Supporting Information

Biomimetic Models of [Fe]-Hydrogenase Featuring a 2-Acylphenylthiomethyl-6-R-pyridine (R = H or OMe) Ligand

Li-Cheng Song,* Zhen-Qing Zhang, Bei-Bei Liu, Yin-Peng Wang and Shuai Chen

Contents:

1.	. Synthesis and Spectroscopic Characterization Data				
	1.1 General comments	3			
	1.2 Synthesis and characterization data of precursors 1a,b, 2a,b and models 3a,b	3			
	1.2.1 2-HO ₂ CC ₆ H ₄ SCH ₂ C ₅ H ₄ N (1a)	3			
	1.2.2 2-HO ₂ CC ₆ H ₄ SCH ₂ -6-MeOC ₅ H ₃ N (1b)	4			
	1.2.3 [2-ClC(O)C ₆ H ₄ SCH ₂ C ₅ H ₄ N]·HCl (2a)	5			
	1.2.4 [2-CIC(O)C ₆ H ₄ SCH ₂ -6-MeOC ₅ H ₃ N]·HCl (2b)	5			
	1.2.5 η ³ -[2-C(O)C ₆ H ₄ SCH ₂ C ₅ H ₄ N]Fe(CO) ₂ I (3a)	5			
	1.2.6 η ³ -[2-C(O)C ₆ H ₄ SCH ₂ -6-MeOC ₅ H ₃ N]Fe(CO) ₂ I (3b)	6			
	1.3 IR and ¹ H (¹³ C) NMR spectra of models 3a,b (Figures S1–S6)	7			
2.	Experiments for H ₂ Activation and Hydride Transfer Reactions	10			
	2.1 Product Im-H isolated from reaction of $ImBF_4$ with H_2 catalyzed by model 3a or 3b				
(Figure S7)					
	2.2 Reaction of ImBF ₄ with H ₂ catalyzed by model 3a or 3b and the <i>in situ</i> ¹ H NMR spectra				
	(Figures S8 and S9)				

3.	Experiments for D ₂ Activation and Deuteride Transfer Reactions	13
	3.1 Product Im-D isolated from reaction of ImBF ₄ with D ₂ catalyzed by model 3a or 3b	13
	3.2 Reaction of ImBF ₄ with D ₂ catalyzed by model 3a or 3b and the <i>in situ</i> ² H NMR spectra (Figures S10 and S11)	14
4.	<i>In situ</i> IR and ¹ H NMR Spectra of the 5-Coordinate Intermediate { η^3 -[2-	
	$C(O)C_6H_4SCH_2-6-RC_5H_3N]Fe(CO)_2^+(M_3, R = H)$ Suggested in the Mechanistic Pathway	
	(Figures S12 and S13)	16
5.	In situ IR and ¹ H NMR Spectra of the Fe–H Intermediate η^3 -[2-C(O)C ₆ H ₄ SCH ₂ -6-	
	RC_5H_3N [Fe(CO) ₂ H (M ₅ , R = H) Suggested in the Mechanistic Pathway (Figure S14 and	
	Figure 5)	18
6.	X-Ray Crystal Structure	20
	6.1 Crystal structure determinations of models 3a,b	20
	6.2 Crystal data and structure refinement details for models 3a,b (Table S1)	21
7.	References	22

1. Synthesis and Spectroscopic Characterization Data

1.1 General comments

All reactions were carried out using standard Schlenk and vacuum-line techniques under an atmosphere of highly purified nitrogen or argon. Na₂Fe(CO)₄·(1,4-dioxane)_{1.5} must be kept under a dry inert atmosphere at all times since it is very pyrophoric. MeCN, CH₂Cl₂, Et₃N were purified by distillation under N₂ from CaH₂. Tetrahydrofuran (THF) and n-hexane were distilled from Na/benzophenone ketyl under nitrogen. Trifluoroacetic acid, iodine, thionyl chloride, p-MeC₆H₄SO₂Cl (TsCl), AgBF₄, 2-HOCH₂-6-MeOC₅H₃N, H₂ and D₂ were available commercially and used as Disodium thiosalicylate,¹ 1,3-diphenylimidazolium tetrafluoroborate received. (ImBF₄),² Na₂Fe(CO)₄·(1,4-dioxane)_{1.5},³ 2-TsOCH₂C₅H₄N,⁴ were prepared according to the published methods. IR spectra were recorded on a Bruker Vector 22 or Bruker Tensor 27 FT-IR infrared spectrophotometer, while ¹H, ²H and ¹³C{¹H} NMR spectra were obtained on a Bruker Avance 400 NMR and 600 NMR spectrometers, respectively. Elemental analyses were performed on an Elementar Vario EL analyzer. Melting points were determined on an SGW X-4 microscopic melting point apparatus and are uncorrected.

