1046, 837, 785, 753. GC-MS (EI, 70 eV) m/z (rel. int., %): 403.1 (M⁺-15.5, 4.4), 303.0 (14.0), 238.2 (15.8), 237.0 (73.8), 223.1 (11.2), 222.2 (16.4), 221.0 (76.3), 207.0 (40.0), 190.9 (10.4), 84.1 (12.3), 83.0 (11.6), 72.9 (100.0). Elem. Anal. calcd for C₁₇H₃₉BO₅Si₃: C, 48.78; H, 9.39; found C, 48.83; H, 9.40. Isolated yield = 89%, colorless oil.

(*E*)-Benzyl(3-methoxy-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-2-yl)dimethylsilane (3fe)

¹H NMR (CDCl₃, 300 MHz, δ, ppm): 0.05 (s, 6H), 1.29 (s, 12H), 2.22 (s, 2H), 3.33 (s, 3H), 4.31 (d, 2H, *J*_(H,H)= 1.60 Hz), 5.95 (t, 1H, *J*_(H,H)= 1.57 Hz), 5.96-7.22 (m, 5H). ¹³C NMR (CDCl₃, 75 MHz, δ, ppm): -3.43, 25.02, 25.56, 58.07, 75.24, 83.36, 124.05, 128.19, 128.43, 140.25, 163.49. Signal from carbon atom SiBC= is not observed. ²⁹Si NMR (CDCl₃, 79 MHz, δ, ppm): -3.46. FT-IR (cm⁻¹): 3024, 2977, 2927, 2817, 1598, 1493, 1451, 1370, 1325, 1245, 1206, 1142, 1106, 1066, 989, 966, 824, 792, 761, 698, 476. GC-MS (EI, 70 eV) m/z (rel. int., %): 255.0 (M⁺- 91.4, 30.3), 156.1 (11.9), 154.9 (94.2), 153.8 (22.1), 148.9 (11.0), 132.8 (28.6), 123.0 (16.9), 120.9 (25.2), 112.9 (60.7), 90.9 (15.0), 88.9 (100.0), 83.0 (52.7), 81.0 (16.1), 59.0 (28.6), 55.0 (15.6). Elem. Anal. calcd for C₁₉H₃₁BO₃Si: C, 65.89; H, 9.02; found C, 65.80; H, 9.00. Isolated yield = 70%, colorless oil.

(*E*)-Benzyl(3-methoxy-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-1-yl)dimethylsilane (4fe)

¹**H NMR** (CDCl₃, 300 MHz, δ, ppm): 0.05 (s, 6H), 1.31 (s, 12H), 2.21 (s, 2H), 3.33 (s, 3H), 4.11 (d, 2H, *J*_(H,H)= 4.67 Hz), 6.43 (t, 1H, *J*_(H,H)= 4.64 Hz), 6.66-7.21 (m, 5H). ¹³**C NMR** (CDCl₃, 75 MHz, δ, ppm): -3.25, 25.20, 26.06, 58.28, 74.38, 83.31, 123.92, 128.12, 128.43, 128.46, 140.45, 152.73. Signal from carbon atom SiBC= is not observed. ²⁹**Si NMR** (CDCl₃, 79 MHz, δ, ppm): -2.32. **FT-IR** (cm⁻¹): 2977, 2928, 2818, 1599, 1493, 1451, 1371, 1354, 1295, 1245, 1206, 1142, 1108, 1071, 1056, 856, 831, 761, 698. **GC-MS** (EI, 70 eV) m/z (rel. int., %): 332.2 (M⁺- 14.1, 0.2), 255.0 (17.8), 172.9 (15.2), 154.9 (34.2), 120.9 (10.3), 114.1 (10.2), 112.9 (100.0), 90.9 (16.3), 88.9 (15.3), 83.0 (23.8), 58.9 (13.1), 55.0 (20.2). **Elem. Anal.** calcd for C₁₉H₃₁BO₃Si: C, 65.89; H, 9.02; found C, 65.90; H, 9.02. Isolated yield = 73%, colorless oil.

