Supplementary Information

Pd-catalysed, Ag-assisted C2-H alkenylation of benzophospholes

Yu Tokura,[†] Shibo Xu,[‡] Yuki Kojima,[†] Masahiro Miura[‡] and Koji Hirano^{*,†,‡}

[†]Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan [‡]Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives

(ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan

E-mail: k_hirano@chem.eng.osaka-u.ac.jp (K.H.)

Contents

Instrumentation and Chemicals	S2
Experimental Procedures	S3–S4
X-Ray Analysis	S5–S6
Detailed Optimization Studies	S7–S9
Control Experiments	S11
Optical Properties of Products	S12
DFT Calculations	S12–S15
Characterization Data for Products	S16–S78
References	S79

Instrumentation and Chemicals

¹H, ¹³C{¹H}, ¹⁹F{¹H}, and ³¹P{¹H} NMR spectra were recorded at 400 MHz, 100 MHz, 376 MHz, and 162 MHz, respectively, for CDCl₃ solutions. HRMS data were obtained by APCI using TOF. GC analysis was carried out using a silicon OV-17 column (i. d. 2.6 mm x 1.5 m) or a CBP-1 capillary column (i. d. 0.5 mm x 25 m). TLC analyses were performed on commercial glass plates bearing a 0.25 mm layer of Merck silica gel 60F₂₅₄. Silica gel (60 N, spherical neutral, Kanto Chemical Co.) was used for column chromatography. Gel permeation chromatography (GPC) was performed by LC-20AR (pump, SHIMADZU, 7.5 mL/min CHCl₃) and SPD-20A (UV detector, SHIMADZU, 254 nm) with two in-line YMC-GPC T2000 (20 x 600 mm, particle size: 10 μm) (preparative columns, YMC). UV-vis spectra were acquired with JASCO V-750 spectrometer. Photoluminescence spectra and quantum yield measurements were conducted with JASCO FP-8500 spectrometer equipped with an integration sphere system. The crystal measurement was performed with XtaLAB Synergy-S/Mo or Cu (Rigaku).

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. 1,4-Dioxane was dried on a Glass Contour Solvent dispensing system (Nikko Hansen & Co., Ltd.) prior to use. Pd(OAc)₂, AgTFA, and NaHCO₃ were purchased from FUJIFILM Wako Pure Chemical Co. The C2-H benzophospholes **1** were prepared from the corresponding 1,1-diarylethenes and phenylphosphinic acid according to the literature method.^{S1}

Experimental Procedures

Pd-Catalysed C2-H Alkenylation of Benzophospholes (Scheme 2)

<u>A 0.10 mmol scale synthesis of **3aa**</u>: 1,3-Diphenylbenzophosphole oxide (**1a**; 30 mg, 0.10 mmol), Pd(OAc)₂ (2.3 mg, 0.010 mmol), AgTFA (44 mg, 0.20 mmol), NaHCO₃ (16 mg, 0.20 mmol), and 1,4-dioxane (1.0 mL) were placed in a 15 mL screw cap test tube, and styrene (**2a**; 21 mg, 0.20 mmol) was finally added. The tube was sealed with a cap and heated at 110 °C for 20 h (oil bath). The resulting mixture was cooled to room temperature and then quenched with water and brine. Extraction with ethyl acetate three times, filtration through a short pad of Na₂SO₄, and evaporation under reduced pressure formed a crude material. Triethyl phosphate (10 mg) was added as an internal standard, and the resulting mixture was analyzed by ¹H and ³¹P{¹H} NMR in CDCl₃ solution. The conversion of **1a** was estimated to be 90% by comparison with integrated intensity of triethyl phosphate. After the above NMR analysis, the volatiles were evaporated, and residue was purified by column chromatography on silica gel with hexane/ethyl acetate (1:2, v/v) then GPC (CHCl₃) to give (*E*)-1,3-Diphenyl-2-styrylphosphindole 1-oxide (**3aa**; 35 mg, 0.086 mmol) in 85% yield.