1.2 Synthesis and characterization data of precursors 1a,b, 2a,b and models 3a,b

1.2.1 2-HO₂CC₆H₄SCH₂C₅H₄N (1a)

To a stirred solution of 2-TsOCH₂C₅H₄N (2.63 g, 10.0 mmol) in THF (50 mL) was added disodium thiosalicylate (1.98 g, 10.0 mmol) and then the mixture was stirred at room temperature for 6 h. After trifluoroacetic acid (0.74 mL, 10.0 mmol) was added and the new mixture was stirred at this temperature for 0.5 h, volatiles were removed at reduced pressure and then water (100 mL) was added to the resulting residue to give a white suspension. The suspension was extracted with CH_2Cl_2 (3×50 mL) and then the combined extracts were dried over anhydrous MgSO₄. Removal of MgSO₄ and CH_2Cl_2 produced **1a** (2.20 g, 90%) as a white solid. M.p. 179 °C (dec); Anal. Calcd. for $C_{13}H_{11}NO_2S$: C, 63.65; H, 4.52; N, 5.71. Found: C, 63.45; H, 4.76; N, 5.75. ¹H NMR (400 MHz, DMSO- d_6): δ 4.33 (s, 2H, CH₂), 7.18–8.52 (m, 8H, C₅H₄N, C₆H₄), 13.13 (s, 1H, CO₂H) ppm. ¹³C{¹H} NMR (100 MHz, DMSO- d_6): δ 38.3 (s, CH₂), 122.8, 123.8, 124.5, 126.2, 128.2, 131.4, 132.8, 137.4, 141.4, 149.5, 157.6 (11s, C₅H₄N, C₆H₄), 167.9 (s, C=O) ppm. IR (KBr disk): $v_{C=O}$ 1685 (s) cm⁻¹.

1.2.2 2-HO₂CC₆H₄SCH₂-6-MeOC₅H₃N (1b)

(i) 2-TsOCH₂-6-MeOC₅H₃N

The stirred mixture consisting of 2-HOCH₂-6-MeOC₃H₃N (0.557 g, 4.0 mmol) in THF (15 mL) and NaOH (1.20 g, 30.0 mmol) in water (15 mL) was cooled to 0 °C and then *p*-toluenesulfonyl chloride (1.14 g, 6.0 mmol) was added. The new mixture was warmed to room temperature and stirred at this temperature for 5 h. To the resulting mixture was added water (30 mL) and then the aqueous solution was extracted with CH₂Cl₂ (3×30 mL). After the combined extracts were washed with water (2×50 mL) and dried over anhydrous Na₂SO₄, removal of Na₂SO₄ and CH₂Cl₂ afforded **2**-**TsOCH₂-6-MeOC₅H₃N** (0.610 g, 52%) as a yellow solid. M.p. 73–74 °C; Anal. Calcd. for C₁₄H₁₅NO₄S: C, 57.32; H, 5.15; N, 4.78. Found: C, 57.33; H, 5.14; N, 4.78. ¹H NMR (400 MHz, CDCl₃): δ 2.44 (s, 3H, CH₃C₆H₄), 3.83 (s, 3H, CH₃O), 5.03 (s, 2H, CH₂), 6.63–7.84 (m, 7H, C₅H₃N, C₆H₄) ppm. ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 21.7 (s, CH₃C₆H₄), 53.4 (s, CH₃O), 71.6 (s, CH₂), 110.7, 114.5, 128.1, 129.9, 133.1, 139.2, 144.9, 151.1, 163.7 (9s, C₅H₃N, C₆H₄), ppm. IR (KBr disk): *v* 1321(m), 1176 (m), 753 (s) cm⁻¹.

