Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

An efficient NiCu@C/Al₂O₃ catalyst for selective hydrogenation of acetylene

Shihong Zhou,^a Chenyang Lu,^{*a} Wenyu Zhou,^a Yi Bi,^a Cailong Zhou,^a Aonan Zeng,^b Anjie Wang,^b Luxi Tan,^a Lichun Dong^{*a}

Table of Contents

Experiment section	P3-P4
Figures	
Fig. S1. N2 adsorption-desorption isotherms of Al2O3, NiCuco32-/Al2O3, NiCu/Al2O3 and NiCu@C/Al2O3.	P5
Fig. S2. TEM images of (a) NiCu@C/Al2O3, (b) NiCu2@C/Al2O3 and (c) Ni3Cu10@C/Al2O3.	P5
Fig. S3. HRTEM image of NiCu@C/Al ₂ O ₃ .	P6
Fig. S4. HRTEM image of NiCu/Al ₂ O ₃ .	P6
Fig. S5. Ethane selectivity of different catalysts as a function of reaction temperature.	P7
Fig. S6. Oligomer selectivity of different catalysts as a function of reaction temperature.	P7
Fig. S7. NH ₃ -TPD curves of NiCu@C/Al ₂ O ₃ and NiCu/Al ₂ O ₃ .	P8
Fig. S8. Acetylene conversion and ethylene selectivity with time on stream over NiCu@C/Al ₂ O ₃ at 90 °C.	P8
Fig. S9. SEM images of (a) NiCu@C/Al ₂ O ₃ and (b) NiCu/Al ₂ O ₃ after 40 h usage.	P9
Fig. S10. TG curves of fresh and used (a) NiCu@C/Al ₂ O ₃ and (b) NiCu/Al ₂ O ₃ under air.	P9
Tables	
Table S1. Physical properties of Al ₂ O ₃ , NiCuco ₃ ²⁻ /Al ₂ O ₃ , NiCu/Al ₂ O ₃ and NiCu@C/Al ₂ O ₃ .	P10
Table S2. Elemental analysis of carbon.	P10
Table S3. Comparison of catalytic performance over Ni-based catalysts.	P11
References	P12

1. Experiment section

1.1 Preparation of NiCu@C/Al₂O₃ catalysts

Firstly, stoichiometric Cu(NO₃)₂·3H₂O and Ni(NO₃)₂·6H₂O were dissolved in 200 mL deionized water to make a mixed solution. A certain amount of γ -Al₂O₃ was added to the above mixed solution under stirring for 5 h. After that, Na₂CO₃ solution was added to the mixture under vigorous stirring until pH = 10. After stirring for another 1 h, the obtained suspension was filtered and washed with deionized water to neutral. After drying for 12 h in vacuum oven, the solid was grounded to powder for further used as the catalyst precursor (denoted as NiCuco₃²/Al₂O₃).

The obtained NiCu_{CO₃²}/Al₂O₃ was treated in an acetylene-containing gas (10.0% C₂H₂ and 90.0% N₂) at 120°C for 2 h with a heating rate of 3 °C·min⁻¹. Then, the temperature was increased to 400 °C at a rate of 3 °C·min⁻¹ in the N₂ atmosphere for 1h. And then the gas was switched to H₂ for 3 h to obtain the Ni-Cu@C/Al₂O₃. For comparison, the NiCu/Al₂O₃ without carbon encapsulation was prepared without the treatment of the acetylene-containing gas.

1.2 Catalyst characterization

The crystal structure of catalysts was observed using an X-ray diffractometer (XRD) (PANalytical X'Pert Powder) with the CuK α radiation source (λ = 0.154 nm) at the scanning rate of 10 °·min⁻¹ and the 2 θ range is from 10° to 80°. Transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectroscopy (EDS) elemental mapping images were obtained on a Talos F200S microscope. X-ray photoelectron spectroscopy (XPS) characterization were obtained through a Scientific K-Alpha spectrometer with radiation of Al K α (hv=1486.6 eV). The calibration peak is the C 1s peak at 284.8 eV. The images of morphology were taken on a Quattro S scanning electron microscope (SEM). The specific surface area

and the pore size distributions were calculated according to Bruner-Emmett-Teller (BET) method, and the physical adsorption and desorption of nitrogen at -196°C was measured by Micromeritics Tristar II 3020 instrument. The temperature programmed desorption of ammonia (NH₃-TPD) curves were obtained by Chembet-3000 instrument with a thermal conductivity detector (TCD) detector. Elemental analysis was carried out on a Vario EL Elemental analyzer. The thermal properties of catalysts in the flow of air were analyzed using a TG/DTA X70 thermogravimetric analyzer.