A 1.0 mmol scale synthesis of **3aa**: 1,3-Diphenylbenzophosphole oxide (**1a**; 303 mg, 1.0 mmol), Pd(OAc)₂ (23 mg, 0.10 mmol), AgTFA (443 mg, 2.0 mmol), NaHCO₃ (169 mg, 2.0 mmol), and 1,4-dioxane (10 mL) were placed in a 100 mL screw cap test tube, and styrene (2a; 208 mg, 2.0 mmol) was finally added. The tube was sealed with a cap and heated at 110 °C for 20 h (oil bath). The resulting mixture was cooled to room temperature and then quenched with water and brine. Extraction with ethyl acetate three times, filtration through a short pad of Na₂SO₄, and evaporation under reduced pressure formed a crude material. The residue was purified by column silica MeOH GPC chromatography on gel with then $(CHCl_3)$ to give (E)-1,3-Diphenyl-2-styrylphosphindole 1-oxide (**3aa**; 262 mg, 0.65 mmol) in 65% yield.

<u>A 0.050 mmol scale synthesis of 3am</u>: 1,3-Diphenylbenzophosphole oxide (1a; 30 mg, 0.10 mmol), Pd(OAc)₂ (2.3 mg, 0.010 mmol), AgTFA (44 mg, 0.20 mmol), NaHCO₃ (16 mg, 0.20 mmol), and 1,4-dioxane (1.0 mL) were placed in a 15 mL screw cap test tube, and 1,4-di(vinyl)benzene (2m; 6.8 mg, 0.050 mmol) was finally added. The tube was sealed with a cap and heated at 110 °C for 20 h (oil bath). The resulting mixture was cooled to room temperature and then quenched with water and brine. Extraction with ethyl acetate three times, filtration through a short pad of Na₂SO₄, and evaporation under reduced pressure formed a crude material. The residue was purified by column chromatography on silica gel with hexane/ethyl acetate (1:2, v/v) then GPC (CHCl₃) to give 2,2'-((1E,1'E)-1,4-phenylenebis(ethene-2,1-diyl))bis(1,3-diphenylphosphindole 1-oxide) (**3am**; 18 mg, 0.024 mmol) in 47% yield.

<u>A 0.10 mmol scale synthesis of **3an**</u>: 1,3-Diphenylbenzophosphole oxide (**1a**; 30 mg, 0.10 mmol), Pd(OAc)₂ (4.8 mg, 0.020 mmol), AgTFA (66 mg, 0.30 mmol), NaHCO₃ (17 mg, 0.20 mmol), and 1,4-dioxane (1.0 mL) were placed in a 15 mL screw cap test tube, and methyl vinyl ketone (**2n**; 14.5 mg, 0.20 mmol) was finally added. The tube was sealed with a cap and heated at 110 °C for 20 h (oil bath). The resulting mixture was cooled to room temperature and then quenched with water and brine. Extraction with ethyl acetate three times, filtration through a short pad of Na₂SO₄, and evaporation under reduced pressure formed a crude material. The residue was purified by GPC (CHCl₃) to give (*E*)-4-(1-oxido-1,3-diphenylphosphindol-2-yl)but-3-en-2-one (**3an**; 26 mg, 0.071 mmol) in 71% yield.

X-Ray Analysis

The single X-ray quality crystals of **3al** were grown from hexane/CHCl₃ by slow evaporation at room temperature. The structure was refined by full-matrix least-squares method using SHELXL-2017/1.

Figure S1. ORTEP drawing of 3al (CCDC 2180994, 50% thermal probability).

Table S1. Crystal data for 3al

Crystal system	triclinic
Space group IT number	2
Space group name H-M alt	P -1
Space group name Hall	-P 1
Cell length a	8.4130(3)
Cell length b	10.9151(5)
Cell length c	16.0946(7)
Cell angle alpha	81.509(4)
Cell angle beta	81.007(3)
Cell angle gamma	86.633(4)
Cell volume	1442.82(11)
Cell formula units Z	2
Refine ls R factor all	0.0645
Refine ls R factor gt	0.0461
Refine ls wR factor gt	0.1152
Refine ls wR factor ref	0.1241
Refine ls goodness of fit ref	1.085

The single X-ray quality crystals of 3aq were grown from hexane/CHCl₃ by slow evaporation at room temperature. The structure was refined by full-matrix least-squares method using SHELXL-2017/1.

Figure S2. ORTEP drawing of 3aq (CCDC 2180995, 50% thermal probability).

