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This electronic supplementary material contains details of the calculations using the

programs VASP and Phonopy, a Table T1 with solid state properties from different density

functional calculations and additional Figures F1–F7 for the thermodynamic properties.

Figures F8–F10 show the calculated densities of state for bcc and fcc Li.

Two additional separate files are also provided to the supplementary information:

1. A spreadsheet file called “FreeEnergyContributions.xlsx” detailing individual terms for

the free energy including electronic and vibrational energy and entropy contributions.

2. A movie called “MartensiticTransformation.mp4” showing the movement in the cuboidal

transformation along the lattice parameter A.
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1 Computational Details

The lattice vector definitions in Eq. (1) of the main paper were utilized to generate primitive

unit cells with 1/3 ≤ A ≤ 1 (step size ∆A = 0.01) along the cuboidal transformation path.

The rmin for the primitive unit cells defined by each A value were obtained by identifying

the r with the lowest energy within a range (2 Å ≤ r ≤ 4 Å) with step size ∆r = 0.05 Å.

Employing the periodic DFT program VASP 5.4.4,1,2 which uses the projector augmented

wave (PAW) method, single-point energies E(r) were calculated. From this, rmin for every

A value was obtained through an eighth-order polynomial fit of the E(r) curve to locate the

energy minimum.

Careful convergence tests regarding k-spacing, energy cut-off as well as different partial

occupancy methods (“smearing”) resulted in the following INCAR settings that were used

throughout the calculations:

ENCUT = 1000

KSPACING = 0.075

KGAMMA = TRUE

EDIFF = 1E-07

LREAL = FALSE

NELMIN = 20

ISMEAR = -5

ADDGRID = TRUE

We tested a variety of different density functional types, LDA, GGAs (PBE, PBEsol),

long-range dispersion corrected GGAs (PBE-D3, PBEsol-D3) as well as meta-GGAs (TPSS,

SCAN). For the GGA functionals PBE3 and PBEsol4 and LDA , the POTCAR files “pot-

PAW54_PBE/Li_sv” and “potPAW54_LDA/Li_sv” were employed, respectively, that con-

sider the 1s semi-core states as valence states and provide in general a better description

due to a higher flexibility. However, for the functionals TPSS5 and SCAN,6 the regular
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POTCAR file “potPAW54_PBE/Li” was utilized because meta-GGAs require information

about the kinetic energy density that in not included into the “Li_sv” pseudo-potential.

Long-range dispersion effects were considered for the GGAs by using the D3 van-der-Waals

correction together with Becke-Johnson damping.7,8 All functionals display more or less the

same general behaviour. Owing to the relatively small energy differences between the ap-

pearing structures in the range of 1 kJ/mol, rather demanding accuracy settings had to be

applied (large cut-off energy for the plane-wave basis set and a very densely packed k -point

grid) to ensure smooth convergence behaviour during the scans.

All functionals display more or less the same general behaviour. Owing to the relatively

small energy differences between the appearing structures in the range of 1 kJ/mol, rather

demanding accuracy settings had to be applied (large cut-off energy for the plane-wave basis

set and a very densely packed k -point grid) to ensure a smooth convergence behaviour during

the scans.

To obtain the free energy contributions (Eq. 5) for each A value, the phonon spectra for

selected values (A = 1/3–1.0 in steps of 0.1) were computed for the PBE functional utilizing

density functional perturbation theory (DFPT) and Phonopy 2.10.1.9

From this, rmin for every A value was obtained through an eighth-order polynomial fit of

the E(r) curve to locate the energy minimum. We note that the function rmin(A) exhibits

a slight scattering behaviour, which we attribute to remaining numerical noise during the

localization of the respective energy minima despite the demanding accuracy settings in

VASP. However, the functions E(A) that were calculated using the somewhat scattered rmin

values appear very smooth, from which we deduce that the obtained rmin(A) functions are

accurate enough for subsequent utilization and interpretation.

For the phonon calculations, 6×6×6 super-cells were generated employing the previously

determined rmin values that result in lattice constants of at least 15 Å in every direction in

order to avoid self-interaction between the atoms within the periodic boundary conditions.

Phonopy 2.10.09 was used to compute force constants of the constructed supercells necessary
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for the phonon spectra calculation utilizing density functional perturbation theory (DFPT)

with a Γ-centered 3 × 3 × 3 k -point grid and otherwise the same INCAR settings as listed

above. The (relatively small) eigenmode with negative curvature at the transition state is

well localised on the atomic position and correlates well with the transition path.

The temperature-dependent thermal contributions to electronic properties (Eele
therm and

Sele
therm, respectively; see below) were estimated via VASP single point calculations of the su-

percells by setting partial occupancies according to the Fermi-Dirac distribution (ISMEAR=

−1) and choosing the respective electronic temperature accordingly via the smearing width

(SIGMA).

