Electronic Supplementary Information

Dynamics of the copper(I)-alkyne interaction and its use in a heteroleptic four-component catalytic rotor

${ }^{a}$ Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany; ${ }^{b}$ Institut für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, D-60438 Frankfurt am Main, Germany.

Table of contents

1. Synthesis	S2-S11
1.1 General information	S2
1.2 Synthesis and characterization of ligands	S3-S6
1.3 Synthesis and characterization of complexes	S7-S11
2. NMR spectra: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY	$\mathrm{S} 13-\mathrm{S} 23$
3. Variable temperature ${ }^{1} \mathrm{H}$ NMR spectra	S 24
4. DOSY NMR spectra	S25-S26
5. ESI-MS spectra	S27-S28
6. Binding constant determination	S29-S30
7. X-ray crystallography	$\mathrm{S} 31-\mathrm{S} 34$
8. References	

1. Synthesis

1.1 General information

All solvents were dried by distillation prior to use while commercial reagents were used without any further purification. Bruker Avance (400 MHz), Jeol ECZ 500 (500 MHz) and Varian VNMR-S $600(600 \mathrm{MHz})$ spectrometers were used to measure ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra applying the deuterated solvent as the lock and residual protiated solvent as internal reference $\left(\mathrm{CDCl}_{3}: \delta_{H}\right.$ $7.26 \mathrm{ppm}, \delta_{C} 77.0 \mathrm{ppm} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta_{H} 5.32 \mathrm{ppm}, \delta_{C} 53.8 \mathrm{ppm}, \mathrm{DMSO}-d_{6}: \delta_{H} 2.50 \mathrm{ppm}, \delta_{C} 39.52$ $\mathrm{ppm})$. The following abbreviations were used to define NMR peak patterns: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{bs}=$ broad signal, $\mathrm{m}=$ multiplet. The coupling constant values are given in Hertz (Hz) and, wherever possible, assignments of protons are provided. The numbering of different carbons in different molecular skeletons does not necessarily follow the IUPAC nomenclature rules; it is exclusively provided for assigning NMR signals. All electrospray ionization (ESI-MS) spectra were recorded on a Thermo-Quest LCQ deca and the theoretical isotopic distributions of the mass signals were calculated (https://omics.pnl.gov/software/molecular-weight-calculator) using a molecular weight calculator software. Melting points of compounds were measured on a BÜCHI 510 instrument and are not corrected. Infrared spectra were recorded on a Perkin Elmer Spectrum-Two FT-IR spectrometer. Elemental analysis was performed using the EA-3000 CHNS analyzer. UV-vis spectra were recorded on a Varian Cary 100 BioUV/Vis spectrometer. Column chromatography was performed either on silica gel (60-400 mesh) or neutral alumina (Fluka, $0.05-0.15 \mathrm{~mm}$, Brockmann Activity 1). Merck silica gel (60 F254) or neutral alumina (150 F254) sheets were used for thin layer chromatography (TLC). All complexations were performed directly in the NMR tube using $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ as solvent.

1.2 Synthesis and characterization of ligands

Scheme S1. Reaction scheme to synthesis stator 2. Synthesis of $\mathbf{8}, \mathbf{9}^{2}, \mathbf{1 0},{ }^{2} \mathbf{1 1}^{2}$ and $\mathbf{1 2}^{3}$ was done following literature-known procedures.

Scheme S2. Reaction scheme to synthesis rotator 3. Synthesis of $\mathbf{1 5},{ }^{4} \mathbf{1 6}^{4}$ and $\mathbf{1 7}^{3}$ was done following literature-known procedures.

Synthesis of stator $\mathbf{1}^{5}$ and model compounds $\mathbf{4}^{6}$ and $\mathbf{5}^{7}$ was accomplished by a literature-known procedure.

Synthesis of $\mathbf{2}^{8}$

Under N_{2} atmosphere, compounds $12(100 \mathrm{mg}, 107 \mu \mathrm{~mol})$ and $11(195 \mathrm{mg}, 430 \mu \mathrm{~mol})$ were dissolved in dry DMF (20 mL) and dry $\mathrm{Et}_{3} \mathrm{~N}(20 \mathrm{~mL})$ in a sealed tube. The mixture was degassed by two freeze-pump-thaw cycles. Then, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(15.0 \mathrm{mg}, 13.0 \mu \mathrm{~mol})$ was added under N_{2} atmosphere. After degassing again by freeze-pump-thaw cycles, the reaction mixture was stirred at $75^{\circ} \mathrm{C}$ for 18 h . The solvent was evaporated under reduced pressure and the residue worked up with ice-cold water to remove DMF. The organic part was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The compound was first purified by column chromategraphy $\left(\mathrm{SiO}_{2}\right)$ using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in as eluent ($R_{\mathrm{f}}=0.3$). It was finally purified by size exclusion chromategraphy using SX-3 biobead using THF as eluent to afford a violet solid ($94.5 \mathrm{mg}, 70 \%$). mp: $>250{ }^{\circ}{ }^{\circ} \mathbf{C . ~}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{2}, 400 \mathbf{M H z}\right): \delta=1.84\left(\mathrm{~s}, 12 \mathrm{H}, 15^{\prime}-\mathrm{H}\right), 1.85\left(\mathrm{~s}, 6 \mathrm{H}, 18^{\prime}-\mathrm{H}\right), 2.01$ (s, 6H, 1'-H), 2.07 ($\left.\mathrm{s}, 6 \mathrm{H}, 10^{\prime}-\mathrm{H}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, 11^{\prime}-\mathrm{H}\right), 2.61\left(\mathrm{~s}, 3 \mathrm{H}, 19^{\prime}-\mathrm{H}\right), 2.62\left(\mathrm{~s}, 6 \mathrm{H}, 16^{\prime}-\mathrm{H}\right)$, $2.69\left(\mathrm{~s}, 6 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 6.98\left(\mathrm{~s}, 2 \mathrm{H}, 9^{\prime}-\mathrm{H}\right), 7.29\left(\mathrm{~s}, 2 \mathrm{H}, 17^{\prime}-\mathrm{H}\right), 7.30\left(\mathrm{~s}, 4 \mathrm{H}, 14^{\prime}-\mathrm{H}\right), 7.59\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 3^{\prime} / 8^{\prime}-\mathrm{H}\right), 7.60\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 8^{\prime} / 3^{\prime}-\mathrm{H}\right), 7.93\left(\mathrm{~s}, 2 \mathrm{H}, 5^{\prime}+6^{\prime}-\mathrm{H}\right), 7.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, 12^{\prime}-\mathrm{H}\right), 8.25\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 13^{\prime}-\mathrm{H}\right), 8.36\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime} / 7^{\prime}-\mathrm{H}\right), 8.39\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 7^{\prime} / 4^{\prime}-\mathrm{H}\right), 8.70(\mathrm{~s}, 4 \mathrm{H}, \beta-\mathrm{H}), 8.76\left(\mathrm{~d},{ }^{3} J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}\right), 8.93\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}\right)$ ppm.