(*E*)-3-(3-Methoxy-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-en-2-yl)-1,1,1,5,5,5-hexamethyl-3-((trimethylsilyl)oxy)trisiloxane (3ge)

¹**H NMR** (CDCl₃, 300 MHz, δ, ppm): 0.10 (s, 27H), 1.27 (s, 12H), 3.29 (s, 3H), 4.18 (d, 2H, *J*_(H,H)= 1.73 Hz), 6.04 (s, 1H). ¹³**C NMR** (CDCl₃, 75 MHz, δ, ppm): 1.92, 25.02, 58.01, 74.20, 83.19, 156.78. Signal from carbon atom SiBC= is not observed. ²⁹**Si NMR** (CDCl₃, 79 MHz, δ, ppm): -81.59, 8.05. **FT-IR** (cm⁻¹): 2958, 1603, 1448, 1371, 1338, 1250, 1050, 836, 754, 686, 595. **GC-MS** (EI, 70 eV) m/z (rel. int., %): 477.1 (M⁺- 15.6, 7.8), 311.0 (35.5), 281.0 (13.0), 276.0 (11.3), 261.0 (13.3), 223.0 (13.9), 209.0 (12.6), 208.0 (19.9), 206.9 (100.0), 192.9 (10.9), 88.9 (13.9), 83.0 (11.7), 73.0 (99.5). **Elem. Anal.** calcd for C₁₉H₄₅BO₆Si₄: C, 46.32; H, 9.21; found C, 46.40; H, 9.22. Isolated yield = 92%, colorless oil.

Diisopropyl (E)-(3,3-dimethyl-1-(triethylsilyl)but-1-en-1-yl)boronate (4af)

¹**H NMR** (C₆D₆, 300 MHz, δ, ppm): 0.74-0.81 (q, 6H, *J*_(H,H)= 7.63 Hz), 1.07-1.20 (m, 30H, overlapped singlet, dublet and triplet), 4.45-4.53 (m, 2H), 6.24 (s, 1H). ¹³**C NMR** (C₆D₆, 75 MHz, δ, ppm): 4.72, 7.87, 24.71, 29.45, 37.75, 65.72, 160.43. Signal from carbon atoms BC= is not observed. ²⁹Si NMR (C₆D₆, 79 MHz, δ, ppm): 0.97. ¹¹B NMR (CDCl₃, 96 MHz, δ, ppm): 29.92. GC-MS (EI, 70 eV) m/z (rel. int., %): 297.4 (M⁺- 29,

30.9), 214.4 (16.9), 213.3 (100), 212.3 (24.9), 87.2 (22.5), 75.2 (8.6), 59.1 (26.3), 57.1 (10.1). **FT-IR** (cm⁻¹): 3182, 2261, 1410, 1192, 712, 631, 544. **Elem. Anal.** calcd for C₁₈H₃₉BO₂Si: C, 66.24; H, 12.04; found C, 66.38; H, 12.06. Isolated yield = 75%, colorless oil.

Figure S2. ¹³C NMR of compound 3aa.

Figure S4. ¹H NMR of compound 4aa.

Figure S6. ²⁹Si NMR of compound 4aa.

Figure S8. ¹H NMR of compound 3ba.

Figure S10. ²⁹Si NMR of compound **3ba**.

Figure S12. ¹H NMR of compound 4ba.

Figure S14. ²⁹Si NMR of compound 4ba.

Figure S16. ¹H NMR of 3ca/4ca mixture 94/6.

Figure S18. ²⁹Si NMR of 3ca/4ca mixture 94/6.

Figure S20. ¹H NMR of 3fa/4fa mixture 95/5.

Figure S22. ²⁹Si NMR of 3fa/4fa mixture 95/5.

Figure S24. ¹³C NMR of compound 3ab.

Figure S26. ¹H NMR of compound 3bb.

Figure S28. ²⁹Si NMR of compound 3bb.

Figure S30. ¹H NMR of 3cb/4cb mixture 96/4.

Figure S32. ²⁹Si NMR of 3cb/4cb mixture 96/4.

Figure S34. ¹H NMR of compound 3fb.