(ii) $2-HO_2CC_6H_4SCH_2-6-MeOC_5H_3N$ (1b)

The same procedure was followed as preparation of **1a**, except that 2-TsOCH₂-6-MeOC₅H₃N (2.94 g, 10.0 mmol) was used in place of 2-TsOCH₂C₅H₄N. **1b** (1.55 g, 56%) was obtained as a white solid. M.p. 164–165 °C; Anal. Calcd. for C₁₄H₁₃NO₃S: C, 61.08; H, 4.76; N, 5.09. Found: C, 60.73; H, 4.76; N, 5.08. ¹H NMR (400 MHz, DMSO- d_6): δ 3.84 (s, 3H, CH₃O), 4.23 (s, 2H, CH₂), 6.69–7.89 (m, 7H, C₅H₃N, C₆H₄), 13.04 (s, 1H, CO₂H) ppm. ¹³C{¹H} NMR (100 MHz, DMSO- d_6): δ 37.4 (s, CH₂), 53.0

(CH₃O), 108.8, 116.1, 124.0, 126.0, 127.8, 130.9, 132.3, 139.7, 140.9, 154.9, 163.0 (11s, C₅H₃N, C₆H₄), 167.4 (s, C=O) ppm. IR (KBr disk): *v*_{C=O} 1672 (s) cm⁻¹.

1.2.3 $[2-ClC(O)C_6H_4SCH_2C_5H_4N]$ ·HCl (2a)

To a stirred solution of **1a** (1.23 g, 5.0 mmol) in CH₂Cl₂ (30 mL) was slowly added thionyl chloride (0.73 mL, 10.0 mmol) and then the mixture was refluxed for 4 h. Removal of volatiles at reduced pressure gave rise to **2a** (1.43 g, 95%) as a pale yellow solid. M.p. 150–151 °C; Anal. Calcd. for C₁₃H₁₁Cl₂NOS: C, 52.01; H, 3.69; N 4.67. Found: C, 51.96; H, 3.81; N, 4.56. ¹H NMR (400 MHz, CDCl₃): δ 4.86 (s, 2H, CH₂), 7.30–8.63 (m, 8H, C₅H₄N, C₆H₄) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 33.0 (s, CH₂), 125.3, 126.3, 127.4, 127.6, 131.3, 135.3, 135.5, 140.8, 145.4, 154.1 (10s, C₅H₄N, C₆H₄), 167.1 (s, C=O) ppm. IR (KBr disk): *v*_{C=O} 1750 (s) cm⁻¹.

1.2.4 [2-ClC(O)C₆H₄SCH₂-6-MeOC₅H₃N]·HCl (2b)

The same procedure was followed as preparation of **2a**, except that **1b** (1.38 g, 5.0 mmol) was utilized instead of **1a**. **2b** (1.62 g, 98%) was obtained as a pale yellow solid. M.p. 96–97 °C; Anal. Calcd. for $C_{14}H_{13}Cl_2NO_2S$: C, 50.92; H, 3.97; N, 4.24. Found: C, 51.29; H, 3.67; N, 4.48. ¹H NMR (400 MHz, CDCl₃): δ 4.05 (s, 3H, CH₃O), 4.47 (s, 2H, CH₂), 6.80–8.33 (m, 7H, C₅H₃N, C₆H₄) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 36.8 (s, CH₂), 55.2 (s, CH₃O), 109.2, 116.5, 124.8, 126.1, 126.7, 128.9, 130.1, 134.6, 135.2, 141.8, 142.8, 153.4, 162.9 (13s, C₅H₃N, C₆H₄), 166.6 (s, C=O) ppm. IR (KBr disk): $v_{C=O}$ 1722 (s) cm⁻¹.

1.2.5 η^3 -[2-C(O)C₆H₄SCH₂C₅H₄N]Fe(CO)₂I (3a)