Synthesis of $\mathbf{1 8}^{9}$

In a dry sealed tube, compounds $17(250 \mathrm{mg}, 247 \mu \mathrm{~mol})$ and $16(233 \mathrm{mg}, 1.98 \mathrm{mmol})$ were taken and dissolved in 20 mL of DMF and 20 mL of triethylamine. The solution was deaerated by the freeze-pump-thaw method twice. To this mixture, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(57.0 \mathrm{mg}, 49.4 \mu \mathrm{~mol})$ was added. The solution was once more deaerated using the freeze-pump-thaw method and it was allowed to stir at $80^{\circ} \mathrm{C}$ for 20 h . All the solvents were then evaporated under vacuum. The residue was worked up using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and ice-cold water. The organic part was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered to get rid of solids. The filtrate was evaporated under vacuum and subjected to column chromatography on silica $\left(\mathrm{SiO}_{2}\right)$ using 50% ethyl acetate in hexane $\left(R_{\mathrm{f}}=0.4\right)$. Finally, the compound was purified over SX-3 bio-bead using THF as eluent to obtain the violet compound ($159 \mathrm{mg}, 65 \%$). $\mathbf{M p}:>250{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (CDCl3, 500 MHz$): \delta=1.83(\mathrm{~s}, 12 \mathrm{H}, \mathrm{h}-\mathrm{H})$, $2.63(\mathrm{~s}, 6 \mathrm{H}, \mathrm{i}-\mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}, \mathrm{e}-\mathrm{H}), 6.89\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{d}-\mathrm{H}\right), 7.29(\mathrm{~s}, 4 \mathrm{H}, \mathrm{g}-\mathrm{H}), 7.58\left(\mathrm{~d},{ }^{3} \mathrm{~J}\right.$ $=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{c}-\mathrm{H}), 7.89\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{b}-\mathrm{H}\right), 8.22\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{a}-\mathrm{H}\right), 8.79\left(\mathrm{~d},{ }^{3} J=\right.$ $4.4 \mathrm{~Hz}, 4 \mathrm{H}, \beta-\mathrm{H}), 8.90\left(\mathrm{~d},{ }^{3} J=4.4 \mathrm{~Hz}, 4 \mathrm{H}, \beta-\mathrm{H}\right) \mathrm{ppm}$.

Synthesis of $\mathbf{3}$

Compound $18(100 \mathrm{mg}, 100 \mu \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(110 \mathrm{mg}, 800 \mu \mathrm{~mol})$ were stirred in THF (30 mL) at room temp. for 10 min , then, propargyl bromide ($\mathbf{1 9}, 158 \mathrm{mg}, 1.32 \mathrm{mmol}$) was added. After heating to reflux for 6 h , the reaction was complete as confirmed by TLC. The solvents were evaporated, and the resultant mixture was worked up with water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$. The organic part was evaporated under reduced pressure and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The compound was purified via column chromatography on silica $\left(\mathrm{SiO}_{2}\right)$ using $30 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexane $\left(R_{\mathrm{f}}=0.3\right)$ yielding the violet colour product $(91.5 \mathrm{mg}, 85 \%) . \mathbf{m p}:>250^{\circ} \mathrm{C}$. IR (KBr): $v=675,727,799$, 810, 831, 852, 872, 927, 999, 1027, 1065, 1107, 1138, 1175, 1205, 1224, 1258, 1286, 1304, 1337, 1376, 1400, 1451, 1512, 1570, 1600, 2214, 2916, 2968, 3118, $3294 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CD}_{2} \mathbf{C l}_{2}, 400 \mathrm{MHz}\right): \delta=1.82(\mathrm{~s}, 12 \mathrm{H}, \mathrm{h}-\mathrm{H}), 2.63(\mathrm{~s}, 6 \mathrm{H}, \mathrm{i}-\mathrm{H}), 2.64\left(\mathrm{t},{ }^{3} \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{f}-\mathrm{H}\right)$, $4.79\left(\mathrm{~d},{ }^{3} J=2.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{e}-\mathrm{H}\right), 7.05\left(\mathrm{~d},{ }^{3} J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{d}-\mathrm{H}\right), 7.31(\mathrm{~s}, 4 \mathrm{H}, \mathrm{g}-\mathrm{H}), 7.64\left(\mathrm{~d},{ }^{3} J=8.8\right.$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{c}-\mathrm{H}), 7.91\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{b}-\mathrm{H}\right), 8.22\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{a}-\mathrm{H}\right), 8.78\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.4 \mathrm{~Hz}\right.$, $4 \mathrm{H}, \beta-\mathrm{H}), 8.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.4 \mathrm{~Hz}, 4 \mathrm{H}, \beta-\mathrm{H}\right) \mathrm{ppm} .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 0} \mathbf{~ M H z}\right): \delta=21.5,21.6$, 55.9, 75.9, 78.2, 88.5, 90.2, 115.1, 116.5, 119.5, 119.6, 122.6, 127.7, 129.7, 130.9, 132.2, 133.2, 134.5, 137.5, 138.9, 139.2, 142.7, 149.8, 150.0, 157.7 ppm. Elemental analysis: Anal. Calcd for $\mathrm{C}_{72} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Zn} \bullet \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, $75.88 ; \mathrm{H}, 4.71$; N, 4.85. Found: C, $75.59 ; \mathrm{H}, 4.52 ; \mathrm{N}, 4.66$.