Figure S36. ²⁹Si NMR of compound 3fb.

Figure S38. ¹H NMR of compound 4ac.

Figure S40. ²⁹Si NMR of compound 4ac.

Figure S42. ¹H - ¹³C HSQC of compound 4ac.

Figure S44.¹³C NMR of compound 4bc.

Figure S46. ¹H NMR of 3cc/4cc mixture 5/95.

Figure S48. ²⁹Si NMR of 3cc/4cc mixture 5/95.

Figure S50. ¹³C NMR of compound 4dc.

Figure S52. ¹H NMR of compound 6dc.

Figure S53. ¹³C NMR of compound 6dc.

Figure S54. ²⁹Si NMR of compound 6dc.

Figure S56. ¹H NMR of compound 4ec.

Figure S58. ²⁹Si NMR of compound 4ec.

Figure S60. ¹H NMR of compound 4fc.

Figure S62. ²⁹Si NMR of compound 4fc.

Figure S64.1H NMR of compound 4ad.

Figure S66.²⁹Si NMR of compound 4ad.

Figure S68. ¹H – ¹³C HSQC of compound 4ad.

Figure S70. ¹³C NMR of compound 4bd.

Figure S72.¹H NMR of compound 4cd.

Figure S74.29Si NMR of compound 4cd.

Figure S76.¹³C NMR of compound 4ed.

Figure S78.¹H NMR of compound 4fd.

Figure S80.²⁹Si NMR of compound 4fd.

Figure S82.¹H NMR of 3fd/5fd mixture 89/11.

Figure S84.²⁹Si NMR of 3fd/5fd mixture 89/11.

Figure S85.1H NMR of compound 3gd.

f1 (ppm)

Figure S87.29Si NMR of compound 3gd.

Figure S89. ¹³C NMR of compound 4be.

Figure S91. ¹H NMR of compound 3ce.

Figure S93. ²⁹Si NMR of compound 3ce.

Figure S95. ¹H NMR of compound 3fe.

Figure S97. ²⁹Si NMR of compound **3fe**.

Figure S99. 1D NOE NMR of compound 3fe.

Figure S101. ¹³C NMR of compound 4fe.

Figure S103. ¹H – ¹³C HSQC of compound 4fe.

Figure S105. ¹H NMR of compound 3ge.

Figure S107. ²⁹Si NMR of compound 3ge.

Figure S109. ¹H NMR of compound 4af.

Figure S111. ²⁹Si NMR of compound 4af.

Figure S112. ¹¹B NMR of compound 4af.

Figure S114. ESI MS spectra of 3ca/4ca mixture 94/6.

Figure S115. ESI MS spectra of compound 3bb.

Figure S116. ESI MS spectra of compound 3bb.

Figure S117. ESI MS spectra of 3cb/5cb mixture 96/4.

Figure S118. ESI MS spectra of 3cb/5cb mixture 96/4.

Figure S119. ESI MS spectra of compound 4cc.

8. X-Ray crystallography

Figure S120. Molecular structure of compound **3ba** and atoms numbering scheme (one of the six symmetrically independent molecules). Hydrogen atoms omitted for clarity. Displacement ellipsoids shown at the 50% probability level. The box shows an exemplary model of the disorder of four symmetrically independent molecules.

Figure S121. Molecular structure of compound **4ba** and atoms numbering scheme. Hydrogen atoms omitted for clarity. Displacement ellipsoids shown at the 50% probability level.

Figure S122. Molecular structure of compound **3bb** and atoms numbering scheme. Hydrogen atoms omitted for clarity. Displacement ellipsoids shown at the 50% probability level. The disorder model is highlighted in the box.

Figure S123. Molecular structure of compound **3fb** and atoms numbering scheme (one of the two symmetrically independent molecules). Hydrogen atoms omitted for clarity. Displacement ellipsoids shown at the 50% probability level. The disorder model is highlighted in the box.

Figure S124. Molecular structure of compound **6dc** and atoms numbering scheme (shown only for asymmetric part of molecule). Hydrogen atoms omitted for clarity. Displacement ellipsoids shown at the 50% probability level.