At room temperature, Et₃N (139 µL, 1.0 mmol) was added to a suspension of **2a** (0.300 g, 1.0 mmol) in THF (10 mL) and then the mixture was sonicated for 2 min. After the insoluble [Et₃NH]Cl salt was removed by centrifugation, the resulting solution was added dropwise to a stirred suspension of Na₂Fe(CO)₄·(1,4-dioxane)_{1.5} (0.346 g, 1.0 mmol) in MeCN (10 mL) at -78 °C. The resulting mixture was warmed slowly to 0 °C and stirred at this temperature for 0.5 h. After the mixture was cooled to -30 °C, I₂ (0.254 g, 1.0 mmol) was added. The new mixture was warmed to room temperature and

stirred at this temperature for 5 h. Solvent was removed at reduced pressure and the residue was subjected to column chromatography on silica gel. Elution with CH₂Cl₂/acetone (v/v = 10:1) developed a yellow band, from which **3a** (0.252 g, 54%) was obtained as a yellow solid. M.p. 132 °C (dec); Anal. Calcd. for C₁₅H₁₀FeINO₃S: C, 38.57; H, 2.16; N, 3.00. Found: C, 38.53; H, 2.35; N, 2.87. ¹H NMR (400 MHz, CDCl₃): δ 4.52, 5.26 (dd, *J* = 16.0 Hz, 2H, CH₂), 7.17–9.01 (m, 8H, C₅H₄N, C₆H₄) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 51.3 (s, CH₂), 122.6, 123.9, 124.8, 131.1, 131.2, 133.4, 137.8, 138.6, 147.8, 153.7, 158.8 (11s, C₅H₄N, C₆H₄), 209.3, 210.6 (2s, C=O), 262.0 (s, FeC=O) ppm. IR (KBr disk): v_{C=O} 2033 (vs), 1979 (vs); v_{FeC=O} 1626 (s) cm⁻¹.

1.2.6 η^3 -[2-C(O)C₆H₄SCH₂-6-MeOC₅H₃N]Fe(CO)₂I (3b)

The same procedure was followed as preparation of complex **3a**, except that **2b** (0.330 g, 1.0 mmol) was employed in place of **2a**. Elution with CH₂Cl₂/acetone (v/v = 40:1) developed a yellow band, from which **3a** (0.250 g, 50%) was obtained as a yellow solid. M.p. 132 °C (dec); Anal. Calcd. for C₁₆H₁₂FeINO₄S: C, 38.66; H, 2.43; N, 2.82. Found: C, 38.94; H, 2.56; N, 2.63. ¹H NMR (400 MHz, CDCl₃): δ 4.09 (s, 3H, CH₃O), 4.63, 5.34 (dd, *J* = 16.0 Hz, 2H, CH₂), 6.64–7.92 (m, 7H, C₅H₃N, C₆H₄) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 50.9 (s, CH₂), 56.6 (s, CH₃O), 105.6, 116.3, 122.3, 130.6, 130.7, 132.9, 137.5, 141.0, 148.0, 157.7, 166.1 (11s, C₅H₃N, C₆H₄), 208.4, 212.0 (2s, C=O), 259.8 (s, FeC=O) ppm. IR (KBr disk): *v*_{C=O} 2033 (vs), 1975 (vs); *v*_{FeC=O} 1626 (s) cm⁻¹.

1.3 IR and ¹H (¹³C) NMR spectra of models 3a,b

Figure S2. IR spectrum of model 3b.

Figure S4. ¹H NMR spectrum of model 3b in CDCl₃.

Figure S6. ¹³C NMR spectrum of model 3b in CDCl₃.

2. Experiments for H₂ Activation and Hydride Transfer Reactions

2.1 Product Im-H isolated from reaction of ImBF₄ with H₂ catalyzed by model 3a or 3b (Figure S7)

In an argon-filled glove box, a mixture of model **3a** (11.7 mg, 25 µmol) or **3b** (12.4 mg, 25 μmol), AgBF₄ (10 mg, 50 μmol), ImBF₄ (77.5 mg, 250 μmol), Et₃N (35 μL, 250 µmol) and CHCl₃ (3.0 mL) was added to a 30 mL autoclave's inner sleeve (made of PTFE) containing a magnetic stir-bar. The inner sleeve was put to the autoclave and then the autoclave was sealed. After 1.0 MPa of H₂ was filled and released three times, the mixture was stirred under 1.0 MPa H₂ at room temperature for 14 h to give a grey suspension in the case of 3a or 3b (see Figure S7). Solvent was removed at reduced pressure to give a residue, which was subjected to silica gel column chromatography. Elution with CH_2Cl_2 /hexane (v/v = 1:4) developed a colorless band, from which product Im-H (26.3 mg, 47% in the case of **3a** or 19.7 mg, 35% in the case of **3b**) was obtained as a white solid (note that Im-H was separated by column chromatography and monitored by thin layer chromatography (TLC) using the fluorescent TLC plates covered with silica gel GF 254 under UV irradiation). M.p. 124–125 °C (lit⁵ 127 °C); Anal. Calcd. for C₁₅H₁₆N₂: C, 80.32; H, 7.19; N, 12.49. Found: C, 80.37; H, 7.20; N, 12.64. ¹H NMR (400 MHz, CDCl₃): δ 3.68 (s, 4H, NCH₂CH₂N), 4.69 (s, 2H, NCH₂N), 6.69–7.33 (m, 10H, 2C₆H₅) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 46.7 (s, NCH₂CH₂N), 66.1 (s, NCH₂N), 112.7, 117.9, 129.5, 146.5 (4s, C₆H₅) ppm. IR (KBr disk): v 1603, 1574, 1501, 1347, 1239, 1187, 1158, 994, 868, 744, 693 cm⁻¹.