1.3 Synthesis and characterization of complexes

Synthesis of model complex C1

In an NMR tube, compound $4(565 \mu \mathrm{~g}, 1.36 \mu \mathrm{~mol}),\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF}_{6}(506 \mu \mathrm{~g}, 1.36 \mu \mathrm{~mol})$ and $5(350 \mu \mathrm{~g}, 1.36 \mu \mathrm{~mol})$ were dissolved in $550 \mu \mathrm{~L}$ of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ to quantitatively furnish complex $\mathbf{C 1}$ $=[\mathrm{Cu}(\mathbf{4})(\mathbf{5})]^{+} . \mathbf{I R}(\mathbf{K B r}): v=507,559,625,733,838,1017,1084,1144,1177,1221,1285$, 1401, 1484, 1510, 1586, 1611, 1970, 2855, 2918, 2969, 3189, $3238 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}\right.$, $400 \mathrm{MHz}): \delta=2.05\left(\mathrm{~s}, 12 \mathrm{H}, 7{ }^{\prime \prime}-\mathrm{H}\right), 2.34\left(\mathrm{~s}, 6 \mathrm{H}, 88^{\prime \prime}-\mathrm{H}\right), 2.68\left(\mathrm{t},{ }^{3} \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{f}^{\prime}-\mathrm{H}\right), 4.09\left(\mathrm{~d},{ }^{3} \mathrm{~J}\right.$ $\left.=2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{e}^{\prime}-\mathrm{H}\right), 6.60\left(\mathrm{~d},{ }^{3} \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{d}^{\prime}-\mathrm{H}\right), 7.03\left(\mathrm{~s}, 4 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}\right), 7.58\left(\mathrm{~d},{ }^{3} \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{c}^{\prime}-\mathrm{H}$), 7.92 (d, $\left.{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 3 "-\mathrm{H}\right), 8.20\left(\mathrm{~s}, 2 \mathrm{H}, 5{ }^{\prime \prime}-\mathrm{H}\right), 8.74\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 4^{4}-\mathrm{H}\right) \mathrm{ppm}$. ESI-MS: $m / z(\%) 738.4(100)[\mathrm{Cu}(\mathbf{4})(\mathbf{5})]^{+}$.

All the spacer protons $12-\mathrm{H}, 13-\mathrm{H}, \mathrm{a}-\mathrm{H}$ and $\mathrm{b}-\mathrm{H}$ are assigned as s-H. After complexation $14-\mathrm{H}, 15-\mathrm{H}, \mathrm{g}-\mathrm{H}$ and $\mathrm{h}-\mathrm{H}$ split into $1: 1$ ratio and they are assigned as $14-\mathrm{H}, 14^{\prime}-\mathrm{H}, 15-\mathrm{H}, 15^{\prime}-\mathrm{H}, \mathrm{g}-\mathrm{H}, \mathrm{g}^{\prime}-\mathrm{H}, \mathrm{h}-\mathrm{H}$ and $\mathrm{h}^{\prime}-\mathrm{H}$, respectively. We see a loss of symmetry in the ${ }^{1} \mathrm{H}$ NMR due to the restricted rotation of the phenyl group in ASB1.

