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Experimental section

Materials

Materials: H,O, (30wt % in water), and imidazole-2-carboxaldehyde (ICA,98%) were
purchased from Alfa Aesar. Zn(NOs),-6H,0 (98%) was purchased from MACKLIN reagent Co.,
Ltd. Morpholine (99%), benzylamine (99%), N-methylaniline (99%), and N-formylmorpholine
(99%) were purchased from Shanghai Aladdin Reagent Co., Ltd. CH;CN (99%), CH;0H (99%),
CH;CH,0H (99%), N,N-dimethylformamide (DMF, 99%), tetrahydrofuran (THF, 99%), ethyl
acetate (99%), and n-hexane (99%) were bought from Beijing Innochem Sci.&Tech.Co.Ltd. All
solvents were analytical reagent and used without further purification. All silanes and other
reagents were purchased from TCI Reagent Co., Ltd. (Shanghai).
The synthesis of catalysts

First, Zn(NO;),-6H,0O (0.202 g) and imidazole-2-carboxaldehyde (ICA) (0.223 g) were

dissolved in DMF (50 mL) (solution 1) and DMF (25 mL) (solution 2), respectively. Then,
solution 1 and solution 2 were mixed. DMF (25 mL) containing triethylamine (0.26 mL) (solution
3) was then poured into the mixture of solution 1 and 2 and stirred for 3 min, followed by adding
methanol (50 mL) to stop the reaction. Finally, the yellow precipitate (ZIF-90) was collected by
centrifugation, washed with ethanol (30 mL x 3), and centrifuged at 9000 rpm for 5 min. Then, it
was vacuum-dried at 70 °C for 36 h. The extracted ZIF-90 (0.10 g) was then suspended in
deionized water (30 mL). H,O, (0.32 mL) dissolved in deionized water (15 mL) was slowly added
to the suspended ZIF-90 mixture and reacted at room temperature for 24 h, followed by
centrifugation at 9000 rpm for 10 min and vacuum-drying at 70 °C for 24 h to obtain the solid
catalyst (ZIF-90-C).
Catalytic reaction

All N-formylation reactions were carried out in a 15 mL Schlenk tube with an inner connector
in CO; (99.99%) environment. In general procedure, ZIF-90-C (5 mol%) was placed in a Schlenk
tube, and then the reaction tube was vacuumed by mechanical pump and fixed by magnetic stirrer.
Amines (0.25 mmol) and CH;CN (1 mL) were added to the syringe and put into the reaction tube.
Then the CO,; balloon was introduced into the vacuum reactor and connected with the inner spiral
tube. After 30 min, hydrosilane (0.5 mmol) and CH;CN (1 mL) were added to the syringe, and the
resulting mixture was stirred at 500 rpm at 50 °C for 24 h. After the reaction, the liquid was
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filtered by syringe filter (0.22 pum), and further identified by gas chromatography (GC) and gas
chromatography-mass spectrometry (GC-MS).
Catalyst recycling study

The reusability test of ZIF-90-C was carried out under the optimal reaction conditions (50 °C
for 24 h), namely N-formylmorph (0.25 mmol), PhSiH; (0.5 mmol), ZIF-90-C (5 mol%), CH;CN
(2.0 mL), and CO, balloon. After each reaction cycle, ZIF-90-C catalyst was separated from the
reaction system by centrifugation, washed with methanol (15 mL x 3) and vacuum dried at 70 °C
for 12 h. The recovered catalyst was then applied directly to the next reaction.
Isotopic labeling experiments
13CO, was prepared by addition of 20 mL HCI (1.8 M) into 20 mL Na,CO3-'3C (1.0 M) aqueous
solution at 40 °C stirring for 25 min, and collected with a balloon. In a general procedure, ZIF-90-
C (5 mol%) was placed in a Schlenk tube, and then the reaction tube was vacuumed by
mechanical pump and fixed by magnetic stirrer. Amine (0.25 mmol) and CH;CN (1 mL) were
taken with a syringe and then put into the reaction tube. Then the 13CO, balloon was introduced
into the vacuum reactor and connected with the inner spiral tube. After reaction 30 min,
hydrosilane (0.5 mmol) and CH3CN (1 mL) were added with the syringe, and the resulting
mixture was stirred at 500 rpm at 50 °C for 5 h. After the reaction, the liquid was filtered by
syringe filter (0.22 um), and further identified by gas chromatography-mass spectrometry (GC-
MS) and high resolution mass spectrum (HR-MS).
Catalyst characterization