Table S2.	Crystal	data	for	3aq
-----------	---------	------	-----	-----

Crystal system	monoclinic
Space group IT number	14
Space group name H-M alt	P 1 21/c 1
Space group name Hall	-P 2ybc
Cell length a	8.7292(2)
Cell length b	12.4540(2)
Cell length c	21.6161(3)
Cell angle alpha	90
Cell angle beta	92.026(2)
Cell angle gamma	90
Cell volume	2348.49(7)
Cell formula units Z	4
Refine ls R factor all	0.0448
Refine ls R factor gt	0.0403
Refine ls wR factor gt	0.1116
Refine ls wR factor ref	0.1157
Refine ls goodness of fit ref	1.097

Detailed Optimization Studies

	Ph	+ // ^{—Ph}	cat. Pd oxidant, additives solvent, 110 °C, 20 h, N ₂	Ph Ph	-Ph
	Ph ^O	1a 2a		Ph 3	aa
entry	Pd	oxidant	additives (equiv)	solvent	1a:3aa ^[b]
1	$Pd(OAc)_2$	AgTFA	phenanthroline (0.15)	toluene	100:0
2	$Pd(OAc)_2$	AgTFA	none	toluene	53:57
3	Pd(OPiv) ₂	AgTFA	none	toluene	45:55
4	Pd(TFA) ₂	AgTFA	none	toluene	50:50
5	$Pd(OAc)_2$	AgOAc	none	toluene	69:31
6	$Pd(OAc)_2$	Ag_2CO_3	none	toluene	97:3
7	$Pd(OAc)_2$	Ag ₂ O	none	toluene	95:5
8	$Pd(OAc)_2$	Ag_3PO_4	none	toluene	100:0
9	$Pd(OAc)_2$	AgNO ₃	none	toluene	90:10
10	$Pd(OAc)_2$	Cu(OAc) ₂	none	toluene	92:8
11	$Pd(OAc)_2$	Cu(TFA) ₂	none	toluene	95:5
12	$Pd(OAc)_2$	AgTFA	none	MeCN	95:5
13	$Pd(OAc)_2$	AgTFA	none	DMSO	100:0
14	$Pd(OAc)_2$	AgTFA	none	DMF	95:5
15	$Pd(OAc)_2$	AgTFA	none	PivOH	55:45
16 ^[c]	$Pd(OAc)_2$	AgTFA	none	HFIP	100:0
$17^{[d]}$	$Pd(OAc)_2$	AgTFA	none	o-xylene	78:22
18	$Pd(OAc)_2$	AgTFA	pyridine (1.0)	toluene	88:12
19	$Pd(OAc)_2$	AgTFA	PivOH (1.0)	toluene	64:36
20	$Pd(OAc)_2$	AgTFA	CsOPiv (1.0)	toluene	60:40
21 ^[e]	$Pd(OAc)_2$	AgTFA	none	toluene	37:63

Table S3. Pd-Catalysed C2–H Alkenylation of 1a with 2a: Initial Screening under N2.^[a]

[a] Reaction conditions: Pd (0.010 mmol), oxidant (0.20 mmol), additives, **1a** (0.10 mmol), **2a** (0.50 mmol), solvent (1.0 mL), 110 °C, 20 h, N₂. [b] Ratios of **1a:3aa** estimated by ¹H and ³¹P{1H} NMR with P(O)(OEt)₃ as the internal standard. [c] At 50 °C. [d] At 140 °C. [e] With **2a** (0.20 mmol).

	Ph Ph Ph ^O 1a	- //──Ph 2a	cat. Pd oxidant, additives toluene, 110 °C, 20 h, air	Ph Ph Ph' 3aa
entry	Pd	oxidant	additives (equiv)	1a:3aa ^[b]
1	$Pd(OAc)_2$	AgTFA	none	37:63
2	$Pd(OPiv)_2$	AgTFA	none	38:62
3	$Pd(OAc)_2$	AgBF ₄	none	100:0
4	$Pd(OAc)_2$	AgOTf	none	100:0
5	$Pd(OAc)_2$	AgPF ₆	none	97:3
6	$Pd(OAc)_2$	AgTFA	CF ₃ COOH (1.0)	38:62
7	$Pd(OAc)_2$	AgTFA	Cy ₃ P=O (0.10)	38:62

Table S4. Pd-Catalysed C2–H Alkenylation of 1a with 2a: Screening under Air.^[a]

[a] Reaction conditions: Pd (0.010 mmol), oxidant (0.20 mmol), additives, **1a** (0.10 mmol), **2a** (0.20 mmol), toluene (1.0 mL), 110 °C, 20 h, air. [b] Ratios of **1a:3aa** estimated by ¹H and ³¹P{1H} NMR with $P(O)(OEt)_3$ as the internal standard.