In an NMR tube, compound $\mathbf{1}(1.15 \mathrm{mg}, 690 \mathrm{nmol})$, rotator $\mathbf{3}(738 \mu \mathrm{~g}, 690 \mathrm{nmol})$, DABCO (77.4 $\mu \mathrm{g}, 690 \mathrm{nmol})$ and $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF}_{6}(514 \mu \mathrm{~g}, 1.38 \mu \mathrm{~mol})$ were dissolved in $550 \mu \mathrm{~L}$ of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ to furnish the complex ASB-1 in quantitative yield. mp: $>250^{\circ} \mathrm{C}$. $\mathbf{I R}(\mathbf{K B r}): v=560,641,727$, 797, 809, 846, 972, 996, 1064, 1081, 1103, 1179, 1204, 1226, 1286, 1306, 1337, 1378, 1458, 1492, 1511, 1551, 1587, 1608, 1694, 2213, 2729, 2842, 2870, 2916, $2956 \mathrm{~cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{2}, 400 \mathrm{MHz}\right): \delta=-4.57--4.53(\mathrm{~m}, 6 \mathrm{H}, \mathrm{DABCO}-\mathrm{H}),-4.49-4.45(\mathrm{~m}, 6 \mathrm{H}, \mathrm{DABCO}-\mathrm{H})$, 1.11 (s, 6H, h/15-H), 1.13 (s, 6H, 15/h-H), 1.67 (s, 6H, h'/15'-H), 1.77 (s, 6H, 15'/h'-H), 2.02 (s, $12 \mathrm{H}, 1-\mathrm{H}), 2.18(\mathrm{~s}, 12 \mathrm{H}, 10-\mathrm{H}), 2.47(\mathrm{~s}, 6 \mathrm{H}, 11-\mathrm{H}), 2.58(\mathrm{~s}, 6 \mathrm{H}, 16-\mathrm{H}), 2.59(\mathrm{~s}, 6 \mathrm{H}, \mathrm{i}-\mathrm{H}), 2.64(\mathrm{~s}$, $12 \mathrm{H}, 2-\mathrm{H}), 3.10\left(\mathrm{t},{ }^{3} \mathrm{~J}=1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{f}-\mathrm{H}\right), 3.60\left(\mathrm{~d},{ }^{3} \mathrm{~J}=1.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{e}-\mathrm{H}\right), 6.77\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}, 4 \mathrm{H}\right.$, d-H), 7.07 (s, 2H, g/14-H), 7.08 (s, 2H, 14/g-H), $7.10\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{s}-\mathrm{H}\right), 7.21(\mathrm{~s}, 4 \mathrm{H}, 9-$ H), $7.31\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{s}-\mathrm{H}\right), 7.33\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{g} / 14^{\prime}-\mathrm{H}\right), 7.34\left(\mathrm{~s}, 2 \mathrm{H}, 14^{\prime} / \mathrm{g}^{\prime}-\mathrm{H}\right), 7.75\left(\mathrm{~d},{ }^{3} J=8.8\right.$
$\mathrm{Hz}, 4 \mathrm{H}, \mathrm{c}-\mathrm{H}), 7.84\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{s}-\mathrm{H}\right), 7.85\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 8 / 3-\mathrm{H}\right), 7.90\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0\right.$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{s}-\mathrm{H}), 7.93-7.99(\mathrm{~m}, 4 \mathrm{H}, \mathrm{s}-\mathrm{H}), 8.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 3 / 8-\mathrm{H}\right), 8.07\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$, s-H), 8.21 (bs, 2H, s-H), $8.29\left(\mathrm{~d},{ }^{3} J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 6 / 5-\mathrm{H}\right), 8.32\left(\mathrm{~d},{ }^{3} J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 5 / 6-\mathrm{H}\right), 8.35$ (d, $\left.{ }^{3} J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta(\mathbf{1})-\mathrm{H}\right), 8.36\left(\mathrm{~d},{ }^{3} J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta(\mathbf{3})-\mathrm{H}\right), 8.54\left(\mathrm{~d},{ }^{3} J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta(\mathbf{1})-\mathrm{H}\right)$, $8.59\left(\mathrm{~d},{ }^{3} J=4.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta(\mathbf{3})-\mathrm{H}\right), 8.83\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 7 / 4-\mathrm{H}\right), 8.89\left(\mathrm{~d},{ }^{3} J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 4 / 7-\right.$ H) ppm. ESI-MS: $m / z(\%) 1489.1(100)\left[\mathrm{Cu}_{2}(\mathbf{1})(3)(\mathrm{DABCO})\right]^{2+}$. Elemental analysis: Anal. Calcd for $\mathrm{C}_{194} \mathrm{H}_{160} \mathrm{~N}_{14} \mathrm{O}_{2} \mathrm{Zn}_{2} \mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{~F}_{12} \cdot 5 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$: C, 64.61; H, 4.70; $\mathrm{N}, 5.94$. Found: C, 64.64; H, 4.91; N, 6.10.

Synthesis of ROT-1

All the spacer protons $12^{\prime}-\mathrm{H}, 13{ }^{\prime}-\mathrm{H}, \mathrm{a}-\mathrm{H}$ and $\mathrm{b}-\mathrm{H}$ are assigned as $\mathrm{s}-\mathrm{H}$.

In an NMR tube, compound $2(976 \mu \mathrm{~g}, 776 \mathrm{nmol})$, rotator $\mathbf{3}(831 \mu \mathrm{~g}, 776 \mathrm{nmol})$, DABCO (87.1 $\mu \mathrm{g}, 776 \mathrm{nmol})$ and $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF}_{6}(289 \mu \mathrm{~g}, 776 \mathrm{nmol})$ were dissolved in $550 \mu \mathrm{~L}$ of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ to furnish the complex ROT-1 in quantitative yield. mp: $>250^{\circ} \mathrm{C}$. $\mathbf{I R}(\mathbf{K B r}): v=640,668,722$, 798, 809, 831, 851, 996, 1062, 1103, 1139, 1175, 1204, 1225, 1286, 1304, 1336, 1378, 1400,

1456, 1479, 1511, 1608, 1696, 1809, 2213, 2730, 2868, 2917, 2954, 3116, $3307 \mathrm{~cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}$ ($\left.\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{2}, \mathbf{6 0 0} \mathbf{~ M H z}\right): \delta=-4.51$ (bs, $\left.6 \mathrm{H}, \mathrm{DABCO}-\mathrm{H}\right),-4.40(\mathrm{bs}, 6 \mathrm{H}, \mathrm{DABCO}-\mathrm{H}), 1.20(\mathrm{bs}, 12 \mathrm{H}$, h-H), 1.47 (bs, 18H, 15'-H+18'-H), 2.03 (s, 6H, 1'-H), 2.16 (s, 6H, 10'-H), 2.46 (s, 3H, 11'-H), 2.58 (s, $\left.9 \mathrm{H}, 16^{\prime}-\mathrm{H}+19^{\prime}-\mathrm{H}\right), 2.60(\mathrm{~s}, 6 \mathrm{H}, \mathrm{i}-\mathrm{H}), 2.65\left(\mathrm{~s}, 6 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 2.88(\mathrm{bs}, 2 \mathrm{H}, \mathrm{f}-\mathrm{H}), 4.19(\mathrm{bs}, 4 \mathrm{H}$, $\mathrm{e}-\mathrm{H}), 6.93\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{d}-\mathrm{H}\right), 6.98(\mathrm{bs}, 1 \mathrm{H}, \mathrm{s}-\mathrm{H}), 7.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{s}-\mathrm{H}\right), 7.19-7.34$ (m, 12H, g-H+14'-H+17'-H+9-H), $7.63\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{s}-\mathrm{H}\right), 7.66\left(\mathrm{~d},{ }^{3} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{s}-\mathrm{H}\right)$, $7.72\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{c}-\mathrm{H}\right), 7.84-7.90\left(\mathrm{~m}, 5 \mathrm{H}, 8^{\prime} / 3^{\prime}-\mathrm{H}+\mathrm{s}-\mathrm{H}\right), 7.94-7.97(\mathrm{~m}, 2 \mathrm{H}, \mathrm{s}-\mathrm{H}), 8.00(\mathrm{~d}$, $\left.{ }^{3} J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime} / 8^{\prime}-\mathrm{H}\right), 8.27-8.28(\mathrm{bs}, 2 \mathrm{H}, \mathrm{s}-\mathrm{H}), 8.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 6^{\prime} / 5^{\prime}-\mathrm{H}\right), 8.31\left(\mathrm{~d},{ }^{3} J=\right.$ $\left.8.8 \mathrm{~Hz}, 2 \mathrm{H}, 5^{\prime} / 66^{\prime}-\mathrm{H}\right), 8.33-8.37(\mathrm{~m}, 8 \mathrm{H}, \beta(\mathbf{2})-\mathrm{H}+\beta(\mathbf{3})-\mathrm{H}), 8.53-8.55(\mathrm{~m}, 8 \mathrm{H}, \beta(\mathbf{2})-\mathrm{H}+\beta(\mathbf{3})-\mathrm{H}), 8.84$ (d, $\left.{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime} / 4^{\prime}-\mathrm{H}\right), 8.88\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime} / 7^{\prime}-\mathrm{H}\right) \mathrm{ppm}$. ESI-MS: $m / z(\%) 2388.8$ (100) $[\mathrm{Cu}(2)(3)]^{+}$. Elemental analysis: Anal. Calcd for $\mathrm{C}_{164} \mathrm{H}_{138} \mathrm{~N}_{12} \mathrm{O}_{2} \mathrm{Zn}_{2} \mathrm{CuPF}_{6}{ }^{\circ} \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C , 72.51; H, 5.16; N, 6.15. Found: C, 72.19; H, 4.97; N, 6.48.

