Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

Spatially confined magnesiothermic reduction induced uniform mesoporous hollow

silicon carbide nanospheres for high-performance supercapacitors

Jianhua Hou *a, Liang Fang a, Xiaozhi Wanga, Hong Gao*b and Guoxiu Wang*b

^a School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China.

^b Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of

Technology Sydney, City Campus, Broadway, NSW 2007, Australia.

* Corresponding author. E-mail addresses: jhhou@yzu.edu.cn, hong.gao@uts.edu.au, guoxiu.wang@uts.edu.au.

Experimental section

Materials.

1-Ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF₄ > 99%), KOH and HCl are analytical quality and purchased from Jiangsu Guotai Super Power New Materials Co., Ltd. Formaldehyde, magnesium powder, CTAB (hexadecyl trimethyl ammonium bromide) and 3-aminophenol were bought from Sinopharm Chemical Reagent Co., Ltd.

Synthesis of mesoporous hollow carbon/silica spheres (MHS-SiO_/C).

During the synthesis of (MHS-SiO₂/C), CTAB (0.55 g) and resorcinol (0.21 g) were suspended in a solution with 9 ml ethanol and 23 ml deionized water at 25 °C. After resorcinol absolutely dissolved, ammonia solution (NH₄OH, 0.22 mL, ~25*wt*. %) was inserted and stirred for 10 min. Then add 0.29 mL of formaldehyde, let stand for a few minutes until it turned transparent and becomes an emulsion. After that, 1 ml of TEOS was added immediately, and the prepared solution was stirred at 25 °C for 24 h, then heated in Teflon lined autoclave at 80 °C for another 24 hours. The solid product was produced by centrifugation and freeze drying. MHSs-C/SiO₂ composites were obtained by annealing the solid product at 800 °C for 2.5 h with a ramp rate of 1.5 °C min⁻¹ in N₂ atmosphere. Furthermore, excess silica was eliminated by 10% HF solution for 24 h, thus mesoporous hollow carbon spheres (MHS-C) were produced. The MHS-C/SiO₂ composites were calcined at 600 °C for 6 h in air to produce the mesoporous hollow silica spheres.

Magnesiothermic reduction (MR) technology prepares mesoporous hollow SiC nanospheres (MHS-SiC).

MHS-SiC material was synthesized by the interfacial interaction of SiO₂ and carbon during MR process. A specific quantity of MHS-SiO₂/C and pure magnesium powders were mixed and placed into a ceramic, which was subsequently transferred to a tube furnace in argon atmosphere. With a ramp of 5 °C min ⁻¹, the furnace was heated to 620 °C and maintained for 3.0 h. The acquired sample was then collected after returning to room temperature in a pure argon atmosphere. To get eliminate the by-product MgO from the sample, pure water and 1.0 M HCl solution were utilized. The 5 wt% HF solution was used to eliminate the unreacted SiO₂. The resulting sample was subsequently purified, cleaned with deionized water, and dried under vacuum at 110 °C. This as-prepared product is known as MHS-SiC.

Characterization.

Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) examinations were carried out using the Hitachi S-4800, Tecnai G2 F30 S-Twin. PANalytical-X-pert diffractometer (Cu K radiation at 40mA and 40kV) was used to detect powder X-ray diffraction (XRD) patterns (10-80° in 20). On a Malvern Zetasizer NanoZS instrument, dynamic light scattering (DLS) parameters were determined. For the XPS examination, an Axis Ultra spectrometer was employed. Micromeritics-ASAP-2020 was used to measure the nitrogen adsorption-desorption isotherm at 77K and relative pressure p/p_0 of 1.2×10^{-6} -0.990. Test samples were degassed at 250 °C for at least 4 hours before to the measurement. Pore size distribution and specific surface area (S_{BET}) were determined by density functional theory (DFT) calculations and Brunauer-Emmett-Teller (BET) measurements.

Electrochemical measurements.

The electrochemical characteristics of MHS-SiC were investigated in both EMIMBF₄ and 6 M KOH electrolytes. The electrodes were prepared by mixing MHS-SiC (86 wt. %), PTFE binder (4 wt. %) and acetylene black (10 wt. %). The EDLC current collectors were stainless steel (6 M KOH electrolyte) and aluminium mesh (EMIMBF₄ electrolyte) with 5-7 mg/ cm² electrode materials. Subsequently, the electrodes were vacuum-dried at 110°C for 8 hours. And polypropylene membrane was selected as separator. The cyclic voltammetry (CV), galvanostatic charge/discharge, and AC impedance spectroscopy (EIS) were measured through the CHI660E electrochemical workstation. With a 5 mV voltage amplitude, impedance spectra were measured in frequency range of 0.01 Hz–10 kHz. The capacitor's cutoff charge voltage of 6 M KOH solution was set to 0-1.0 V, while the cutoff charge voltage of EMIMBF₄ solution was 0-3.5 V.

Equation (1) was used to determine the specific capacitance for a single electrode.

$$c_g = \frac{2I}{(dV/dt)m} \tag{1}$$

Where dV/dt(V/s) = slope of a discharge curve, m(g) = single electrode active material mass, and I(A) = discharge current. P_{cell} (specific power density) and E_{cell} (specific energy density) calculations were also evaluated for symmetrical supercapacitors, which are mentioned in the equation (2) and (3).

$$P_{cell} = \frac{E_{cell}}{t} \tag{2}$$

$$E_{cell} = \frac{C_g \Delta V^2}{8 \times 3.6} \tag{3}$$

Here, t(h), and $\Delta V(V)$ represented the discharge time and cell voltage after ohmic drop, respectively.