Table S5. Pd-Catalysed C2–H Alkenylation of **1a** with **2a**: Base Screening and Reinvestigation of Solvent.^[a]

	$ \begin{array}{c} $	cat. Pd(OAc) ₂ AgTFA, additives solvent, 110 °C, 20 h, air	Ph Ph Ph 3aa
entry	additives (equiv)	solvent	1a:3aa ^[b]
1	MgO (2.0)	toluene	35:65
2	Li ₂ CO ₃ (2.0)	toluene	24:76
3	Na_2CO_3 (2.0)	toluene	23:77
4	K_2CO_3 (2.0)	toluene	34:66
5	Cs_2CO_3 (2.0)	toluene	88:12
6	NaHCO ₃ (2.0)	toluene	21:79
7	KHCO ₃ (2.0)	toluene	34:66
8	K ₃ PO ₄ (2.0)	toluene	21:79
9	K ₂ HPO ₄ (2.0)	toluene	62:38

10	$K_4P_2O_7$ (2.0)	toluene	85:15
11	LiOAc (2.0)	toluene	28:72
12	NaOAc (2.0)	toluene	31:69
13	KOAc (2.0)	toluene	35:65
14	CsOAc (2.0)	toluene	46:54
15	none	1,4-dioxane	22:78
16	none	THF	41:59
17	none	<i>i</i> -Pr ₂ O	28:72
18	none	СРМЕ	26:74
19	none	MTBE	18:82
20	none	AcOH	61:39
21	NaHCO ₃ (2.0)	1,4-dioxane	10:90 (85%)
21 22	<i>NaHCO</i> ₃ (2.0) NaHCO ₃ (2.0)	<i>1,4-dioxane</i> CPME	10:90 (85%) 23:77
21 22 23	<i>NaHCO</i> ₃ (2.0) NaHCO ₃ (2.0) NaHCO ₃ (2.0)	<i>1,4-dioxane</i> CPME MTBE	10:90 (85%) 23:77 9:91
21 22 23 24	<i>NaHCO</i> ₃ (2.0) NaHCO ₃ (2.0) NaHCO ₃ (2.0) NaHCO ₃ (2.0), Cy ₃ P=O (0.10)	1,4-dioxaneCPMEMTBE1,4-dioxane	10:90 (85%) 23:77 9:91 11:89
21 22 23 24 25	NaHCO ₃ (2.0) NaHCO ₃ (2.0) NaHCO ₃ (2.0), Cy ₃ P=O (0.10) NaHCO ₃ (2.0), Ph ₃ P (0.20)	1,4-dioxaneCPMEMTBE1,4-dioxane1,4-dioxane	10:90 (85%) 23:77 9:91 11:89 64:46
21 22 23 24 25 26	NaHCO ₃ (2.0) NaHCO ₃ (2.0) NaHCO ₃ (2.0) NaHCO ₃ (2.0), Cy ₃ P=O (0.10) NaHCO ₃ (2.0), Ph ₃ P (0.20) NaHCO ₃ (2.0), phenanthroline (0.10)	1,4-dioxaneCPMEMTBE1,4-dioxane1,4-dioxane1,4-dioxane	10:90 (85%) 23:77 9:91 11:89 64:46 44:56
21 22 23 24 25 26 27 ^[c]	NaHCO ₃ (2.0) NaHCO ₃ (2.0) NaHCO ₃ (2.0), Cy ₃ P=O (0.10) NaHCO ₃ (2.0), Ph ₃ P (0.20) NaHCO ₃ (2.0), phenanthroline (0.10) NaHCO ₃ (2.0)	1,4-dioxaneCPMEMTBE1,4-dioxane1,4-dioxane1,4-dioxane1,4-dioxane	10:90 (85%) 23:77 9:91 11:89 64:46 44:56 14:86
21 22 23 24 25 26 27 ^[c] 28 ^[d]	NaHCO ₃ (2.0) NaHCO ₃ (2.0) NaHCO ₃ (2.0), Cy ₃ P=O (0.10) NaHCO ₃ (2.0), Ph ₃ P (0.20) NaHCO ₃ (2.0), phenanthroline (0.10) NaHCO ₃ (2.0) NaHCO ₃ (2.0)	1,4-dioxaneCPMEMTBE1,4-dioxane1,4-dioxane1,4-dioxane1,4-dioxane1,4-dioxane1,4-dioxane	10:90 (85%) 23:77 9:91 11:89 64:46 44:56 14:86 8:92
21 22 23 24 25 26 27 ^[c] 28 ^[d] 29 ^[e]	<i>NaHCO</i> ₃ (2.0) NaHCO ₃ (2.0) NaHCO ₃ (2.0), Cy ₃ P=O (0.10) NaHCO ₃ (2.0), Ph ₃ P (0.20) NaHCO ₃ (2.0), phenanthroline (0.10) NaHCO ₃ (2.0) NaHCO ₃ (2.0)	1,4-dioxaneCPMEMTBE1,4-dioxane1,4-dioxane1,4-dioxane1,4-dioxane1,4-dioxane1,4-dioxane1,4-dioxane	10:90 (85%) 23:77 9:91 11:89 64:46 44:56 14:86 8:92 13:87
21 22 23 24 25 26 27 ^[c] 28 ^[d] 29 ^[e] 30 ^[f]	NaHCO ₃ (2.0) NaHCO ₃ (2.0) NaHCO ₃ (2.0), Cy ₃ P=O (0.10) NaHCO ₃ (2.0), Ph ₃ P (0.20) NaHCO ₃ (2.0), phenanthroline (0.10) NaHCO ₃ (2.0) NaHCO ₃ (2.0) NaHCO ₃ (2.0) NaHCO ₃ (2.0)	1,4-dioxaneCPMEMTBE1,4-dioxane1,4-dioxane1,4-dioxane1,4-dioxane1,4-dioxane1,4-dioxane1,4-dioxane1,4-dioxane1,4-dioxane1,4-dioxane	10:90 (85%) 23:77 9:91 11:89 64:46 44:56 14:86 8:92 13:87 100:0