Synthesis of ROT-2

All the spacer protons $12^{\prime}-\mathrm{H}, 13^{\prime}-\mathrm{H}, \mathrm{a}-\mathrm{H}$ and $\mathrm{b}-\mathrm{H}$ are assigned as $\mathrm{s}-\mathrm{H}$.

In an NMR tube, compound $2(946 \mu \mathrm{~g}, 753 \mathrm{nmol})$, rotator $3(806 \mu \mathrm{~g}, 753 \mathrm{nmol})$, DABCO (84.5 $\mu \mathrm{g}, 753 \mathrm{nmol})$ and $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF}_{6}(281 \mu \mathrm{~g}, 753 \mathrm{nmol})$ were dissolved in $100 \mu \mathrm{~L}$ of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ to furnish the complex ROT-1 in quantitative yield. Now, benzyl azide ($200 \mu \mathrm{~g}, 1.50 \mu \mathrm{~mol}$) and 1 $\mu \mathrm{L}$ of $\mathrm{Et}_{3} \mathrm{~N}$ were added. Further $300 \mu \mathrm{~L}$ of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was added. The NMR tube was tightly closed and heated at $40{ }^{\circ} \mathrm{C}$ for 24 h . Then all the solvent was evaporated to remove residual $\mathrm{Et}_{3} \mathrm{~N}$. The residue was redissolved in $550 \mu \mathrm{~L}$ of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ to furnish ROT-2 in quantitative yield. mp: >250 ${ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}, 400 \mathrm{MHz}\right): \delta=-4.39$ (bs, 12H, DABCO-H), 1.26 (bs, 12H, h-H), 1.47 (bs, 18H, 15'-H+18'-H), 2.03 (s, 6H, 1'-H), 2.08 (s, 6H, 10'-H), 2.15 (s, 3H, 11'-H), 2.58 (s, 15H, $\left.16^{\prime}-\mathrm{H}+19^{\prime}+2^{\prime}-\mathrm{H}\right), 2.59(\mathrm{~s}, 6 \mathrm{H}, \mathrm{i}-\mathrm{H}), 4.81(\mathrm{bs}, 4 \mathrm{H}, \mathrm{e}-\mathrm{H}), 5.52(\mathrm{~s}, 4 \mathrm{H}, \mathrm{j}-\mathrm{H}), 6.61\left(\mathrm{bs}, 2 \mathrm{H}, 9^{\prime}-\mathrm{H}\right), 6.78$ (bs, 4H, d-H), 7.21 (bs, 12H, g-H+14'-H+17'-H+s-H), 7.28-7.30 (m, 6H, k-H+s-H), 7.41-7.48 ($\mathrm{m}, 8 \mathrm{H}, \mathrm{l}-\mathrm{H}+\mathrm{m}-\mathrm{H}+\mathrm{s}-\mathrm{H}$), $7.61\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{c}-\mathrm{H}\right), 7.85\left(\mathrm{~d},{ }^{3} J=7.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{s}-\mathrm{H}\right), 7.92-7.94$ (m, 4H, $\left.3^{\prime}-\mathrm{H}+8^{\prime}-\mathrm{H}+\mathrm{s}-\mathrm{H}\right), 8.21$ (s, 2H, $\left.5^{\prime}-\mathrm{H}+6^{\prime}-\mathrm{H}\right), 8.28$ (bs, $\left.2 \mathrm{H}, \beta(\mathbf{2})-\mathrm{H}\right), 8.30(\mathrm{bs}, 2 \mathrm{H}, \beta(\mathbf{2})-\mathrm{H})$, $8.35-8.36\left(\mathrm{~m}, 6 \mathrm{H}, \beta(\mathbf{2})-\mathrm{H}+\beta\left(\mathbf{3}^{\prime}\right)-\mathrm{H}\right), 8.53-8.54\left(\mathrm{~m}, 6 \mathrm{H}, \beta(\mathbf{2})-\mathrm{H}+\beta\left(\mathbf{3}^{\prime}\right)-\mathrm{H}\right), 8.73\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$,

4'-H+7'-H) ppm. ESI-MS: $m / z(\%) 2655.9$ (100) $\left[\mathrm{Cu}(2)\left(\mathbf{3}^{\prime}\right)\right]^{+}$. Elemental analysis: Anal. Calcd for $\mathrm{C}_{178} \mathrm{H}_{152} \mathrm{~N}_{18} \mathrm{O}_{2} \mathrm{Zn}_{2} \mathrm{CuPF}_{6} \cdot 5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 65.82; H, 4.89; $\mathrm{N}, 7.55$. Found: C, 65.55; H, 4.64; N, 7.32.

