Supporting Information

For

Photocatalytic Aerobic Oxidation of Benzylic Alcohols and Concomitant Hydrogen Peroxide Production

Avik Bhattacharjee, Aireth R. LaVigne, Serena M. Frazee, Tyler L. Herrera, Theresa M. McCormick*
Department of Chemistry, College of Liberal Arts \& Sciences, Portland State University, Post Office Box 751 CHEM, Portland, Oregon 97207, USA
Email: t.m.mccormick@pdx.edu

Experimental methodologies.. S2
Computational methodologies..S4
${ }^{1} H$ NMR spectra of oxidation of benzhydrol.. S 4
${ }^{1} \mathrm{H}$ NMR spectrum of oxidation of benzyl alcohol..S6
Yields of various alcohol oxidation reactions .. S7
UV-Vis absorption of Ti-dye...S8

Time-dependent ${ }^{1} \mathrm{H}$ NMR spectrum for benzhydrol oxidation... S 9
Cartesian coordinates for the modeled structures...S10
References... 5

Experimental methodologies

All chemicals used in this study were purchased from Tokyo Chemical Industries (TCI).

Photochemical oxidation of benzyl alcohols

In a 10 mL round bottom flask equipped with a stir bar, benzhydrol (5 mmol) was dissolved in a 5 mL solution of Rose Bengal $\left(1 \times 10^{-4} \mathrm{M}\right)$ in acetonitrile. Solid NHPI $(0.25 \mathrm{mmol})$ was added to the solution. The flask was sealed with a balloon filled with oxygen gas. The contents of the flask were stirred (1500 rpm) while being irradiated with a ring of white LEDs (Solid Apollo 24 W 16 ft) at room temperature for 72 hours.

Extraction of hydrogen peroxide $\left(\mathbf{H}_{2} \mathrm{O}_{2}\right)$

The reaction mixture (5 mL) was mixed with toluene (5 mL) in a separatory funnel. The organic layer was extracted with water $(5 \mathrm{~mL}) .{ }^{1}$ The presence of $\mathrm{H}_{2} \mathrm{O}_{2}$ was confirmed in the aqueous layer using quantitative peroxide test-strips (MilliporeSigma ${ }^{\mathrm{TM}} \mathrm{MQuant}^{\mathrm{TM}}$).

Quenching experiments

In a 10 mL round bottom flask equipped with a stir bar, benzhydrol (5 mmol) was dissolved in a 5 mL solution of Rose Bengal $\left(1 \times 10^{-4} \mathrm{M}\right)$ in acetonitrile. Different quenching agents (5 mmol) and solid NHPI (0.25 mmol) were added to the solution for different experiments. The flask was sealed with a balloon filled with oxygen gas. The contents of the flask were stirred (1500 rpm) while being irradiated with a ring of white LEDs at room temperature for 72 hours. ${ }^{2}$

Quantification of products using ${ }^{1} \mathrm{H}$ NMR spectroscopy

$500 \mu \mathrm{~L}$ of the reaction mixture was pipetted in a 5 mL round bottom flask and mixed with $500 \mu \mathrm{~L}$ of 1 M ethylene carbonate (internal standard) in acetonitrile solution. The acetonitrile was evaporated on a rotary evaporator. The contents of the flask were redissolved in $500 \mu \mathrm{~L}$ of $\mathrm{CD}_{3} \mathrm{CN}$. ${ }^{1} \mathrm{H}$ NMR was performed using a 400 MHz Bruker (b400) spectrometer.

Determination of the presence of hydrogen peroxide using a Ti-porphyrin dye

A 5 M solution of $\left[\mathrm{TiO}(\mathrm{TPyPH})_{4}\right]^{4+}$ was prepared by dissolving 34.03 mg of the dye in 1 L of 0.05 M hydrochloric acid. To $250 \mu \mathrm{~L}$ DI water, $250 \mu \mathrm{~L} 4.8 \mathrm{M}$ perchloric acid and $250 \mu \mathrm{~L}$ $\left[\mathrm{TiO}(\mathrm{TPyPH})_{4}\right]^{4+}$ dye solution was added. The solution was mixed and allowed to stand for 5 minutes at room temperature. This solution was further diluted with 2.5 mL of DI water. The absorbance of this solution was measured. The solution was mixed with a sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution of known concentration, the aqueous extract of the reaction mixture, and a blank. ${ }^{3}$ The absorption data for all the solutions were measured using a Shimadzu UV-3600 spectrometer.