Figure S125. Molecular packing in crystal of **3bb** (view along c-axis). Symmetrically independent molecules are shown in different colour. Atoms of Si, B and O are showed as balls.

Figure S126. a) Molecular packing in crystal of **4ba** viewed along b axis (atoms of Si, B and O are showed as balls) and b) centrosymmetric sixfold phenyl embrace (6PE) supramolecular synthons (shown as space-fill models).

Figure S127. Molecular packing in crystal of **3bb** (view along a-axis). Atoms of Si, B and O are showed as balls.

Figure S128. Molecular packing in crystal of **3fb** view along a-axis). Atoms of Si, B and O are showed as balls. Symmetrically independent molecules are shown with different colors.

Figure S129. Molecular packing in crystal of **6dc** a) viewed along a-axis and b) viewed along b-axis. Atoms of Si, B and O are showed as balls. Symmetrically independent molecules are shown with different colors.

	3ba	4ba	3bb	3fb	6dc
CCDC	2107080	2184400	2083476	2193621	2107079
number					
Chemical	C26H29BO2Si	C26H29BO2Si	$C_{32}H_{40}B_2O_4Si$	C23H38B2O4Si	C32H68B2O5Si4
formula					
Mr	412.41	412.4	538.35	428.2	666.84
Crystal	Triclinic,	Triclinic,	Monoclinic,	Monoclinic	Monoclinic,
system,	$P\overline{1}$	$P\overline{1}$	Сс	$P2_{1}/c$	<i>I2/a</i>
space group					
Temperature	130	130	130	130	130
(K)					
a, b, c (Å)	19.7542 (4),	9.0492 (2),	10.11404 (9),	34.3594 (3),	15.82548 (14),
	20.3725 (3),	10.2286 (3),	16.90606 (14),	8.4664 (1),	11.13928 (10),
	21.9182 (5)	13.2850 (3)	18.29331 (16)	18.3153 (2)	24.2701 (2)
$\alpha, \beta, \gamma(^{\circ})$	96.7187 (14),	71.204 (2),	90	90	90
	112.3612 (19),	84.767 (2),	102.3870 (9)	105.437 (1)	102.2310 (9)
	114.9700 (17)	87.048 (2)	90	90	90
$V(Å^3)$	6977.9 (3)	1158.91 (5)	3055.13 (5)	5135.71 (10)	4181.33 (7)
Ζ	12	2	4	8	4
Dx (Mg m ⁻³)	1.178	1.182	1.170	1.108	1.059
Radiation	Cu Kα	Cu Kα	Cu Ka	Cu Kα	Cu Kα
type					
$\mu(mm^{-1})$	1.03	1.03	0.94	0.99	1.57
Crystal size	$0.2 \times 0.15 \times 0.05$	$0.25 \times 0.08 \times$	$0.4 \times 0.3 \times 0.28$	$0.4 \times 0.3 \times 0.08$	$0.30 \times 0.20 \times$
(mm)		0.08			0.07
No. of	106159,	29645,	17756,	78859,	16793,
measured,	28031,	4823,	5832,	10722,	4300,
independent	21060	4398	5799	10363	3670
and observed					
$[l > 2\sigma(l)]$					
reflections					
Rint	0.027	0.028	0.018	0.035	0.027
Range of h , k ,	$h = -24 \rightarrow 24,$	$h = -11 \rightarrow 11,$	$h = -12 \rightarrow 12,$	$h = -43 \rightarrow 43,$	$h = -19 \rightarrow 19,$
l	$k = -25 \rightarrow 22,$	$k = -12 \rightarrow 12$,	$k = -20 \rightarrow 20,$	$k = -10 \rightarrow 9,$	$k = -13 \rightarrow 13,$
	$l = -27 \rightarrow 27$	$l = -16 \rightarrow 16$	$l = -22 \rightarrow 22$	$l = -22 \rightarrow 22$	$l = -30 \rightarrow 27$
$K[F^2 > 2\sigma F^2)],$	0.044, 0.143,	0.033, 0.087,	0.027, 0.076,	0.058, 0.159,	0.038, 0.111,
$\frac{wR(F^2)}{N}$	1.07	1.05	1.08	1.03	1.05
No. of	2059	275	437	868	206
parameters	0.24 0.27	0.00.0.07	0.24 0.16	0.57 0.26	0.55 0.21
$\Delta = \Delta A^{-3}$	0.34, -0.37	0.33, -0.27	0.24, -0.16	0.57, -0.26	0.55, -0.31
Absolute	-	-	-0.016 (13)	-	
structure					
parameter					

 Table S7. Selected crystal data and structure refinement details.