2. NMR spectra: ${ }^{1} \mathbf{H},{ }^{13} \mathbf{C},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}$

Figure S1. ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(400 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S2. ${ }^{1} \mathrm{H}$ NMR of compound 18 in $\mathrm{CDCl}_{3}(500 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(400 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S4. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR of compound $\mathbf{3}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(400 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S5. ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3}$ in $\mathrm{CDCl}_{3}(100 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S6. ${ }^{1} \mathrm{H}$ NMR of complex $\mathbf{C 1}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(400 \mathrm{MHz}, 298 \mathrm{~K}, 2.5 \mathrm{mM})$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR of $[\mathrm{Cu}(\mathbf{4})]^{+}, \mathbf{5}$ and $\mathbf{C 1}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(400 \mathrm{MHz}, 298 \mathrm{~K}, 2.5 \mathrm{mM})$.

Figure S8. ${ }^{1} \mathrm{H}$ NMR of ASB-1 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(400 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S9. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR of ASB-1 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(400 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S10. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1},\left[\mathrm{Cu}_{2}(\mathbf{1})\right]^{2+}, \mathbf{3}$ and $\mathbf{A S B}-\mathbf{1}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(400 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S11. ${ }^{1} \mathrm{H}$ NMR of ROT-1 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S12. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR of ROT-1 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(600 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S13. ${ }^{1} \mathrm{H}$ NMR of 2, $[\mathrm{Cu}(\mathbf{2})]^{+}, \mathbf{3}$ and ROT- $\mathbf{1}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(400 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S14. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{3}$, ROT-1 and ASB-1 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(400 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S15. ${ }^{1} \mathrm{H}$ NMR of ROT-2 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(400 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S16. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR of ROT-2 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(400 \mathrm{MHz}, 298 \mathrm{~K})$.

Figure S17. ${ }^{1} \mathrm{H}$ NMR of ROT-1 and ROT-2 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(400 \mathrm{MHz}, 298 \mathrm{~K})$.

3. Variable temperature ${ }^{1} \mathrm{H}$ NMR spectra

The kinetics of rotational exchange at various temperatures was analyzed using the program WinDNMR through simulation of the experimental ${ }^{1} \mathrm{H}$ NMR spectra. ${ }^{10}$ The spectra simulation was performed using the model of a 2 -spin system undergoing mutual exchange and provided the rate constants. Activation parameters were determined from an Eyring plot.

Figure S18. (a) VT ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of ROT-1 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ shows the splitting of proton signal e-H in 1:1 ratio. The corresponding rate constant at different temperatures was calculated from the simulation. (b) Eyring plot for exchange frequency in nanorotor ROT-1.

Figure S19. (a) VT ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz})$ of ROT-2 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ shows the splitting of proton signal j -H in 1:1 ratio. The corresponding rate constant at different temperatures was calculated from the simulation. (b) Eyring plot for exchange frequency in nanorotor ROT-2.

4. DOSY NMR spectra

Calculation of hydrodynamic radius from DOSY

The diffusion coefficient D of each assembly was obtained from the DOSY spectrum, and the corresponding hydrodynamic radius was calculated by using the Stokes-Einstein equation:
$r=\mathrm{k}_{B} T / 6 \pi \eta D$

Figure S20. DOSY NMR of ASB-1 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(600 \mathrm{MHz}, 298 \mathrm{~K})$. Diffusion coefficient $D=4.8$ $\times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}$, hydrodynamic radius $r=11.4 \AA$.

Figure S21. DOSY NMR of ROT-1 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(600 \mathrm{MHz}, 298 \mathrm{~K})$. Diffusion coefficient $D=4.8$ $\times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}$, hydrodynamic radius $r=11.4 \AA$.

Figure S22. DOSY NMR of ROT-2 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(600 \mathrm{MHz}, 298 \mathrm{~K})$. Diffusion coefficient $D=5.0$ $\times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}$, hydrodynamic radius $r=10.9 \AA$.

5. ESI-MS spectra

Figure S23. ESI-MS of $\left[\mathrm{Cu}_{2}(\mathbf{1})(\mathbf{3})(\mathrm{DABCO})\right]^{2+}$.

Figure S24. ESI-MS of $[\mathrm{Cu}(2)(3)]^{+}$.

Figure S25. ESI-MS of $\left[\mathrm{Cu}(\mathbf{2})\left(\mathbf{3}^{\prime}\right)\right]^{+}$.

6. Binding constant determination

a. Measurement of binding constant of compound 5 to $[\mathrm{Cu}(4)]^{+}$

To determine the binding constant of alkyne 5 to $[\mathrm{Cu}(\mathbf{4})]^{+}$, an NMR titration was performed. A 3.13 mM solution of $[\mathrm{Cu}(4)]^{+}$was prepared in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ directly in an NMR tube. In another vial, a 62.2 mM stock solution of 5 was prepared CDCl_{3}. An aliquot of $3.0 \mu \mathrm{~L}$ of 5 was added. After each addition, the ${ }^{1} \mathrm{H}$ NMR was recorded and the peak at 8.67 ppm (for $4^{\prime \prime}-\mathrm{H}$) was monitored for data analysis. The binding constant was determined using a nonlinear curve-fitting applying the following equation ${ }^{11}$:
$\mathrm{Y}=\mathrm{Y} 0+\mathrm{DY} *\left((\mathrm{~K} *(\mathrm{P}+\mathrm{x})+1)-\mathrm{SQRT}\left(\left((\mathrm{K} *(\mathrm{P}+\mathrm{x})+1)^{\wedge} 2\right)-4 * \mathrm{~K} * \mathrm{~K} * \mathrm{P} * \mathrm{x}\right)\right) /(2 * \mathrm{~K} * \mathrm{P})$
$\mathrm{Y}=$ Measured Chemical shift; $\mathrm{Y} 0=$ Chemical shift of empty host solution; $\mathrm{DY}=$ Maximum change in chemical shift: the difference in chemical shift of a fully occupied host and an empty host; $\mathrm{K}=$ Binding constant; $\mathrm{P}=$ Total host concentration; $\mathrm{x}=$ Total guest concentration.