Figure S7. A photo showing the two grey suspensions originated in the cases of **3a,b**.

2.2 Reaction of ImBF₄ with H₂ catalyzed by model 3a or 3b and the *in situ* ¹H NMR spectra (Figures S8 and S9)

The same reaction of ImBF₄ with H₂ in the presence of **3a** or **3b**, AgBF₄, Et₃N was carried out as described in 2.1 except that CHCl₃ was replaced by CDCl₃. The resulting grey suspension originated in the case of **3a** or **3b** was filtered through a microfilter to give the corresponding yellow CDCl₃ solutions, which were determined *in situ* by ¹H NMR spectroscopy (Figures S8 and S9) to prove the formation of product Im-H and concomitant product [Et₃NH]BF₄.⁶

Figure S8. ¹H NMR spectrum of the resulting solution originated from reaction of $ImBF_4$ with 1.0 MPa H₂ catalyzed by model **3a** in the presence of AgBF₄ and Et₃N.

Figure S9. ¹H NMR spectrum of the resulting solution originated from reaction of $ImBF_4$ with 1.0 MPa H₂ catalyzed by model **3b** in the presence of AgBF₄ and Et₃N.

3. Experiments for D₂ Activation and Deuteride Transfer Reactions

3.1 Product Im-D isolated from reaction of $ImBF_4$ with D_2 catalyzed by model 3a or 3b

In an argon-filled glove box, a mixture of model **3a** (11.7 mg, 25 µmol) or **3b** (12.4 mg, 25 µmol), AgBF₄ (10 mg, 50 µmol), ImBF₄ (77.5 mg, 250 µmol), Et₃N (35 µL, 250 µmol) and CHCl₃ (3.0 mL) was added to a 30 mL autoclave's inner sleeve containing a magnetic stir-bar. The same procedure was followed as that for the aforementioned H₂ activation except that 1.0 MPa H₂ was replaced by 1.0 MPa D₂. New product Im-D (24.8 mg, 44% in the case of **3a** or 18.6 mg, 33% in the case of **3b**) was obtained as a white solid. M.p. 119–120 °C; Anal. Calcd. for $C_{15}H_{15}DN_2$: C, 79.96; H, 7.60; N, 12.43. Found: C, 79.99; H, 7.43; N, 12.26. ¹H NMR (400 MHz, CDCl₃): δ 3.67 (s, 4H, NCH₂CH₂N), 4.66 (s, 1H, NCHDN), 6.68–7.34 (m, 10H, 2C₆H₅) ppm. ²H NMR (600 MHz, CHCl₃): δ 4.71 (NCHDN) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 46.6 (s, NCH₂CH₂N), 65.4, 65.6, 65.9 (3s, NCHDN), 112.5, 117.7, 129.5, 146.5 (4s, C₆H₅) ppm. IR (KBr disk): *v* 1604, 1577, 1508, 1347, 1239, 1187, 1159, 994, 868, 744, 693 cm⁻¹.

3.2 Reaction of ImBF₄ with D₂ catalyzed by model 3a or 3b and the *in situ* ²H NMR spectra (Figures S10 and S11)

The same reaction of ImBF₄ with D_2 in the presence of AgBF₄, Et₃N was carried out as described in 3.1, except that the resulting suspension originated in the case of **3a** or **3b** was filtered through a microfilter to give the corresponding two yellow CHCl₃ solutions, which were determined *in situ* by ²H NMR spectroscopy to prove the formation Im-D and concomitant product [Et₃ND]BF₄.