Quantification of $\mathrm{H}_{2} \mathrm{O}_{2}$ by iodometric titration.

A 0.5 mL aliquot of a benzhydrol oxidation reaction at 48 h was extracted using 5 mL of $\mathrm{H}_{2} \mathrm{O}$. 1.2 mmol of potassium iodide and 1 mL of 1 M HCl was added to the aqueous solution. A second solution containing 0.1 M of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in water was titrated into the first solution that was a brown/black color. When the reaction began to lighten 5 drops of a 1 N starch solution was added. The titration continued until reaction became clear yellow. Analysis done in triplicate yielded 9\% hydrogen peroxide after 48 hr .

Generation of singlet oxygen without light. ${ }^{4}$

Benzhydrol, $0.93 \mathrm{~g}(5.0 \mathrm{mmol})$ was added to 5 ml of acetonitrile and heated to $40{ }^{0} \mathrm{C}$. N-hydroxyphthalimide, $0.042 \mathrm{~g}(0.5 \mathrm{mmol})$, and $\mathrm{Li}_{2} \mathrm{MoO}_{4}, 0.87 \mathrm{~g}(5 \mathrm{mmol})$ was added to the solution. The reaction flask was covered using aluminum foil. $2.5 \mathrm{ml}(22 \mathrm{mmol})$ hydrogen peroxide 30% by weight was added in 0.5 ml increments over the course of 5 hours and was stirred for 24 hours. By ${ }^{1} \mathrm{H}$ NMR, 50% conversion to benzophenone was observed after 24 hours of reaction time. The same reaction conditions with no NHPI showed no oxidized products by NMR after 24 hours.

Computational methodologies

All computational modeling was done using Gaussian 09 quantum chemistry package and were run on a HPC cluster. ${ }^{5}$ The optimization calculations were done using M06-2X functional and 6$311+G(d)$ basis sets in PCM acetonitrile solvation model. ${ }^{6}$ Normal mode frequency calculations were done on the optimized structures to confirm the convergence to a true stationary point with no imaginary frequencies. Gibbs energy change of the reactions were calculated using Hess' law of constant heat summation.

${ }^{1}$ H NMR Spectrum for aerobic oxidation of secondary benzylic alcohol

Figure S1. $\mathrm{A}^{1} \mathrm{H}$ NMR spectrum acquired in $\mathrm{CD}_{3} \mathrm{CN}$ using 400 MHz spectrometer for the reaction mixture of the photochemical aerobic oxidation of benzhydrol in presence of an internal standard (ethylene carbonate, \mathbf{s}) after 3 days of irradiation time. The peaks indicated using red correspond to the starting material whereas the peaks indicated in blue are for the oxidation products: benzophenone and $\mathrm{H}_{2} \mathrm{O}_{2}$.

Figure S2. The enlarged image of the aromatic region of previously shown ${ }^{1} \mathrm{H}$ NMR spectrum of the benzhydrol oxidation reaction. The peaks marked as c , d , and e (shown in red) are the aromatic protons of benzhydrol whereas f, g, and h (shown in blue) correspond to the aromatic protons of benzophenone.

${ }^{1} H$ NMR Spectrum for aerobic oxidation of primary benzylic alcohol

Figure S3. $\mathrm{A}^{1} \mathrm{H}$ NMR spectrum acquired in $\mathrm{CD}_{3} \mathrm{CN}$ using 400 MHz spectrometer for the reaction mixture of the photochemical aerobic oxidation of benzyl alcohol in presence of an internal standard (ethylene carbonate, s) after 3 days of irradiation time. The peaks indicated using red correspond to the starting material whereas the peaks indicated in blue are for the oxidation products: benzaldehyde, $\mathrm{H}_{2} \mathrm{O}_{2}$, and benzoin.