[a] Reaction conditions: $Pd(OAc)_2$ (0.010 mmol), AgTFA (0.20 mmol), additives, **1a** (0.10 mmol), **2a** (0.20 mmol), solvent (1.0 mL), 110 °C, 20 h, air. [b] Ratios of **1a:3aa** estimated by ¹H and ³¹P{1H} NMR with P(O)(OEt)₃ as the internal standard. Isolated yield of **3aa** is in parentheses. [c] With Pd(OAc)₂ (0.0050 mmol). [d] With Pd(OAc)₂ (0.015 mmol). [e] With **2a** (0.30 mmol). [f] Without Pd(OAc)₂. [g] With benzoquinone instead of AgTFA.

Control Experiments

	Ph Ph' + Ph' 1a	D source (10.0 equiv)	or Cu (2.0 equiv) dioxane, 110 °C 20 h, N ₂	Ph Ph Ph Ph $DPh 1a-d_1$
entry	D source	Pd (mol %)	Ag or Cu	$\%$ D of $\mathbf{1a}$ - $d_1^{[b]}$
1	acetic acid- d_4	$Pd(OAc)_2$ (10)	AgTFA	70
2	acetic acid- d_4	$Pd(OAc)_2$ (10)	none	0
3	acetic acid- d_4	$Pd(OAc)_{2}$ (100)	none	37
4	acetic acid- d_4	$Pd(TFA)_2$ (10)	none	0
5	acetic acid- d_4	Pd(TFA) ₂ (100)	none	0
6	acetic acid- d_4	none	AgTFA	64
7	acetic acid- d_4	none	AgOAc	12
8	acetic acid- d_4	none	Ag_2CO_3	21
9	acetic acid- d_4	none	AgOTf	10
10	acetic acid- d_4	none	$Cu(OAc)_2$	0
11	D_2O	none	AgTFA	87
12	D_2O	none	AgOAc	14

Table S6. H/D Exchange Reaction of 1a.^[a]

[a] Reaction conditions: Pd, Ag or Cu (0.20 mmol), D source (1.0 mmol), 1a (0.10 mmol), 1,4-dioxane (1.0 mL), 110 °C, 20 h, N₂.
[b] Estimated by ¹H and ²H NMR analysis.

Optical Properties of Products

Figure S3. UV-vis absorption (solid line) and emission (dotted line) spectra of 3aa, 3ac, 3ae, 3ak, 3al, 3ga, 3am, and 3hm (1.0 x 10⁻⁵ M in CH₂Cl₂). Excited at the absorption maxima for the emission spectrum.

compd	λ _{abs} (nm)	λ _{em} (nm)	$arPhi_{F}$	
3aa	380	473	0.82	
3ac	382	474	0.82	
3ae	394	485	0.78	
3ak	382	506	0.56	
3al	423	535	0.81	
3ga	415	527	0.52	
3am	432	510	0.14	
3hm	468	536	0.05	

Table S7. Optical properties for selected compounds.