Fig. S1. Raman spectrum of MHS-SiC.

Fig. S2. (a) SEM images of MHS-SiO₂/C, (b, c,d) SEM images of MHS-SiC, the marked circles show the hollow structures.

Fig. S3. TEM images of (a) MHS-SiO₂/C, (b) MHS-SiO₂, (c) MHS-C and (d) MHS-SiC.

Fig. S4. (a) STEM, and corresponding (b-d) elemental mapping images of MHS-SiC

Fig. S5. (a) Cyclic voltammetry curves, (b) Galvanic charge-discharge curves, (c) Ragone plot of MHS-SiC in ionic liquid EMIMBF₄ electrolyte.

Fig. S6. (a) Cyclic voltammetry curves of stainless steel in KOH and aluminum foil in EMIMBF₄ electrolyte at a scan rate of 0.1 V s^{-1} .

Table S1. Comparison of specific surface area, pore volume and specific capacitance of the obtained **MHS-SiC** sample with previously reported samples.(a is a two-electrode system, and b is a three-electrode system)

Materials	$\frac{S_{BET}}{(m^2 g^{-1})}$	Pore volume (cm ³ g ⁻¹)	Capacitance (F g ⁻¹)	Current density	Electrolyte	Ref.
Mesoporous Hollow SiC Nanospheres (MHS-SiC)	868	1.49	134 116	0.1 A g ⁻¹ 100 A g ⁻¹	6 M KOH EMIMBF4	This work ^a
			114 86	0.1 A g ⁻¹ 20 A g ⁻¹		
silicon-oxy-carbide (SiOC)	5.64		102.3 66.8	5 mA g ⁻¹	1 M Li ₂ SO ₄ 1 M TEABF ₄	1^a
SiC nanowires	-	-	29.5	0.25 A g ⁻¹	2 M KCl	2 ^b
Silicon Carbide Nanocauliflowers	-	-	72 41	1.43 A g ⁻¹ 0.71 A g ⁻¹	1 M Na ₂ SO ₄	3 ^a
ordered mesoporous SiC@C	757.4	-	194.8 123	0.2 A g ⁻¹ 5 A g ⁻¹	6 М КОН	4 ^b
SiC/C nanosheets			130 69	10 mV s ⁻¹ 0.5V s ⁻¹	1 M Na ₂ SO ₄	5 ^b
SiC nanowire-derived carbon	1182	-	200 95	2 A g ⁻¹ 10 A g ⁻¹	6 М КОН	6 ^a
porous carbon/ silicon carbide	1357.9	0.76	234.2 167.3	1 A g ⁻¹ 20 A g ⁻¹	1 M Na ₂ SO ₄	7 ^b
boron-doped SiC thin film on silicon		-	232 198 116	2.2 A g ⁻¹ 2 mV s ⁻¹ 80 mV s ⁻¹	1 M H ₂ SO ₄	8 ^b
SiCNWs@ NiCo2O4NCs	55.4		131 72	1 A g ⁻¹ 20 A g ⁻¹	PVA–KOH	9 ^a
C doped SiC	1789		162 102	0.5 A g^{-1} 10 A g $^{-1}$	PVA-H ₂ SO4	10 ^a

References

1 P. Pazhamalai, K. Krishnamoorthy, S. Sahoo, V. Mariappan, S. Kim, *Chem. Eng. J.*, 2020, **387**, 123886.

2 X. Li, W. Li, Q. Liu, S. Chen, L. Wang, F. Gao, G. Shao, Y. Tian, Z. Lin, W. Yang, *Adv. Funct. Mater.*, 2021, **31**, 2008901.

3 A. Sanger, A. Kumar, A. Kumar, P. Jain, Y.r Mishra, R. Chandra, Ind. Eng. Chem. Res. 2016, 55, 9452-9458.

4 X. Liu, H. Zhao, S. Jiang, S. Wu, T. Zhao, L. Li, X. Geng, H. Yang, W. Zhou, C. Sun, Y. Chen, B., *J. Alloy. Compd.*, 2021, **881**, 160442-160450.

5 S. Liu, E.Wang, S.Liu, C. Guo, H.Wang, T.Yang, X. Houa, J. Mater. Sci. Technol., 2022, 110, 178-186.

6 X. Zou, L. Ji, H. Hsu, K. Zheng, Z. Pang, X. Lu, J. Mater. Chem. A, 2018, 6, 12724-12732.

7 Q. Tang, X. Chen, D. Zhou, C. Liu, Colloids Surf. A Physicochem. Eng. Asp., 2021, 620, 126567-126576.

8 K. Kundu, A. Ghosh, A. Ray, S. Das, J. Chakraborty, S. Kumar, N. Prasad, R. Banerjee, *J Mater Sci: Mater Electron*, 2020, **31**,17943-17952.

9 X. Yin, H. Li, R. Yuan, J. Lu, J. Colloid Interf. Sci., 2021, 586, 219-232.

10 S.C. Abbas, C. Lin, Z. Hua, Q. Deng, H. Huang, Y. Ni, S. Cao, X. Ma, *Chem. Eng. J.*, 2022, **433**, 133738.