Figure S10. ²H NMR spectrum of the resulting CHCl₃ solution originated from reaction of ImBF₄ with 1.0 MPa D₂ catalyzed by model **3a** in the presence of AgBF₄ and Et₃N.

Figure S11. ²H NMR spectrum of the resulting CHCl₃ solution originated from reaction of ImBF₄ with 1.0 MPa D₂ catalyzed by model **3b** in the presence of AgBF₄ and Et₃N.

- 4. In situ IR and ¹H NMR Spectra of the 5-Coordinate Intermediate {η³-[2-C(O)C₆H₄SCH₂-6-RC₅H₃N]Fe(CO)₂}⁺ (M₃, R = H) Suggested in the Mechanistic Pathway
- (1) In a nitrogen-filled glove box, model **3a** (4.7 mg, 10 μ mol), AgBF₄ (4.0 mg, 20 μ mol) and 0.6 mL of CDCl₃ were placed in a 25 mL flask containing a magnetic stir-bar. The mixture was stirred at room temperature for 1 h and then was filtered. The IR spectrum of the resulting solution was determined in order to prove formation of the 5-coordinated cationic intermediate **M**₃ (R = H) (Figure S12).

Figure S12. In situ IR spectrum of the 5-coordinate intermediate $\{\eta^3-[2-C(O)C_6H_4SCH_2-6-RC_5H_3N]Fe(CO)_2\}^+$ (**M**₃, R = H) formed from reaction of model **3a** with AgBF₄ in CDCl₃.

(2) In a nitrogen-filled glove box, model **3a** (9.3 mg, 20 μ mol), AgBF₄ (8.0 mg, 40 μ mol) and 0.6 mL of CDCl₃ were placed in a 25 mL flask containing a magnetic stir-bar. The mixture was stirred at room temperature for 1 h and then was filtered. The ¹H NMR spectrum of the resulting solution was determined in order to prove formation of the 5-coordinated cationic intermediate **M**₃ (R = H) (Figure S13).

Figure S13. *In situ* ¹H NMR spectrum of the 5-coordinate intermediate { η^3 -[2-C(O)C₆H₄SCH₂-6-RC₅H₃N]Fe(CO)₂}⁺ (**M**₃, R = H) formed from reaction of model **3a** with AgBF₄ in CDCl₃.

5. In situ IR Spectrum of the Fe–H Intermediate η^3 -[2-C(O)C₆H₄SCH₂-6-RC₅H₃N]Fe(CO)₂H (M₅, R = H) Suggested in the Mechanistic Pathway

(1) In an argon-filled glove box, model **3a** (18.7 mg, 40 μ mol), AgBF₄ (15.6 mg, 80 μ mol), Et₃N (28.0 μ L, 0.20 mmol) and 0.6 mL of CDCl₃ were added to a 5 mL test tube containing a magnetic stir-bar. The test tube was put to a 30 mL inner sleeve of the autoclave and then the autoclave was sealed. After 1.0 MPa of H₂ was filled and released three times, the mixture was stirred under 1.0 MPa H₂ at room temperature for 1 h. The resulting grey suspension was filtered through a microfilter to give a yellowish solution. The IR spectrum of the solution was determined in order to prove formation of the Fe–H intermediate **M**₅ (R = H) (Figure S14)

Figure S14. In situ IR spectrum of the Fe–H intermediate η^3 -[2-C(O)C₆H₄SCH₂-6-RC₅H₃N]Fe(CO)₂H (**M**₅, R = H) generated from reaction of model **3a** with H₂ in the presence of AgBF₄ and Et₃N in CDCl₃.

(2) In an argon-filled glove box, model **3a** (18.7 mg, 40 μ mol), AgBF₄ (15.6 mg, 80 μ mol), Et₃N (28.0 μ L, 0.20 mmol) and 0.6 mL of CDCl₃ were added to a 5 mL test tube containing a magnetic stir-bar. The test tube was put to a 30 mL inner sleeve of the autoclave and then the autoclave was sealed. After 1.0 MPa of H₂ was filled and released three times, the mixture was stirred under 1.0 MPa H₂ at room temperature for 1 h. The resulting grey suspension was filtered through a microfilter to give a yellowish solution. The ¹H NMR spectrum of the solution was determined in order to prove formation of the Fe–H intermediate **M**₅ (R = H) (see Figure 5 in the text).

