Supporting Information

A low-concentration all-fluorinated electrolyte for stable lithium metal

batteries

Jisheng Mo,^{a†} Yiqing Yao,^{a†} Chen Li,^a Hanxu Yang,^a Haiwen Li,^c Qingan Zhang,^{ab} Zhipeng

Jiang^{*ab} and Yongtao Li^{*ab}

^a School of Materials Science and Engineering & Low-Carbon New Materials Research

Center, Anhui University of Technology, Maanshan 243002, China

^b Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal

Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002,

China

^c Hefei General Machinery Research Institute, Hefei 230031, China

⁺ These authors contributed equally to this work.

*Corresponding author. E-mail: jzp1994@ahut.edu.cn; liyongtao@ahut.edu.cn

Experimental section

Materials. lithium hexafluorophosphate (LiPF₆, 99.9%), lithium difluorosulfonimide (LiFSI, 99.9%), fluoroethylene carbonate (FEC, 99%), ethylene carbonate (EC, 99%), diethyl carbonate (DEC, 99%) were purchased from Dodo chem. 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropylether (TTE, 99%) was bought from innochem. LiNi_{0.6}Co_{0.2}Mn_{0.2}O₂ (NCM622), and superconducting carbon black conductive agent (Super P) were ordered from the Kelude website. Polyvinylidene fluoride (PVDF) was purchased from Aladdin Technology Co., Ltd. Li foil (φ 14 mm, 400 μ m, China Energy Lithium Co., Ltd.), Cu foil (12 μ m, Shenzhen Jingliang Copper Industey Co., Ltd.), carbon-coated Al foil (8 + 2 μ m, Shenzhen Kejing Star Technology Co., Ltd.), separator (Alumina Ceramic Diaphragm 16 + 4 μ m). Commercial NCM622 electrode were purchased from Guangdong Canrd New Energy Technology Co., Ltd. (20.8 mg cm⁻²). All these materials used without further purification.

Electrolyte Preparation. LCAFE was prepared by dissolving 0.5 M LiFSI in 1 ml mixed solvent of FEC and TTE with the volume ratio of 1: 1. The convention carbonate electrolyte is 1 M LiPF₆ in EC/DEC (v/v = 1: 1). Besides, 0.5 M LiFSI in pure FEC, and 1 M LiFSI in pure FEC were prepared as the control groups.

Characterizations. Raman spectra were obtained using HORIBA LabRAM HR Evolution. Conductivity was obtained using DDS-307A. Disassemble the cycled Li-Cu cells, the Cu foil was washed with DEC and dried in an Ar-atmosphere glovebox. NANO SEM430 field emission SEM system was employed to observe the morphologies of the deposited Li. XPS was conducted with Thermo Fisher Scientific K-Alpha. The Li-NCM622 cells were charged to 4.3 V and then dissembled. The cathode was washed with DEC and dried in an Ar-atmosphere glovebox. To characterize the CEI formed after cycling, transmission electron microscopes were obtained using F200X. The contact angle was measured using JY-82B Kruss DSA.

Electrochemical Tests. Li-Cu, Li-NCM622 and Cu-NCM622 cells were fabricated in CR2032-type coin cells with 40 µL of electrolyte for electrochemical tests. The electrochemical performance of the CR2032-type coin cells was conducted on the LANHE CT3002A battery test instrument at 25 °C. Li-Cu half cells were constructed using a Cu foil (φ 16 mm) and a Li foil (φ 14 mm, 400 μm). The NCM622 cathode was prepared by slurrying NCM622 powder, Super P, and PVDF in an 8: 1: 1 weight ratio in NMP solution, and then coating on the carbon-coated Al foil. After overnight drying at 60 °C in a vacuum, electrodes with areal mass loadings of 2~3 mg cm⁻² were obtained. Li-NCM622 cells were assembled by an NCM622 cathode (φ 8 mm, 2.5 mg cm⁻²) and a Li foil (φ 14 mm, 400 μ m, 80 mAh cm⁻²) using various electrolytes (40 μ L) for rate and long-term cycling tests. Cu-NCM622 anode-free cells were assembled by a commercial NCM622 cathode (φ 12 mm, 20.8 mg cm⁻²) and Cu foil (φ 16 mm) for using various electrolytes $(20 \,\mu\text{L})$ cycling test. The above Li/Cu-NCM622 cells are galvanostatically cycled between 3 and 4.3 V. Linear sweep voltammetry (LSV) plot was tested by the CHI660E electrochemical workstation with a scan rate of 1 mV s⁻¹. Electrochemical impedance spectrometry (EIS) (100 kHz to 0.1 Hz) was conducted using the CHI660E with a voltage amplitude of 5 mV, and the cycled Li-NCM622 cells need to be rested 10 min to obtain a steady voltage before EIS tests.

Supplementary Figures

Fig. S1 Raman spectra of various solvent systems.

Fig. S2 Voltage response curves of Li-Cu cells in different electrolytes. (a) carbonate electrolyte

and (b) LCAFE.

Fig. S3 Li-Cu half cell tests of various LCAFEs with different Li salts.

Fig. S4 CE tests using different electrolytes under the conditions of 3 mA cm⁻², 3 mAh cm⁻².

Fig. S5 LSV plot of LCAFE (Scan rate: 1 mV s⁻¹).

Fig. S6 Charge-discharge curves of rate tests of Li-NCM622 cells using (a) carbonate electrolyte and (b) LCAFE.

Fig. S7 Charge-discharge curves of long-term cycling tests of Li-NCM622 cells using (a)

Fig. S8 Charge-discharge curves of Cu-NCM622 anode-free cell cycling tests using (a) carbonate electrolyte and (b) LCAFE.

Supplementary Tables

Electrolytes	L ⁱ⁺ conductivity
LCAFE	3.76 ms cm ⁻¹
0.5M LiTFSI in FEC: TTE=1:1	2.60 ms cm ⁻¹
0.5M LiBF ₄ in FEC: TTE=1:1	11.60 μs cm ⁻¹
0.5M LiFP ₆ in FEC: TTE=1:1	3.67 ms cm ⁻¹
0.5M LiFSI in FEC	4.45 ms cm ⁻¹
1M LiFSI in FEC	5.60 ms cm ⁻¹
Carbonate electrolyte	7.77 ms cm ⁻¹

Table S1. Comparison of Li⁺ conductivity of various electrolytes at room temperature.

Table S2. Fitted results of the R_e , R_{sei} for Fig 3c-d.

Electrolyte	$R_e(\Omega)$	R _{sei} (Ω)
Carbonate 0 th	5.194	450.806
Carbonate 1 st	3.848	515.952
Carbonate 10 th	7.211	221.389
Carbonate 100 th	4.305	54.875
Carbonate 200 th	5.153	355.147
LCAFE 0 th	5.394	345.606
LCAFE 1 st	5.981	260.819
LCAFE 10 th	6.214	128.186
LCAFE 100 th	8.788	118.512
LCAFE 200 th	5.447	161.853