(b)

Figure S26. ${ }^{1} \mathrm{H}$ NMR of $[\mathrm{Cu}(\mathbf{4})]^{+}$upon successive addition of compound $\mathbf{5}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(400 \mathrm{MHz}$, 298 K). (b) Curve-fitting for determination of the binding constant of 5 to $[\mathrm{Cu}(\mathbf{4})]^{+}$.

b. Measurement of binding constant of compound 6 to $[\mathrm{Cu}(4)]^{+}$

To determine the binding constant of triazole 6 to $[\mathrm{Cu}(\mathbf{4})]^{+}$, an NMR titration was performed. A 3.13 mM solution of $[\mathrm{Cu}(4)]^{+}$was prepared in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ directly in an NMR tube. In another vial, a 32.3 mM stock solution of $\mathbf{6}$ was prepared in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. An aliquot of $4.82 \mu \mathrm{~L}$ of $\mathbf{6}$ was added. After each addition, the ${ }^{1} \mathrm{H}$ NMR was recorded and the peak at 7.01 ppm (for $6{ }^{\prime \prime}-\mathrm{H}$) was monitored for data analysis. As before in chapter 6a, the binding constant was determined using nonlinear curve-fitting.

Figure S27. ${ }^{1} \mathrm{H}$ NMR of $[\mathrm{Cu}(\mathbf{4})]^{+}$upon successive addition of compound $\mathbf{6}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(400 \mathrm{MHz}$, 298 K). (b) Curve-fitting for determination of the binding constant of 6 to $[\mathrm{Cu}(4)]^{+}$.

7. X-ray crystallography

Figure S28. X-Ray crystal structure of complex C1. Carbon are shown in light grey; H, light green; N , blue; O , red; Cu^{+}, indigo and I , violet.

Data were collected on a STOE IPDS II two-circle diffractometer with a Genix Microfocus tube with mirror optics using $\operatorname{Mo} K_{\alpha}$ radiation ($\lambda=0.71073 \AA$). The data were scaled using the frame scaling procedure in the X-AREA program system. ${ }^{12}$ The structure was solved by direct methods using the program $S H E L X S^{13}$ and refined against F^{2} with full-matrix least-squares techniques using the program SHELXL. ${ }^{13}$ The F ligands of the PF_{6} anion are disordered over two positions with a site occupation factor of $0.510(17)$ for the major occupied orientation. The displacement ellipsoids of the disordered F atoms were restrained to an isotropic behaviour. The contribution of the unidentifiable solvent was suppressed using the SQUEEZE routine in PLATON. ${ }^{14}$ CCDC deposition number: 2199510.

Table S1. Crystal data and structure refinement for complex C1.

Identification code	C1
Empirical formula	C39 H35 Cu F6 I N2 O P
Formula weight	883.10
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	P -1
Unit cell dimensions	$a=11.2316(6) \AA \quad a=91.434(4)^{\circ}$.
	$b=12.5683(7) \AA$ A $\quad \mathrm{B}=103.968(4)^{\circ}$.
	$\mathrm{c}=14.3333(7) \AA \quad \mathrm{g}=100.004(4)^{\circ}$.
Volume	1928.89(18) \AA^{3}
Z	2
Density (calculated)	$1.520 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.469 \mathrm{~mm}^{-1}$
F(000)	884
Crystal size	$0.120 \times 0.110 \times 0.020 \mathrm{~mm}^{3}$
Theta range for data collection	3.266 to 25.027°.
Index ranges	$-13<=\mathrm{h}<=13,-14<=\mathrm{k}<=14,-17<=1<=17$
Reflections collected	29992
Independent reflections	$6784[\mathrm{R}(\mathrm{int})=0.0588]$
Completeness to theta $=25.000^{\circ}$	99.8\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.000 and 0.609
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6784 / 93 / 525
Goodness-of-fit on F^{2}	1.036
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0549, \mathrm{wR} 2=0.1478$
R indices (all data)	$\mathrm{R} 1=0.0646, \mathrm{wR} 2=0.1594$
Extinction coefficient	n / a
Largest diff. peak and hole	0.630 and -1.254 e. \AA^{-3}

Table S2. Atomic coordinates (x 10^{4}) and equivalent isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for ms 3 . $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	U(eq)
I(1)	-388(1)	3709(1)	-994(1)	58(1)
$\mathrm{Cu}(1)$	6284(1)	1796(1)	3159(1)	29(1)
$\mathrm{O}(1)$	5252(3)	3574(3)	638(2)	40(1)
N(1)	7166(3)	2684(3)	4400(2)	27(1)
C(2)	7896(3)	2103(3)	4996(3)	29(1)
C(3)	8730(3)	2542(3)	5869(3)	30(1)
C(4)	8779(4)	3646(4)	6129(3)	34(1)
C(5)	8006(4)	4213(4)	5541(3)	34(1)
C(6)	7184(4)	3724(3)	4678(3)	28(1)
C(7)	9450(4)	1854(4)	6460(3)	35(1)
C(8)	9337(4)	796(4)	6202(3)	35(1)
N(11)	6912(3)	578(3)	3879(2)	27(1)
C(12)	7768(3)	973(3)	4716(3)	27(1)
C(13)	8478(4)	317(4)	5313(3)	32(1)
C(14)	8279(4)	-784(4)	5017(3)	36(1)
C(15)	7409(4)	-1177(4)	4173(3)	38(1)
C(16)	6729(4)	-482(3)	3612(3)	31(1)
C(21)	6280(4)	4321(3)	4083(3)	30(1)
C(22)	6700(4)	5284(3)	3683(3)	34(1)
C(23)	5824(4)	5821(3)	3137(3)	36(1)
C(24)	4544(4)	5441(4)	2972(3)	39(1)
C(25)	4146(4)	4515(4)	3393(3)	36(1)
C(26)	4983(4)	3941(3)	3957(3)	32(1)
C(27)	8078(4)	5709(4)	3802(4)	41(1)
C(28)	3611(5)	6020(5)	2335(4)	54(1)
C(29)	4486(4)	2976(4)	4433(4)	40(1)
C(31)	5764(4)	-869(3)	2702(3)	29(1)
C(32)	4498(4)	-973(3)	2698(3)	33(1)
C(33)	3601(4)	-1250(4)	1824(3)	37(1)
C(34)	3931(4)	-1432(4)	963(3)	38(1)
C(35)	5185(4)	-1338(4)	990(3)	38(1)