Figure S4. The enlarged image of the aromatic region of previously shown ${ }^{1} \mathrm{H}$ NMR spectrum of the benzyl alcohol oxidation reaction. The peaks marked as f, g, and h (shown in blue) correspond to the aromatic protons of benzaldehyde and the other peaks in correspond to the condensation product, benzoin.

Table S1. Yield of conversion for various alcohols. Reactions were run with 5 mmol alcohol NHPI ($5 \mathrm{~mol} \%$) catalyst and Rose Bengal, (RB) $\left(1 \times 10^{-4}\right)$ in 5 mL acetonitrile (ACN) under white light irradiation at room temperature for 72 hours

Starting material	72 \boldsymbol{h} Yield
(E)- Cinnamyl alcohol	5%
(土)-Phenylethyl alcohol	8%
Diphenylmethanol	39%
Phenylmethanol	29%

UV Vis absorption of the Ti-porphyrin dye in presence and absence of hydrogen peroxide

Figure S5. The UV-Vis spectrum of the Ti-porphyrin dye (blue) shows a characteristic absorption band at 432 nm . The characteristic peak is missing in absence of the dye (orange). The water extract of the reaction mixture (grey), and a hydrogen peroxide solution of known concentration (yellow) shows a shift in the absorption peak to $445 \mathrm{~nm} .^{3}$

Figure S6. Yield of benzophenone with 1 day of irradiation, followed by 1 day in the dark, and 1 day irradiated. The yields were determined by ${ }^{1} \mathrm{H}$ NMR, reaction contained diphenylmethanol (1, $5 \mathrm{mmol})$, NHPI ($5 \mathrm{~mol} \%$) Rose Bengal, $\left(1 \times 10^{-4} \mathrm{M}\right)$ in 5 mL acetonitrile (ACN) under white light irradiation at room temperature.

${ }^{1} H$ NMR of the secondary alcohol oxidation with respect to time

Figure S7. The ${ }^{1} \mathrm{H}$ NMR plot of the aromatic region of the benzhydrol oxidation reaction mixture taken in $\mathrm{CD}_{3} \mathrm{CN}$ before irradiation with white light ($\mathrm{t}=0$ days) through 18 days of irradiation. The peaks a, b, and c (indicated in black) correspond to the starting material and d , e, and f (indicated in red) correspond to the product. The intensities of the peaks a, b, and c decreases over time whereas the intensity of the product peaks: d, e, and f are increasing with the progression of the reaction.

Cartesian coordinates

Benzhydrol (1)

C $\quad-2.69926600-1.63977000 \quad-0.41932700$
C $\quad-1.57568000 \quad-0.97484200 \quad-0.89513100$
$\begin{array}{lllll}\mathrm{C} & -1.25333700 & 0.29931300 & -0.42374900\end{array}$
$\begin{array}{lllll}\mathrm{C} & -2.07185200 & 0.90196200 & 0.52830100\end{array}$
$\begin{array}{lllll}\mathrm{C} & -3.19921400 & 0.23467000 & 1.00568400\end{array}$
C $\quad-3.51544300 \quad-1.03533500 \quad 0.53585300$
$\mathrm{H} \quad-2.94109200 \quad-2.62732700 \quad-0.79455500$
$\begin{array}{lllll}\mathrm{H} & -0.94031800 & -1.44710800 & -1.63858700\end{array}$
$\begin{array}{lllll}\mathrm{H} & -1.82795000 & 1.89342700 & 0.88845600\end{array}$
H
H

H
C
C
$\begin{array}{lllll}\mathrm{C} & 1.49838000 & 0.44545700 & 1.03366000\end{array}$
$\mathrm{C} \quad 3.25945800 \quad-0.98448500 \quad-0.57852700$
$\begin{array}{lllll}\mathrm{H} & 1.94102500 & -0.47244400 & -2.20149800\end{array}$
$\begin{array}{lllll}\text { C } & 2.62616100 & -0.14454300 & 1.58991100\end{array}$
$\begin{array}{lllll}\mathrm{H} & 0.80684100 & 1.00209800 & 1.65819900\end{array}$
$\begin{array}{lllll}\mathrm{C} & 3.50892800 & -0.86396900 & 0.78375200\end{array}$
$\mathrm{H} \quad 3.94319100 \quad-1.53949800 \quad-1.21008400$
$\begin{array}{lllll}\mathrm{H} & 2.81802000 & -0.04840700 & 2.65224300\end{array}$
$\begin{array}{lllll}\mathrm{H} & 4.38731700 & -1.32573000 & 1.21895700\end{array}$
$\begin{array}{lllll}\mathrm{O} & -0.06562800 & 2.35598800 & -0.60953000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 0.76802400 & 2.76436300 & -0.86298900\end{array}$