To obtain information about Li in different crystal structures (fcc, bcc and hcp), respective

unit cells with different volumes (± 5% around equilibrium) were generated by utilizing the

scaling parameter in the POSCAR file and their energies were calculated with VASP using

the same settings as before. The resulting E(V ) curve for each structure was fitted to the

Birch-Murnaghan equation, that allowed extraction of various parameters.10

To obtain cohesive energies, the reference energies of a free Li atom in the centre of a

slightly orthorhombic unit cell with lattice constants 14×14.002×14.004 Å3 were computed

for the different functionals using the previously shown settings, only within a Γ-only k -point

setting and enabling spin polarization (ISPIN = 2). The optimized lattice parameters and

corresponding cohesive energies at different levels of density functional theory are shown in

Table T1.

2 Calculation of Thermodynamic Properties

For the thermodynamic properties, which are dependent on the parameterA and temperature

T , the following relations were used,

F (T,A) = Ecoh(A) + EZPV(A) + Etherm(T,A)− TS(T,A) (S1)
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where EZPV is the zero-point vibrational energy contribution, Etherm arises from the

thermal occupation of both phonon and electron states

Etherm(T,A) = Evib
therm(T,A) + Eele

therm(T,A), (S2)

and S is the vibrational and electronic contribution to the entropy

S(T,A) = Svib
therm(T,A) + Sele

therm(T,A). (S3)

The different thermodynamic contributions are shown in Figs. F1–F7. The individual

terms are defined as follows.

Evib
therm(T,A) =

∫ ∞
0

h̄ω(A)e
−h̄ω(A)
kBT

(1− e
−h̄ω(A)
kBT )

P (ω,A)dω (S4)

where P (ω,A) describes he phonon density of states (PDOS) dependent on the lattice

parameter A. The electronic term to the energy is more complicated and usually approx-

imated by a one-particle picture through a (temperature-independent) electron density of

states (EDOS or simply DOS) D(ε, A) for a spin-polarized system,11

Eele
therm(T,A) =

∫ ∞
0

f(ε, A, T )D(ε, A)dε (S5)

with

f(ε, A, T ) =

(
1 + e

ε(A)−εF (A)

kBT

)−1
, (S6)

where εF is the Fermi energy. The term S5 was included, however, Figs. F3 and F4

below shows that this term could safely be neglected for the temperatures considered here

and within the approximations used.

For the entropy we have the vibrational contribution
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Svib
therm(T,A) =

1

kBT

∫ ∞
0

h̄ω(A)

(e
h̄ω(A)
kBT − 1)

P (ω,A)dω −
∫ ∞
0

ln[1− e
−h̄ω(A)
kBT ]P (ω,A)dω (S7)

and the electronic contribution

Sele
therm(T,A) = kB

∫ ∞
0

s(ε, A, T )D(ε, A)dε, (S8)

where the function s(ε, A, T ) is defined by

s(ε, A, T ) = −{f(ε, A, T ) ln f(ε, A, T ) + [1− f(ε, A, T )] ln[1− f(ε, A, T )]} (S9)

and again, the electronic entropy contribution is small, but not negligible as Figs. F3

and F4 below show.

Lastly, Fig. F7 shows differences in the individual contributions, i.e.

∆F(T ) = F (T,A = 1/2)− F (T,A = 1) (S10)

for the Helmholtz free energy, between bcc and fcc along the parameter A at different

temperature T .

Here it is revealed that the free energy difference between bcc and fcc mainly stems from

differences in entropic contributions: While the vibrational contribution to entropy clearly

favours bcc with increasing temperature, the electronic contribution to entropy actually

slightly stabilizes fcc with higher T values. This stabilization in the latter case can be

understood from the fact that Sele
therm(T,A) D(ε, A), which gives a higher entropy for the fcc

compared to the bcc phase due to the number of nearest neighbour interactions.
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3 Supplementary Table

Table T1: Calculated solid-state Properties for lithium at different levels of theory. Total energies
E0 in eV/atom, bulk modulus B in GPa, volume V in Å3, cohesive energy Ecoh (taken as positive
values) in eV/atom, and nearest neighbour distance rmin in Å from various density functional ap-
proximations for the bcc, fcc and hcp lattices. The difference in cohesive energies between the bcc
and the two fcc/hcp structures, ∆Ecoh = Ecoh(bcc)− Ecoh(fcc/hcp), are given in 10−3 eV.