Scanning electron microscope (SEM) images were obtained by operating ZEISS SIGMA300
instrument under 10 kV vacuum. Transmission electron microscopy (TEM) was performed on
TALOS F200C. Images of atomic force microscopy (AFM) were obtained by Bruker Innova
IRIS.The fourier transform infrared (FT-IR) spectra of solid samples were performed on the
NICOLET iS50 (Thermo) spectrometer using KBr particles coupled with the iS50 ATR
(Attenuated Total Reflectance) attachment. The X-ray powder diffraction (XRD) patterns were
obtained by Bruker D8 Advance under the conditions of Cu Ka radiation and 26 scanning at 5°-
90°. X-ray photoelectron spectroscopy (XPS) was obtained by Nexsa spectrometer, and the data
were fitted by XPSPEAK software. Gas adsorption experiments were carried out by ASAP 2460
equipment (powder technology) at 77 K in N,, 273 K in CO, and 323 K. The specific surface area
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were obtained by Brunouer-Emmett-Teller (BET) method. And average pore size of the catalyst
were obtained by Horvath-Kawazoe (HK) and Barrett-Joyner-Halenda (BJH) methods. Isosteric

heat of adsorption (Qst) for CO, was calculated using Clausius-Clapeyron equation:

RT, T, lni@(P2/p,)

Qst =
T,-T,

Two sets of adsorption data were collected at two different temperatures: P = equilibrium
pressure (mm Hg), different pressures under the same adsorption capacity, T = temperature (K),
and R = 0.00831 kJ-mol-! K-,

The yield of naphthalene was determined by GC-MS and GC ( Agilent 7890B ). The calculation

formula of yield and conversion rate were as follows:

mole of residual substrate

Conversion (%) = (1 - ) %X 100%

mole of inital substrate

. mole of product
Yeild (%) = — x 100%
mole of inital substrate

CHN and O elements were analyzed by Vario EL analyzer (Elemental Analysis Systems GmbH,
Germany). The sample (2 mg) was burned at 950 °C (CHN analysis) or 1200 °C (O analysis). All
analyses were repeated three times and the average C, H, N and O contents (wt%) were calculated.
The ATR-FTIR analysis of acetylation catalyzed by ZIF-90

The reaction mechanism was analyzed by ATR-FTIR (Thermo Fisher Nicolet iS50). The
specific process was as follows: Firstly, PhSiH; (0.5 mmol) was saturated with CO, at 50 °C for
24 h. Then amine (0.25 mmol), ZIF-90-C (5 mol %), and PhSiH; (0.5 mmol) were saturated at 50
°C for 24 h. Finally, these samples obtained at different time intervals were analyzed by attenuated
total reflection (ATR)-IR infrared technology.

Computational details

The B3LYP density functional method with the D3(BJ) dispersion correction was employed in
this work to carry out all the computations. The 6-31G(d) basis set was used for the atoms. All
structures have been optimized considering solvent effects using the PCM model for acetonitrile.
Vibrational frequency analyses at the same level of theory were performed on all optimized
structures to characterize stationary points as local minima or transition states. Furthermore,
intrinsic reaction coordinate (IRC) computations were carried out to confirm that transition states

connect to the appropriate reactants and products. The single-point energy calculations were
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carried out using the def2-TZVP basis set with the M06-2X method to provide better energy

correction. The Gaussian 16 suite of programs was used throughout.
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Table S1. Crystallinity and crystallite size of ZIF-90 and ZIF-90-C.

Samples Crystallinity degree (%) Crystallite size (Dnm)
ZIF-90 87.6 46
ZIF-90-C 84.3 67

In the revised manuscript, we have supplemented the crystallinity and crystallite size (calculated
by the Sherrell equation) of the two catalysts. The crystallinity and crystallite size of ZIF-90 were
87.6% and 46 nm, respectively, while that of ZIF-90-C decreased to 84.3% and 67 nm,
respectively. The formation of hydrogen bond branches between-COOH in ZIF-90-C increases the
length of ligands involved in crystallization, which makes the crystal plane spacing of ZIF-90-C

larger, resulting in the decrease of crystallinity of ZIF-90-C.

area of crystalline peaks kA

Crystallinity = - D =
area of all peaks (crystalline + amorphous) x 100%, pcos O

k is the Scherrer constant, if £ is the full width at half maximum of the diffraction peak, then k =
0.89; if B is the integral height and width of the diffraction peak, then k=1,

D is the average thickness of the grains perpendicular to the crystal plane,

f is the measured sample diffraction peak half width (must be double-line correction and
instrument factor correction), in the calculation process, need to be converted to radian (rad),

@ 1s the Bragg diffraction angle in angle,

A is the wavelength of X-ray, usually 1.54056 nm.
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Table S2. Surface area and porosity of ZIF-90 and ZIF-90-C.

Sample Specific area (m?/g) Pore volume (m3/g) Pore size (nm)
*SBET 5Smicro ©Sexter W iotal Vmicro "Daverage

ZIF-90 557.53  495.13 62.4 0.38 0.25 2.77

ZIF-90-C  357.22 33098 26.24 0.29 0.17 3.35

2 The BET specific surface area of the catalyst. ® The microporous specific surface area of the
catalyst. © The external specific surface area of the catalyst. 9 The total pore volume of catalyst. ©

The microporous pore volume of catalyst. f The average pore volume of catalyst.