Benzophenone (3)

$\begin{array}{lllll}\text { C } & -2.64881600 & -1.50560300 & 0.74207500\end{array}$
$\begin{array}{lllll}\text { C } & -1.41206200 & -0.87196300 & 0.67788300\end{array}$

C	-1.29209900	0.35991800	0.03015400
C	-2.41709800	0.94947400	-0.55296500
C	-3.64528600	0.30394700	-0.50821600
C	-3.76202900	-0.92328300	0.14279800
H	-2.74259000	-2.45371600	1.25754200
H	-0.54773200	-1.32475300	1.14948300
H	-2.31250400	1.91062500	-1.04255600
H	-4.51213700	0.75605900	-0.97484000
H	-4.72210500	-1.42412700	0.18516300
C	-0.00001100	1.11354800	-0.00014600
C	1.29208500	0.35992900	-0.03029300
C	1.41214600	-0.87194000	-0.67802700
C	2.41700500	0.94948900	0.55297700
C	2.64891700	-1.50556200	-0.74207500
H	0.54788300	-1.32473200	-1.14974800
C	3.64520700	0.30398200	0.50836900
H	2.31233600	1.91063100	1.04257000
C	3.76204700	-0.92323800	-0.14264900
H	2.74276800	-2.45366600	-1.25754700
H	4.51199600	0.75609600	0.97510600
H	4.72213500	-1.42406800	-0.18490100
O	-0.00001200	2.32993400	0.00005400

Intermediate 1 (Int 1)

C	-2.71475400	-1.61462200	0.52355200
C	-1.45818300	-1.03327200	0.46593100
C	-2.45655400	1.01026200	-0.36325500
C	-3.70802900	0.41767800	-0.30013100
C	-3.84898400	-0.89978100	0.13605000
H	-2.81394300	-2.62988400	0.88979900
H	-0.59848000	-1.59245800	0.81287900
H	-2.35629500	2.03122300	-0.70792200
H	-4.58250200	0.98666700	-0.59473600
H	-4.82859600	-1.35943400	0.18519600
C	-0.01162900	0.93518500	-0.05188000
C	1.28566800	0.29464300	-0.03470300
C	1.49400800	-0.98475300	-0.59166100
		S 11	

C	2.40242800	0.97426500	0.49519000
C	2.75507100	-1.55923600	-0.59440500
H	0.66696500	-1.50740100	-1.05604200
C	3.66179000	0.39122500	0.48581400
H	2.27693100	1.94878700	0.95481500
C	3.84727100	-0.87982500	-0.05307100
H	2.89216000	-2.53923300	-1.03675500
H	4.50108400	0.92800800	0.91232500
H	4.83071000	-1.33359300	-0.05831500
O	-0.05994000	2.29457700	-0.07749400
H	0.77747300	2.65171800	-0.39566900

Intermediate 2 (Int 2)