Table S8.	Selected	geometric	parameters	[°]	for 3ba ,	3bb	and 6	dc.

3ba						
C1A-C2A-B1A-O2A	6.8 (2)	C1D-C2D-B1D-O2D	-13.9 (2)			
C1B-C2B-B1B-O2B	13.3 (3)	C1E-C2E-B1E-O2E	-7.5 (3)			
C1B'-C2B'-B1B'-O2B'	16 (2)	C1E'-C2E'-B1E'-O2E'	-10 (3)			
C1C-C2C-B1C-O2C	13.4 (3)	C1F-C2F-B1F-O2F	-6.9 (3)			
C1C'-C2C'-B1C'-O2C'	14 (2)	C1F'-C2F'-B1F'-O2F'	-15 (2)			
O2A-B1A-O1A	113.57 (12)	O1D-B1D-O2D	113.47 (12)			
O2B-B1B-O1B	113.01 (16)	O2E-B1E-O1E	113.81 (13)			
O1B'-B1B'-O2B'	118.9 (13)	O1E'-B1E'-O2E'	113.1 (15)			
O2C-B1C-O1C	113.46 (16)	O2F—B1F—O1F	113.60 (13)			
O1C'-B1C'-O2C'	116.7 (12)	O1F'-B1F'-O2F'	114.4 (13)			
		4ba				
C2-C1-B1-O2	21.54 (18)					
O1-B1-O2	112.90 (10)					
	3	3bb				
B1-C1-C2-B2	2.0 (3)	C2-C1-B1-O1	107.8 (3)			
C1-C2-B2-O3	-12.8 (3)	C2-C1-B1-O1A	88.2 (9)			
O1A-B1-O2A	119.1 (11)					
O1-B1-O2	112.4 (3)	O3-B2-O4	113.9 (2)			
3fb						
B1A-C1A-C2A-B2A	-4.3 (4)	B1C-C1C-C2C-B2C	3.9 (4)			
C1A-C2A-B2A-O3A	-57.1 (5)	C1C-C2C-B2C-O4C	71.8 (4)			
C2A-C1A-B1A-O1A	82.0 (3)	C2C-C1C-B1C-O1C	16.6 (4)			
C1A-C2A-B2A-O3B	16.2 (4)	C1C-C2C-B2C-O3D	-9.9 (6)			
C2A-C1A-B1A-O2B	-43.7 (5)	C2C-C1C-B1C-O1D	-84.0 (4)			
O2A-B1A-O1A	117.8 (2)	O1C-B1C-O2C	109.0 (3)			
O4A-B2A-O3A	114.2 (3)	O3C-B2C-O4C	112.0 (3)			
O1B-B1A-O2B	107.2 (3)	O2D-B1C-O1D	117.8 (3)			
O3B-B2A-O4B	112.8 (2)	O3D-B2C-O4D	111.9 (3)			
6dc						
C1-C2-B1-O1	14.1 (2)	Si1-C1-C2-Si2	177.55 (8)			

O1-B1-O2 112.6 (1)

9. References

1. J. Szyling, A. Franczyk, K. Stefanowska and J. Walkowiak, Adv. Synth. Catal., 2018, 360, 2966-2974.

2. J. Szyling, A. Franczyk, K. Stefanowska, H. Maciejewski and J. Walkowiak, *ACS Sustainable Chem. Eng.*, 2018, **6**, 10980-10988.

3. J. Szyling, A. Franczyk, K. Stefanowska, M. Klarek, H. Maciejewski and J. Walkowiak, *ChemCatChem*, 2018, **10**, 531-539.