S9



Table S3. Elemental analysis of ZIF-90 and ZIF-90-C.

Element C (%) N (%) 0 (%) H (%)
Sample
ZIF-90 40.52 20.95 12.15 2.3
ZIF-90-C 42.41 18.93 14.56 1.8

Assuming that the increase in O content is entirely due to the formation of
carboxyl groups,?* the amount of carboxyl groups loaded on ZIF-90-C carrier can be

calculated to be 4.87 mmol/g, and the yield of aldehyde group to carboxyl group

reaches 69.9%.
The formula for calculating the yield of ZIF-90-C with oxygen mass fraction is

as follows:
B
x 100% = X
A AxB
— X 32- X 32
16

B is the mass fraction of oxygen in ZIF-90-C, A is the mass fraction of oxygen in

ZIF-90, and X is the yield of ZIF-90-C.

The formula for calculating the loading of carboxyl group on unit mass of ZIF-

90-C is as follows:

m
— XX X2
M
=7
m
m is the mass of ZIF-90-C, M is the relative molecular mass of ZIF-90-C monomer,

and Z is the loading of carboxyl group on unit mass of ZIF-90-C.
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Table S4. The polarity (n*) of different solvents.

Entry Solvent Polarity (n*)
1 N,N-Dimethylformamide 0.88

2 Acetonitrile 0.66

3 Tetrahydrofuran 0.58

4 Ethyl acetate 0.55

5 Ethanol 0.54

6 n-hexane -0.08

n* is the Kamlet-Taft parameter.
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Table S5. Catalytic activity of morpholine and CO, formylation under different silane conditions?.

0]

i ” |

Cat, CH;CN N H
[ + €O, + PhSiH; - [ j - E j

o 50°C, 24 h o 5

la 1b lc
) Silane dosage ) )

Entry Silane Conv.(1a,%) Yield(1b,%) Yield(1¢,%)
/mmol

1 PhSiH; 0.5 100 94 5
2 Ph,SiH, 0.5 69 66 3
3 Et;SiH 0.5 3 2 1
4 PMHS 0.5 10 8 2
5 EtO;SiH 0.5 4 2 2

aReaction conditions: 0.25 mmol 1a, 5 mol% ZIF-90-C, 2.0 mL CH;CN, CO, balloon, 50 °C and 24 h.
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Fig. S1 Synthesis schematic of COOH-functionalized ZIF-90-C.
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Fig. S2 FT-IR spectra of ZIF-90 and ZIF-90-C.
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Fig. S4 SEM images: (a) ZIF-90, (b) ZIF-90-C; TEM images: (c¢) ZIF-90, (d) ZIF-90-C; AFM
image: (e) ZIF-90-C; TEM-EDX image of (f) ZIF-90-C and elemental mapping images of (g) C,

(h) O, (i) N, and (j) Zn present in ZIF-90-C.
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Fig. S5 (a) XPS survey spectra of ZIF-90 and ZIF-90-C; (b) C 1s spectra of ZIF-90 and ZIF-90-C;

(c) O 1s spectra of ZIF-90 and ZIF-90-C; and (d) Zn 2p spectra of ZIF-90 and ZIF-90-C.
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Fig. S7 Effect of (a) catalyst amount, (b) temperature, (c) reaction time, and (d) PhSiH; loading on
reductive of CO, with 1a for 1b synthesis using ZIF-90-C. Reaction conditions: 1a, 0.25 mmol;
CH;CN, 2 mL; [CO, balloon; PhSiH;, 0.5 mmol; T, 50 °C; t, 24 h] for panel (a); [CO, balloon; 5
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for panel (d).
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Fig. S9 'H NMR spectrum of CO, hydrosilylation without an amine (solvent: DMSO-Dg).
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conditions: 5 mol% catalyst, 2.0 mL. CH5CN, 0.5 mmol PhSiHj3, and CO, balloon.
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Fig. S14 HR-MS spectrum of *C-labeled formoxysliane.
Reaction conditions: '3CO, balloon, morpholine (0.25 mmol), PhSiH; (0.5 mmol), ZIF-90-C (5
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Fig. S15 GC-MS spectrum of 3C-labeled N-formylmorpholine.
Reaction conditions: '3CO, balloon, morpholine (0.25 mmol), PhSiH; (0.5 mmol), ZIF-90-C (5

mol%), CH3CN (2.0 mL), 50 °C and 5 h.
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Fig. S17 The mass spectrum of 2b.
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Fig. S18 The mass spectrum of 2¢.
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Fig. S19 The mass spectrum of 2d.
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Fig. S20 The mass spectrum of 2e.
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Fig. S22 The mass spectrum of 2g.
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Fig. S23 The mass spectrum of 2h.
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Fig. S24 The mass spectrum of 2i.
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Fig. S25 The mass spectrum of 2j.
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Fig. S26 The mass spectrum of 2k.
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Fig. S27 The mass spectrum of 21.
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Fig. S28 The mass spectrum of 2m.
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