1.3 Catalytic Performance

The selective hydrogenation of acetylene was performed in a fixed-bed micro-reactor equipped with a 10 mm inner diameter quartz reaction tube which contained 0.1 g catalyst precursor and the catalysts were prepared *in situ* as described above. The reaction took place ranging from 80°C to 130°C with the feed gas $(0.5\% C_2H_2/10.0\% H_2/balance N_2)$ at a total flow rate of 30 mL·min⁻¹ under the normal pressure. The gas composition before and after the reaction was analyzed by online gas chromatography (Nexis GC-2030) which was equipped with an FID detector and a capillary column (30 m × 0.535 mm×15.00 µm). Acetylene conversion and product selectivity were calculated as follows.

$$C_2H_2 \text{ conversion} = \frac{C_2H_2(\text{inlet}) - C_2H_2(\text{outlet})}{C_2H_2(\text{inlet})} \times 100\%$$

$$C_2H_6 \text{ selectivity} = \frac{C_2H_6(\text{outlet}) - C_2H_2(\text{inlet})}{C_2H_2(\text{inlet}) - C_2H_2(\text{outlet})} \times 100\%$$

$$C_2H_4 \text{ selectivity} = \frac{C_2H_4(\text{outlet}) - C_2H_4(\text{inlet})}{C_2H_2(\text{inlet}) - C_2H_2(\text{outlet})} \times 100\%$$

The selectivity of oligomer was determined by difference.

The acetylene hydrogenation in ethylene stream was performed over NiCu@C/Al₂O₃ with a mixture gas of 0.5% $C_2H_2/10.0\%$ H₂/ balance C₂H₄. And the selectivity to ethylene was obtained as : S(C₂H₄) = 1- S(C₂H₆)-S(C₄).

2. Figures

Fig. S1. N2 adsorption-desorption isotherms of Al₂O₃, NiCu_{CO₃²}/Al₂O₃, NiCu/Al₂O₃ and NiCu@C/Al₂O₃.

Fig. S2. TEM images of (a) NiCu@C/Al₂O₃, (b) NiCu₂@C/Al₂O₃ and (c) Ni₃Cu₁₀@C/Al₂O₃.

Fig. S3. HRTEM image of NiCu@C/Al₂O₃.

Fig. S4. HRTEM image of NiCu/Al₂O₃.

Fig. S5. Ethane selectivity of different catalysts as a function of reaction temperature.

Fig. S6. Oligomer selectivity of different catalysts as a function of reaction temperature.

Fig. S7. NH₃-TPD curves of NiCu@C/Al₂O₃ and NiCu/Al₂O₃.

Fig. S8. Acetylene conversion and ethylene selectivity with time on stream over NiCu@C/Al₂O₃ at 90 °C.

Fig. S9. SEM images of (a) NiCu@C/Al₂O₃ and (b) NiCu/Al₂O₃ after 40 h usage.

Fig. S10. TG curves of fresh and used (a) NiCu@C/Al₂O₃ and (b) NiCu/Al₂O₃ under air.

3. Tables

Catalysts	BET surface area (m ² /g)	Pore volume (cm ³ /g) Pore diameter (nm)	
Al ₂ O ₃	272	0.72	7.13
NiCuco ₃ ²⁻ /Al ₂ O ₃	233	0.64	7.84
NiCu/Al ₂ O ₃	237	0.62	7.44
NiCu@C/Al ₂ O ₃	269	0.65	7.22

Table S1. Physical properties of Al₂O₃, NiCu_{CO₃²}/Al₂O₃, NiCu/Al₂O₃ and NiCu@C/Al₂O₃.

 Table S2. Elemental analysis of carbon.