4. T. Kurahashi, T. Hata, H. Masai, H. Kitagawa, M. Shimizu and T. Hiyama, *Tetrahedron*, 2002, 58, 6381-6395.

5. M. G. McLaughlin, C. A. McAdam and M. J. Cook, Org. Lett., 2015, 17, 10-13.

6. M. Ludwiczak, J. Szyling, A. Garbicz, T. Sokolnicki, J. Pyziak and J. Walkowiak, *Inorg. Chem.*, 2020, 59, 17555-17564.

7. J. R. Lawson, L. C. Wilkins and R. L. Melen, Chem. - Eur. J., 2017, 23, 10997-11000.

8. Y. Meng, Z. Kong and J. P. Morken, Angew. Chem. Int. Ed., 2020, 59, 8456-8459.

9. N. Sarkar, S. Bera and S. Nembenna, J. Org. Chem., 2020, 85, 4999-5009.

10. M. Fleige, J. Mobus, T. vom Stein, F. Glorius and D. W. Stephan, *Chem. Commun.*, 2016, **52**, 10830-10833.

A. Harinath, I. Banerjee, J. Bhattacharjee and T. K. Panda, *New J. Chem.*, 2019, 43, 10531-10536.
 M. Magre, B. Maity, A. Falconnet, L. Cavallo and M. Rueping, *Angew. Chem. Int. Ed.*, 2019, 58, 7025-

12. M. Magre, B. Maity, A. Falconnet, L. Cavallo and M. Rueping, *Angew. Chem. Int. Ed.*, 2019, **58**, 7025-7029.

13. K. Wen, J. Chen, F. Gao, P. S. Bhadury, E. Fan and Z. Sun, Org. Biomol. Chem., 2013, 11, 6350-6356.

14. Y. M. Chae, J. S. Bae, J. H. Moon, J. Y. Lee and J. Yun, Adv. Synth. Catal., 2014, 356, 843-849.

15. N. Kirai, S. Iguchi, T. Ito, J. Takaya and N. Iwasawa, Bull. Chem. Soc. Jpn., 2013, 86, 784-799.

16. C. K. Blasius, V. Vasilenko, R. Matveeva, H. Wadepohl and L. H. Gade, *Angew. Chem. Int. Ed.*, 2020, 59, 23010-23014.

17. T. Hata, H. Kitagawa, H. Masai, T. Kurahashi, M. Shimizu and T. Hiyama, Angew. Chem. Int. Ed., 2001, 40, 790-792.

18. E. K. Edelstein, S. Namirembe and J. P. Morken, J. Am. Chem. Soc., 2017, 139, 5027-5030.

19. M. Jankowska, B. Marciniec, C. Pietraszuk, J. Cytarska and M. Zaidlewicz, *Tetrahedron Lett.*, 2004, 45, 6615-6618.

20. J. Walkowiak, B. Marciniec and M. Jankowska-Wajda, J. Organomet. Chem., 2010, 695, 1287-1292.

21. M. Kidonakis and M. Stratakis, Eur. J. Org. Chem., 2017, 2017, 4265-4271.

22. F. Alonso, Y. Moglie, L. Pastor-Perez and A. Sepulveda-Escribano, ChemCatChem, 2014, 6, 857-865.

23. Q. Feng, H. Wu, X. Li, L. Song, L. W. Chung, Y-D. Wu, J. Sun, J. Am. Chem. Soc., 2020, 142, 13867-13877.

24. C.S. Yi, D. W. Lee, Y. Chen, Organometallics, 1999, 18, 2043-2045.

25. CrysAlis PRO 1.171.41.94a, Rigaku Oxford Diffraction, 2021.

26. G. Sheldrick, Acta Cryst. A, 2015, 71, 3-8.

27. G. Sheldrick, Acta Cryst. C, 2015, 71, 3-8.

28. S. Parsons, H. D. Flack and T. Wagner, Acta Cryst. B, 2013, 69, 249-259.

29. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339-341.

30. C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, *J. Appl. Cryst.*, 2020, **53**, 226-235.