Supporting Information

Manipulating the inorganic motif by kinetic control of organic-inorganic antimony halide for larger Stokes shift and significantly enhanced quantum efficiency

Fang Lin,^[a] Hua Tong,^[b] Haoran Lin^[a] and Wei Liu*^[b]

[a] F. Lin, H. Lin
Hoffmann Institute of Advanced Materials
Shenzhen Polytechnic
7098 Liuxian Bl., Shenzhen 518055, Guangdong (P. R. China)

[b] H. Tong, Dr. W. LiuSchool of Chemical Engineering and TechnologySun Yat-sen UniversityZhuhai 519082, Guangdong (P. R. China)E-mail: liuwei96@mail.sysu.edu.cn

Materials.

 $SbCl_3$ (99.9% metals basis) were purchased from Alfa Aesar, 1-carboxymethyl-3-methylimidazolium chloride ([HO₂CMMIm]Cl, 98%) were purchased from Merck, Acetonitrile (>99%), Ethylacetate (EA, AR,99%) were purchased from Aladdin. All reagents and solvents were used without further purification unless otherwise stated.

Experimental details.

Single crystalSynthesis of compound 1-2.

A mixture of SbCl₃ (0.228 g, 1 mmol), 1-carboxymethyl-3-methylimidazolium chloride ([HO₂CMMIm]Cl,0.354 g, 2 mmol) in Acetonitrile (20mL) and Ethylacetate (20mL) was stirred and heated in 100mL round bottom flask fitted with a chilled-water cooled condenser allowing the liquid to condense during the experiment. A flask containing these ingredients was heated to 90°C for 6 hour and colorless crystals of compound **1** slowly precipitated out from the solution on the wall of the flask and the products were separated as soon as they formed. A few hours

later, compound **2** with green emission started to form quickly at the bottom of the flask.Stopped the reaction and cooled slowly to room temperature. To separate the two different phases, crystals **2** were firstly suck out. Crystal sample of **1** were collected by filtration from the reaction solution and washed with a small amount of acetonitrile for three times. These samples were then dried in a vacuum oven overnight before other measurements were made.

Single crystal X-ray diffraction (SXRD). Single crystalsof $H_3(L)_3SbCl_5$ •Cl were selected and diffraction data were collected at 200K on a Bruker D8 Venture CCDdiffractometer with the use of IµS 3.0 microfocus X-ray Mo Kαradiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods and refined by full-matrix least-squares on F² using the Bruker SHELXTL package. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_re-quest/cif. The CCDC number of compound 1 is 2190859.

Powder X-ray diffraction (PXRD). PXRD analyses were performed on Bruker D8 Powder X-ray Diffractometer with Advance automated diffraction system using Cu K α radiation (λ =1.5406 Å) at 40 kV/40 mA. The sample pattern was collected at room temperature in a 2 θ range of 5–50° with a step size of 0.01 and the simulated pattern was calculated by Mercury software using the crystallographic information from cif file.

Thermogravimetric (TG) analysis. TG analyse of the compound **1** was measured on a computer-controlled TG 550 system. The powder samplewas loaded into platinum pans andheated with a ramp rate of 10 °C/min from room temperature to 500 °C under a nitrogen flux of 40 mL/min.

Optical diffuse reflectance measurements. Optical diffuse reflectance spectra were carried out at room temperature on a Shimadzu UV-3600 spectrophotometer with BaSO₄power as the reflectance reference. Raw data were collected in the wavelength range of 200-800 nm and converted to absorptionvia the Kubelka-Munk function.

Microscope. The microscope images were obtained on Nikon Eclipse Ci-POL microscope with DS-Fi3 camera module under UV(360 nm) LED light source.

Excitation and photoluminescence spectrum measurements.Excitation and Steady-state photoluminescence spectra were obtained from 77K to room temperature using cryostat pattern (by liquid nitrogen) on a Edinburgh Instrument FLS1000 spectrofluorometer.

Internal quantum yield measurements. Internal quantum yields (IQYs) of powder sample was acquired on a FS5 fluorescence spectrometer with C9920-03 absolute quantum yield measurement system (Hamamatsu Photonics) with a 150 W xenon monochromatic light source and 3.3 inch integrating sphere.

Time-resolved photoluminescence. Time-Resolved Emission data were collected at room temperature using the FLS100 spectrofluorometer. The dynamics of emission decay were monitored by using the FLS1000's time-correlated single-photon counting capability (1024 channels; 100 μ s window) using Xe flash lamp as the excitation source. The average lifetime was obtained by mono-exponential fitting as followed:

$$\tau_{\text{ave}} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2 + A_3 \tau_3^2}{A_1 \tau_1 + A_2 \tau_2 + A_3 \tau_3}$$

where A₁, A₂, A₃ are the pre-exponential factor, and τ_1 , τ_2 , τ_3 are the lifetimes components, if necessary.