$\mathrm{C}(36)$	$6114(4)$	$-1065(3)$	$1844(3)$	$34(1)$
$\mathrm{C}(37)$	$4093(5)$	$-769(5)$	$3599(4)$	$46(1)$
$\mathrm{C}(38)$	$2940(5)$	$-1707(5)$	$23(4)$	$52(1)$
$\mathrm{C}(39)$	$7470(4)$	$-931(5)$	$1825(4)$	$48(1)$
$\mathrm{C}(41)$	$5251(5)$	$1412(4)$	$1845(3)$	$40(1)$
$\mathrm{C}(42)$	$5570(4)$	$2391(4)$	$1935(3)$	$34(1)$
$\mathrm{C}(43)$	$5782(5)$	$3518(4)$	$1649(3)$	$39(1)$
$\mathrm{C}(51)$	$3996(4)$	$3587(3)$	$346(3)$	$37(1)$
$\mathrm{C}(52)$	$3586(5)$	$3849(4)$	$-606(3)$	$44(1)$
$\mathrm{C}(53)$	$2339(5)$	$3892(4)$	$-972(4)$	$49(1)$
$\mathrm{C}(54)$	$1514(5)$	$3657(4)$	$-410(4)$	$44(1)$
$\mathrm{C}(55)$	$1907(5)$	$3405(4)$	$532(4)$	$46(1)$
$\mathrm{C}(56)$	$3155(5)$	$3360(4)$	$904(3)$	$45(1)$
$\mathrm{P}(1)$	$9862(1)$	$2850(1)$	$2910(1)$	$50(1)$
$\mathrm{F}(1)$	$10362(17)$	$3001(11)$	$4029(6)$	$103(5)$
$\mathrm{F}(2)$	$8783(17)$	$3428(18)$	$2829(15)$	$158(9)$
$\mathrm{F}(3)$	$9508(16)$	$2565(15)$	$1799(7)$	$74(5)$
$\mathrm{F}(4)$	$9063(19)$	$1753(11)$	$3058(11)$	$144(9)$
$\mathrm{F}(5)$	$9828(18)$	$2459(16)$	$1896(8)$	$100(7)$
$\mathrm{F}(6)$	$10754(12)$	$3887(10)$	$2741(9)$	$77(4)$
$\mathrm{F}\left(1^{\prime}\right)$	$11065(12)$	$2261(15)$	$2994(13)$	$121(6)$
$\mathrm{F}\left(2^{\prime}\right)$	$9770(10)$	$3417(10)$	$3932(7)$	$75(3)$
$\mathrm{F}\left(3^{\prime}\right)$	$10170(20)$	$4056(10)$	$2660(14)$	$149(10)$
$\mathrm{F}\left(4^{\prime}\right)$	$2955(7)$	$2958(16)$	$3401(12)$	$148(7)$
$\mathrm{F}\left(5^{\prime}\right)$			$98(5)$	
$\mathrm{F}\left(6^{\prime}\right)$	$2695(15)$	$2600(9)$	$100(5)$	

8. References

1. A. Colombo, G. D. Carlo, C. Dragonetti, M. Magni, A. O. Biroli, M. Pizzotti, D. Roberto, F. Tessore, E. Benazzi, C. A. Bignozzi, L. Casarin and S. Caramori, Inorg. Chem. 2017, 56, 1418914197
2. S, Gaikwad and M. Schmittel, J. Org. Chem. 2017, 82, 343-352.
3. P. K. Biswas, S. Saha, Y. Nanaji, A. Rana and M. Schmittel, Inorg. Chem. 2017 , 56, 66626670.
4. F. Wang, Y. Zhang, Z. Liu, Z. Du, L. Zhang, J. Ren and X. Qu, Angew.Chem. Int.Ed. 2019, 58, 6987-6992.
5. P. K. Biswas, S. Saha, T. Paululat and M. Schmittel, J. Am. Chem. Soc. 2018 , 140, 90389041.
6. Z. Li, D. A. Capretto, R. O. Rahaman and Chuan He, Angew. Chem. Int. Ed. 2007, 46, 5184 5186.
7. L. F. Minuti, M. G. Memeo, S. Crespi and P. Quadrelli, Eur. J. Org. Chem. 2016, 821-829.
8. M. Schmittel and S. K. Samanta, J. Org. Chem. 2010, 75, 5911-5919.
9. P. K. Biswas, A. Goswami, S. Saha and M. Schmittel, Chem. Eur. J. 2020, 26, 14095-14099.
10. H. J. Reich, NMR Spectrum Calculations: WinDNMR, Version 7.1.13; Department of Chemistry, University of Wisconsin.
11. Y. R. Hristova, M. M. J. Smulders, J. K. Clegg, B. Breiner and J. R. Nitschke, Chem. Sci. 2011, 2, 638-641.
12. Stoe \& Cie, X-AREA. Diffractometer control program system. Stoe \& Cie, Darmstadt, Germany, 2002.
13. G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112-122.
14. A. L. Spek, Acta Crystallogr. Sect. D, 2008, 65, 148-155.