Catalysts	NiCu@C/Al ₂ O ₃	NiCu2@C/Al2O3	Ni ₃ Cu ₁₀ @C/Al ₂ O ₃
wt % carbon	1.1	1.6	3.1

Samples	T (°C)	Conversion (%)	Selectivity (%)	Reactants	Ref.	
Ni-Cu@C/Al ₂ O ₃	130	100	88	$C_2H_2+H_2$	This work	
Ni-Cu@C/Al ₂ O ₃	140	100	80	$C_2H_2+H_2+C_2H_4$	I IIS WORK	
NiCu/CeO ₂	225	100	72.7	$C_2H_2+C_2H_4$	[1]	
NiCu/MMO	160	100	70.2	C2H2+H2+C2H4	[2]	
Ni/MCM-41	250	100	47	C ₂ H ₂ +H ₂	[3]	
Ni/AC-N-0.5	200	96	46	C ₂ H ₂ +H ₂	[4]	
NiGa	260	100	82	$C_2H_2+H_2$	[5]	
Ni ₁ Cu ₂ /g-C ₃ N ₄	170	100	90	C2H2+H2+C2H4	[6]	
Na-Ni@CHA	180	100	97	$C_2H_2+H_2$	[7]	
Ni-SAs/N-C	200	~95	90	$C_2H_2+H_2+C_2H_4$	[8]	
Ni/SiO ₂ -Al ₂ O ₃	175	8	60	$C_2H_2+H_2$	[9]	
Ni/Al ₂ O ₃	200	12	55	$C_2H_2+H_2+C_2H_4$	[10]	
Ni ₅ Zn ₂₁	160	75	50	$C_2H_2+H_2+C_2H_4$	[11]	
NiZn/MgAl ₂ O ₄	120	75	53	$C_2H_2+H_2$	[12]	

 Table S3. Comparison of catalytic performance over Ni-based catalysts.

References

- [1] Y. Liu, A. J. McCue, P. Yang, Y. He, L. Zheng, X. Cao, Y. Man, J. Feng, J. A. Anderson, D. Li, Chem. Sci., 2019, 10, 3556-3566.
- [2] Y. Liu, J. Zhao, J. Feng, Y. He, Y. Du, D. Li, J. Catal., 2018, 359, 251-260.
- [3] S. Zhou, L. Kang, Z. Xu, M. Zhu, *RSC Adv.*, **2020**, *10*, 1937-1945.
- [4] Z. Xu, S. Zhou, M. Zhu, Catal. Commun., 2021, 149, 106241.
- [5] Y. Cao, H. Zhang, S. Ji, Z. Sui, Z. Jiang, D. Wang, F. Zaera, X. Zhou, X. Duan, Y. Li, Angew. Chem. Int. Ed., 2020, 59, 11647-11652.
- [6] J. Gu, M. Jian, L. Huang, Z. Sun, A. Li, Y. Pan, J. Yang, W. Wen, W. Zhou, Y. Lin, H. J. Wang, X. Liu, L. Wang, X. Shi, X. Huang, L. Cao, S. Chen, X. Zheng, H. Pan, J. Zhu, S. Wei, W. X. Li, J. Lu, *Nat. Nanotechnol.*, **2021**, *16*, 1141-1149.
- [7] Y. Chai, G. Wu, X. Liu, Y. Ren, W. Dai, C. Wang, Z. Xie, N. Guan, L. Li, J. Am. Chem. Soc., 2019, 141, 9920-9927.
- [8] X. Dai, Z. Chen, T. Yao, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, S. Wei, Y. Wu, Y. Li, *Chem. Commun.*, 2017, 53, 11568-11571.
- [9] C. Guimon, A. Auroux, E. Romero, A. Monzon, Appl. Catal., A, 2003, 251, 199-214.
- [10] S. Abelló, D. Verboekend, B. Bridier, J. Pérez-Ramírez, J. Catal., 2008, 259, 85-95.
- [11] C. S. Spanjers, J. T. Held, M. J. Jones, D. D. Stanley, R. S. Sim, M. J. Janik, R. M. Rioux, J. Catal., 2014, 316, 164-173.
- [12] D. L. Trimm, N. W. Cant, I. O. Y. Liu, Catal. Today, 2011, 178, 181-186.