DFT calculation: First-principle calculations of the density of states (DOS) of compounds 1 were carried out using the CASTEP code implemented in the Material studio. Generalized gradient approximations (GGA) with Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional (xc) were used in all calculations. The plane-wave basis set energy cutoff was set at 10.0 eV, ultrasoft pseudopotentials were used for all chemical elements and the total energy tolerance was set to be $1 \times 10-5$ eV/atom.

Figure S1. PXRD patterns of simulated pattern of compound 1 compound 2.

Figure S2. TG plot of compound 1.

Figure S3. Temperature-dependent photoluminescence spectra of compound 1 under 340 nm excitation.

Figure S4. Density of states plot of compound 2.

Empirical formula	C18H27N6O6SbCl6
Formula mass	757.92
Space group	P21/c
a/Å	20.8758(6)
b/Å	8.7858(2)
c/Å	17.7065(4)
a/°	90
β/°	114.926(1)
γ/°	90
V/Å ³	2945.06(13)
Z	4
λ	0.71073
T/K	200K
R ^{1[a]}	0.0501
wR ²	0.0948

 Table S1. Single crystal X-ray diffraction data of compound 1

 Table S2. Selected bond angles for compound 1 and 2.

		1				2	
Atom	Atom	Atom	Angle/º	Atom	Atom	Atom	Angle/º
Cl1	Sb	Cl2	97.25(3)	Cl1 ⁱ	Sb	Cl1 ^v	91.28(2)
Cl1	Sb	C13	173.06(3)	Cl1 ^v	Sb	Cl1 ⁱⁱⁱ	88.02(2)
C13	Sb	C12	83.97(3)	Cl1 ⁱⁱ	Sb	Cl1 ⁱⁱⁱ	91.98(2)
Cl4	Sb	C11	90.97(3)	Cl1 ^v	Sb	Cl1 ^{iv}	88.02(2)
Cl4	Sb	Cl2	171.75(3)	Cl1 ⁱ	Sb	Cl1 ^{iv}	88.02(2)
Cl4	Sb	C13	87.78(3)	Cl1 ^{iv}	Sb	Cl1 ⁱⁱⁱ	91.98(2)
C15	Sb	Cl1	85.72(3)	Cl1 ^v	Sb	Cl1	91.98(2)
C15	Sb	C12	89.10(3)	Cl1 ^{iv}	Sb	Cl1 ⁱⁱ	91.28(2)
C15	Sb	C15	87.48(3)	Cl1 ⁱ	Sb	Cl1	91.28(2)
				Cl1 ⁱⁱ	Sb	Cl1	88.02(2)
				Cl1 ⁱ	Sb	Cl1 ⁱⁱ	88.02(2)
				Cl1 ⁱⁱⁱ	Sb	Cl1 ⁱⁱ	88.02(2)

Table S3. Bond lengths for compound 1 and 2.

	1			2	
Atom	Atom	Length/º	Atom	Atom	Length/º
Sb	Cl1	2.5828(10)	Sb	Cl1	2.6470(6)
Sb	C12	2.7334(10)	Sb	Cl1#1	2.6470(6)
Sb	C13	2.6612(10)	Sb	Cl1#1	2.6470(5)
Sb	Cl4	2.5444(10)	Sb	Cl1#1	2.6470(6)
Sb	C15	2.4029(9)	Sb	Cl1#1	2.6470(6)
			Sb	Cl1#1	2.6470(5)

Symmetry transformations used to generate equivalent atoms: #1 (1-y, x-y, z),(1/3+x-y, -1/3+x, 2/3-z),(1/3+y, 2/3-z), (4/3-x, 2/3-y, 2/3-z) 2.6471(5),(1-x+y, 1-x, z).

		e	•	
D–HA	d(D–H)	d(HA)	d(DA)	Angle(DHA)
O(2)–H(2) Cl(6)	0.84	2.30	3.097(3)	159.0
O(3)–H(3A) Cl(6)	0.84	2.17	2.997(3)	168.0
C(2)–H(2B) Cl(2)	0.99	2.09	3.444(4)	115.0
C(3)–H(3) Cl(2)	0.95	2.73	3.574(4)	148.4
C(16)–H(16) Cl(2)	0.95	2.85	3.622(4)	139.1
C(8)–H(8A) Cl(3)	0.99	2.65	3.569(4)	154.0
C(8)–H(8A) Cl(4)	0.99	2.95	3.620(4)	125.5
C(9)–H(9) Cl(5)	0.95	2.73	3.544(4)	145.9

 Table S4. Hydrogen bonds for compound 1.

Table S5. Hydrogen bonds for compound 2.

D–HA	d(D–H)	d(HA)	d(DA)	(DHA)
C(2)–H(2A) Cl(1)	0.97	2.85	3.539(2)	128.7
C(3)–H(3) Cl(1)	0.93	2.98	3.433(2)	111.9
C(3)–H(3) Cl(1)	0.93	2.78	3.624(2)	151.0