6. X-Ray Crystal Structure

6.1 Crystal structure determinations of models 3a,b

The single crystals of **3a,b** were grown by slow evaporation of their CH₂Cl₂/*n*-hexane solutions at -30 °C for **3a** and at room temperature for **3b**, respectively. A single crystal of **3a** was mounted on a Bruker P4 diffractometer, whereas a single crystal of **3b** was mounted on a Rigaku-D diffractometer. The crystal data of **3a,b** were collected using a confocal monochromator with Mo K α radiation ($\lambda = 0.71073$ Å) in the ω scanning mode at 113 K. The data collection, reduction, and absorption correction were performed by the CRYSTALCLEAR program,⁷ whereas the structures were solved by direct methods using the SHELXT program^{8,9} and refined by full-matrix least-squares techniques (SHELXL)⁹ on F^2 . Hydrogen atoms were located by using the geometric method. Details of crystal data, data collections, and structure refinements are summarized in Table S1. CCDC 2167104 and 2167105 contain the supplementary crystallographic data of **3a,b** respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

6.2 Crystal data and structure refinement details for models 3a,b

	3a	3b
mol formula	C ₁₅ H ₁₀ FeINO ₃ S	C ₁₆ H ₁₂ FeINO ₄ S
mol wt	467.05	497.08
cryst syst	triclinic	orthorhombic
space group	P-1	P2 ₁ 2 ₁ 2 ₁
<i>a</i> /Å	8.2779(17)	7.7561(2)
b /Å	8.2797(17)	12.2662(3)
c /Å	13.137(3)	18.2643(6)
α /deg	91.00(3)	90
β /deg	94.52(3)	90
γ/deg	119.13(3)	90
<i>V</i> /Å ³	782.5(3)	1737.68(8)
Ζ	2	4
$Dc/g\cdot cm^{-3}$	1.982	1.900
abs coeff/mm ⁻¹	3.079	2.784
<i>F</i> (000)	452	968.0
index ranges	$-10 \leq h \leq 10$	$-9 \le h \le 10$
	$-10 \le k \le 10$	$-16 \leq k \leq 16$
	$-17 \le 1 \le 17$	$-24 \le l \le 22$
no. of reflns	9225	17781
no. of indep reflns	3661	4507
$2\theta_{\rm max}$ /deg	55.70	57.398
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0400, wR_2 = 0.0845$	$R_1 = 0.0337, wR_2 = 0.0812$
Final R indexes [all data]	$R_1 = 0.0473, wR_2 = 0.0867$	$R_1 = 0.0365, wR_2 = 0.0839$
GOF	0.786	1.070
largest diff peak and hole/eÅ ⁻³	1.092 and -1.938	1.566 and -1.017

 Table S1. Crystal data and structure refinement details for models 3a,b.

7. References

- 1 S. Eldin and W. P. Jencks, J. Am. Chem. Soc., 1995, 117, 4851–4857.
- 2 M. Hatazawa, N. Yoshie and H. Seino, *Inorg. Chem.*, 2017, 56, 8087–8099.
- 3 E. N. Wayland, Organic Syntheses; Wiley: New York, 1988, Vol 6, P807.
- 4 N. C. Ackroyd and J. A. Katzenellenbogen, *Organometallics*, 2010, **29**, 3669–3671.
- 5 M. K. Denk, S. Gupta, J. Brownie, S. Tajammul and A. J. Lough, *Chem. Eur. J.*, 2001, 7, 4477–4486.
- 6 P. A. Ganeshpure, G. George and J. Das, J. Mol. Catal. A: Chem., 2008, 279, 182–186.
- 7 CrystalClear and CrystalStructure; Rigaku and Rigaku Americas: The Woodlands, TX, 2007.
- 8 (a) G. M. Sheldrick, SHELXS-97 and SHELXL-97, Program for crystal structure solution and refinement; University of Göttingen: Göttingen, Germany, 1997; (b)
 G. M. Sheldrick, A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112–122.
- 9 G. M. Sheldrick, *SHELXT*-Integrated space-group and crystal-structure determination. *Acta Crystallogr., Sect. A: Found. Adv.*, 2015, **71**, 3–8.