PBE PBE-D3 PBEsol PBEsol-D3 LDA TPSS SCAN PBE0 HSE06
E0 (Li atom) -0.2977 -0.2981 -0.2872 -0.2876 -0.2336 -1.0086 -0.7754 -0.6126 -0.4238

bcc PBE PBE-D3 PBEsol PBEsol-D3 LDA TPSS SCAN PBE0 HSE06
E0 -1.905 -2.083 -1.9672 -2.124 -2.0449 -2.6452 -2.341 -2.1354 -1.9808
B 13.816 15.742 13.726 15.711 15.294 13.526 13.776 13.418 13.48

Vmin 20.236 18.313 20.22 18.419 18.965 20.64 20.863 20.671 20.627
Ecoh -1.607 -1.785 -1.68 -1.836 -1.811 -1.637 -1.566 -1.523 -1.557
rmin 2.9734 2.8761 2.9726 2.8816 2.9098 2.9931 3.0038 2.9945 2.9924

fcc PBE PBE-D3 PBEsol PBEsol-D3 LDA TPSS SCAN PBE0 HSE06
E0 -1.9067 -2.0852 -1.9688 -2.1261 -2.0471 -2.6467 -2.3428 -2.1426 -1.9849
B 13.942 15.659 13.748 15.482 14.98 13.611 13.999 13.441 13.463

Vmin 20.199 18.222 20.182 18.355 18.908 20.597 20.801 20.59 20.569
Ecoh -1.609 -1.787 -1.682 -1.838 -1.813 -1.638 -1.567 -1.53 -1.561

∆Ecoh 1.6 2.2 1.6 2.1 2.2 1.4 1.8 7.2 4.1
rmin 3.057 2.9538 3.0562 2.961 2.9905 3.077 3.0871 3.0766 3.0756

hcp PBE PBE-D3 PBEsol PBEsol-D3 LDA TPSS SCAN PBE0 HSE06
E0 -1.9065 -2.0849 -1.9687 -2.1258 -2.0468 -2.6466 -2.3429 -2.1391 -1.9832
B 13.779 15.692 13.585 15.633 30.519 13.485 13.657 26.614 26.607

Vmin 20.209 18.254 20.192 18.384 18.927 20.609 20.802 20.573 20.599
Ecoh -1.609 -1.787 -1.682 -1.838 -1.813 -1.638 -1.567 -1.527 -1.559

∆Ecoh 1.5 1.9 1.5 1.9 1.9 1.3 1.9 3.7 2.5
rmin 3.0601 2.9556 3.0566 2.9626 2.9914 3.0776 3.0871 3.0758 3.0771
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4 Supplementary Figures

Figure F1: Calculated vibrational contribution to the free energy according to Eqs. S1 and S4,
∆Etherm,vib(T ) = EZPV + Etherm(T ), and Eq. S7 for the TSvib

therm(T ) term, at the PBE level of
theory for the bcc structure (A = 1/2) of the two 6Li and 7Li isotopes. The finite non-zero value at
0 K reflects EZPV.
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Figure F2: Calculated vibrational contribution to the free energy according to Eqs. S1 and S4,
∆Etherm,vib(T ) = EZPV + Etherm(T ), and Eq. S7 for the TSvib

therm(T ) term, at the PBE level of
theory for the fcc structure (A = 1) of the two 6Li and 7Li isotopes. The finite non-zero value at
0 K reflects EZPV.
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Figure F3: Calculated electronic contribution to the free energy according to Eqs. S1, S5 and S8
at the PBE level of theory for the bcc structure (A = 1/2) of the two 6Li and 7Li isotopes.

Figure F4: Calculated electronic contribution to the free energy according to Eqs. S1, S5 and S8
at the PBE level of theory for the fcc structure (A = 1) of the two 6Li and 7Li isotopes.
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Figure F5: Calculated electronic and vibrational contributions to the free energy according to Eq.
S1 (as shown in Figs. F1 and F3) for the bcc structure (A = 1/2) at the PBE level of theory for
the two 6Li and 7Li isotopes.
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Figure F6: Calculated electronic and vibrational contributions to the free energy according to Eq.
S1 (as shown in Figs. F2 and F4) for the fcc structure (A = 1) at the PBE level of theory for the
two 6Li and 7Li isotopes.
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Figure F7: Calculated differences of electronic and vibrational contributions to the free energy
according to Eq. S1 (as shown in Figs. F1–F4) between the bcc structure (A = 1/2) and fcc (A = 1)
structures at the PBE level of theory for the two 6Li and 7Li isotopes.
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Figure F8: Calculated density of states around the Fermi level for bcc Li at the PBE level of
theory. The zero of the energy scale was shifted to the Fermi energy (EF).

Figure F9: Calculated density of states around the Fermi level for fcc Li at the PBE level of
theory. The zero of the energy scale was shifted to the Fermi energy (EF).

15



Figure F10: Calculated density of states around the Fermi level showing bcc and fcc Li in com-
parison at the PBE level of theory. The zero of the energy scale was shifted to the Fermi energy
(EF).
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