C $\quad-2.41908000 \quad-2.08249600-0.31933400$
C $\quad-1.24586000 \quad-1.34267500 \quad-0.18272400$
$\begin{array}{lllll}\mathrm{C} & -1.31325300 & 0.01951700 & 0.09341900\end{array}$
$\begin{array}{lllll}\mathrm{C} & -2.55661800 & 0.64236200 & 0.22836400\end{array}$
$\begin{array}{lllll}\mathrm{C} & -3.72343600 & -0.09654100 & 0.08746800\end{array}$
C $\quad-3.65540000 \quad-1.46223900 \quad-0.18570400$
$\mathrm{H} \quad-2.36221300 \quad-3.14352700 \quad-0.52995400$
$\mathrm{H} \quad-0.28536900$-1.83262300 $\quad-0.28786200$
$\begin{array}{lllll}\mathrm{H} & -2.60205100 & 1.70313400 & 0.44592400\end{array}$
$\mathrm{H} \quad-4.68591300 \quad 0.38977700 \quad 0.19239800$
$\mathrm{H} \quad-4.56677300$-2.03855000 $\quad-0.29253600$
$\begin{array}{lllll}\mathrm{C} & -0.07260600 & 0.87085700 & 0.25564500\end{array}$
$\begin{array}{lllll}\mathrm{C} & 1.24435700 & 0.13085100 & 0.12033700\end{array}$
C $\quad 1.81516100 \quad-0.11022200 \quad-1.12965600$
$\begin{array}{lllll}\mathrm{C} & 1.84682100 & -0.38175900 & 1.26758300\end{array}$
$\begin{array}{lllll}\mathrm{C} & 2.98886700 & -0.84948900 & -1.22617000\end{array}$
$\begin{array}{lllll}\mathrm{H} & 1.34645000 & 0.27685000 & -2.02657500\end{array}$
$\begin{array}{lllll}\mathrm{C} & 3.02092900 & -1.12267500 & 1.16692600\end{array}$
$\begin{array}{lllll}\mathrm{H} & 1.39433600 & -0.20829800 & 2.23700300\end{array}$
C $\quad 3.59374500-1.35674800 \quad-0.07898000$
$\mathrm{H} \quad 3.43103900$-1.02847900 $\quad-2.19895700$
$\mathrm{H} \quad 3.48465000-1.51748400 \quad 2.06284600$
$\mathrm{H} \quad 4.50804600-1.93296600 \quad-0.15637600$
$\begin{array}{lllll}\mathrm{O} & -0.17513000 & 1.58948300 & 1.42722500\end{array}$

H	0.61363400	2.14205700	1.51763900
O	-0.16788900	1.84427300	-0.88362200
O	0.66581900	2.82095100	-0.73692900

Intermediate 3 (Int 3)

C
$-2.49055400-2.06134700-0.24065200$
C
$-1.30219100-1.34271400-0.12036200$
$\begin{array}{lllll}\text { C } & -1.33906400 & 0.03267100 & 0.09030100\end{array}$
$\begin{array}{lllll}\mathrm{C} & -2.57035200 & 0.68713100 & 0.17726400\end{array}$
$\begin{array}{lllll}\text { C } & -3.75286100 & -0.03019700 & 0.05220600\end{array}$
$\mathrm{C} \quad-3.71435000 \quad-1.40817900 \quad-0.15694900$
$\mathrm{H} \quad-2.45509200-3.13235200-0.39988800$
$\mathrm{H} \quad-0.35351000 \quad-1.86140000 \quad-0.18635300$
$\begin{array}{lllll}\mathrm{H} & -2.59191900 & 1.75705500 & 0.34570400\end{array}$
H
$\mathrm{H} \quad-4.63725700-1.96814700-0.25159600$
$\begin{array}{lllll}\mathrm{C} & -0.08060700 & 0.87288800 & 0.23852400\end{array}$
$\begin{array}{lllll}\mathrm{C} & 1.21611000 & 0.08166100 & 0.13402300\end{array}$
$\begin{array}{lllll}\text { C } & 1.71647300 & -0.26936000 & -1.12118800\end{array}$
$\begin{array}{lllll}\text { C } & 1.88271500 & -0.33836200 & 1.28180900\end{array}$
C $\quad 2.88199700-1.02059000-1.22555400$
$\begin{array}{lllll}\mathrm{H} & 1.18590200 & 0.03775600 & -2.01675800\end{array}$
$\begin{array}{lllll}\mathrm{C} & 3.04779400 & -1.09462200 & 1.17603300\end{array}$
$\begin{array}{lllll}\mathrm{H} & 1.48871700 & -0.07730300 & 2.25659400\end{array}$
$\begin{array}{lllll}\text { C } & 3.55013700 & -1.43467500 & -0.07563300\end{array}$
$\begin{array}{lllll}\mathrm{H} & 3.26590100 & -1.28522200 & -2.20350600\end{array}$
$\begin{array}{lllll}\mathrm{H} & 3.56188500 & -1.41700800 & 2.07373600\end{array}$
$\begin{array}{lllll}\mathrm{H} & 4.45780400 & -2.02102200 & -0.15555300\end{array}$
$\begin{array}{lllll}\mathrm{O} & -0.17589100 & 1.57189600 & 1.44286800\end{array}$
$\begin{array}{lllll}\mathrm{H} & 0.57375700 & 2.18060200 & 1.48714300\end{array}$
$\begin{array}{lrrr}\mathrm{O} & -0.16700700 & 1.79801100 & -0.85886200 \\ \mathrm{O} & 0.88501200 & 2.74307400 & -0.71930200\end{array}$
$\begin{array}{lllll}\mathrm{H} & 1.60022000 & 2.35437200 & -1.24595100\end{array}$

NHPI

C $\quad-1.65763100 \quad-1.44649100 \quad-0.00002700$
C $\quad-0.49752400 \quad-0.70068400 \quad-0.00010000$
$\begin{array}{lllll}\mathrm{C} & -0.52114100 & 0.69317800 & -0.00009500\end{array}$
$\begin{array}{lllll}\mathrm{C} & -1.70774500 & 1.39512000 & 0.00002100\end{array}$
C
C
$\mathrm{H} \quad-1.63209200 \quad-2.52905500 \quad-0.00001800$
$\begin{array}{llll}\mathrm{H} & -1.72085300 & 2.47795900 & 0.00002200\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.84524500 & 1.16357000 & 0.00013900\end{array}$
$\mathrm{H} \quad-3.80173300 \quad-1.29204300 \quad 0.00011200$
$\begin{array}{lllll}\mathrm{C} & 0.88699100 & 1.20057900 & -0.00027900\end{array}$
C $\quad 0.92642800-1.13910400 \quad-0.00013100$
$\mathrm{N} \quad 1.65441800 \quad 0.04161400 \quad 0.00018300$
O
o
O
H

1.31077900	2.32455600	-0.00004600
1.43577600	-2.23157100	-0.00009200
3.01936100	0.07057000	0.00028000
3.27734400	-0.86685000	0.00021100

PINO

$\begin{array}{llll}\text { C } & -0.00001500 & -1.63432300 & 1.42120400\end{array}$
$\begin{array}{llll}\mathrm{C} & -0.00001500 & -0.45459800 & 0.69828500\end{array}$
C
C $\quad-0.00001500 \quad-1.63432300 \quad-1.42120400$
$\begin{array}{lllll}\mathrm{C} & -0.00001600 & -2.82717800 & -0.69853800\end{array}$
C
$\mathrm{H} \quad-0.00001500 \quad-1.62670700 \quad 2.50385800$
H
H
$-0.00001500-1.62670700-2.50385800$
$-0.00001700-3.77148200-1.22849700$
$-0.00001700-3.77148200 \quad 1.22849700$
$-0.00001500 \quad 0.93697200-1.19711800$
$-0.00001500 \quad 0.93697200 \quad 1.19711800$

N	0.00001900	1.75220000	0.00000000
O	0.00001200	1.39103500	-2.29960100
O	0.00001200	1.39103500	2.29960100
O	0.00005800	3.00299300	0.00000000

$\mathrm{H}_{2} \mathrm{O}_{2}$ (2)

O	0.00000000	0.71056900	-0.06488700
H	0.74128600	0.91862000	0.51909800
O	0.00000000	-0.71056900	-0.06488700
H	-0.74128600	-0.91862000	0.51909800

References

1 T. Iwahama, S. Sakaguchi and Y. Ishii, Org. Process Res. Dev., 2000, 4, 94-97.
2 G. Zhao, B. Hu, G. W. Busser, B. Peng and M. Muhler, ChemSusChem, 2019, 12, 27952801.

3 C. Matsubara, N. Kawamoto and K. Takamura, Analyst, 1992, 117, 1781-1784.
4 V. Nardello, S. Bogaert, P. L. Alsters and J. M. Aubry, Tetrahedron Lett., 2002, 43, 87318734.

5 D. J. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenb, Gaussian 09, Gaussian, Inc., Wallingford CT, Revision D., 2009.
6 C. J. Cramer and D. G. Truhlar, Phys. Chem. Chem. Phys., 2009, 11, 10757-10816.