DFT Calculations

Figure S4. HOMOs and LUMOs and their energies calculated at the B3LYP/6-31G* level of theory.

(b) Top views of **3aa** (S1)

Figure S5. Optimized structures of (a) and (c) **3aa** (S0), (b) and (d) **3aa** (S1): Top views (upper) and side views (lower). Selected torsion angles (deg) of **3aa** (S0) and **3aa** (S1) calculated at the B3LYP/6-31G* level of theory.

(a) Top views of **3ak** (S0)

(b) Top views of **3ak** (S1)

(c) Side views of **3ak** (S0)

(d) Side views of **3ak** (S1)

Figure S6. Optimized structures of (a) and (c) **3ak** (S0), (b) and (d) **3ak** (S1): Top views (upper) and side views (lower). Selected torsion angles (deg) of **3ak** (S0) and **3ak** (S1) calculated at the B3LYP/6-31G* level of theory.

3aa

Figure S7. HOMOs and LUMOs (S0 and S1) of 3aa and 3ak.

Characterization Data for Products

Copy of ${}^{1}H$, ${}^{13}C{}^{1}H$, ${}^{19}F{}^{1}H$, and ${}^{31}P{}^{1}H$ NMR spectra for all compounds are attached in the last part.

(*E*)-1,3-Diphenyl-2-styrylphosphindole 1-oxide (3aa): Purified by silica gel column chromatography with hexane/ethyl acetate (1/2, v/v): 35 mg (85%, 0.10 mmol scale); Yellow solid; m.p. 96.2-97.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.82 (m, 2H), 7.68 (dd, *J* = 9.3, 7.4 Hz, 1H), 7.59-7.55 (m, 2H), 7.53-7.49 (m, 2H), 7.47-7.41 (m, 5H), 7.33, (td, *J* = 7.5, 3.9 Hz, 1H), 7.27-7.14 (m, 7H), 6.88 (dd, *J* = 23.6, 16.4 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 149.6 (d, *J* = 21.2 Hz, 1C), 143.5 (d, *J* = 25.8 Hz, 1C), 136.9 (1C), 135.3 (d, *J* = 5.2 Hz, 1C), 133.6 (d, *J* = 14.3 Hz, 1C), 133.0 (d, *J* = 1.8 Hz, 1C), 132.8 (d, *J* = 95.4 Hz, 1C), 132.4 (d, *J* = 106.0 Hz, 1C), 132.2 (d, *J* = 2.8 Hz, 1C), 130.8 (d, *J* = 10.7 Hz, 2C), 130.69 (d, *J* = 98.9, 1C), 129.2 (2C), 129.1 (d, *J* = 3.0 Hz, 1C), 129.02 (1C), 128.99 (1C), 128.96 (1C), 128.9 (2C+1C), 128.5 (2C), 128.2 (1C), 126.8 (2C), 123.8 (d, *J* = 10.5 Hz, 1C), 120.9 (d, *J* = 9.3 Hz, 1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 37.58; HRMS (APCI) m/z ([M+H]⁺) calcd for C₂₈H₂₂OP: 405.1403, found: 405.1393.

(*E*)-2-(4-(*tert*-Butyl)styryl)-1,3-diphenylphosphindole 1-oxide (3ab): Purified by silica gel column chromatography with hexane/ethyl acetate (1/2, v/v): 33 mg (70%, 0.10 mmol scale); Yellow solid; m.p. 106.3-107.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (m, 2H), 7.68 (dd, *J* = 9.7, 6.8 Hz, 1H), 7.58-7.54 (m, 2H), 7.53-7.47 (m, 2H), 7.46-7.40 (m, 5H), 7.32 (td, *J* = 7.4, 3.8 Hz, 1H), 7.26-7.16 (m, 6H), 6.85 (dd, *J* = 23.8, 16.4 Hz, 1H), 1.25 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 151.5 (1C), δ 149.0 (d, *J* = 21.2 Hz, 1C), 143.6 (d, *J* = 26.0 Hz, 1C), 135.2 (d, *J* = 5.2 Hz, 1C), 134.2 (1C), 133.7 (d, *J* = 14.4 Hz, 1C), 132.9 (d, *J* = 1.9 Hz, 1C), 132.4 (d, *J* = 107.4 Hz, 1C), 132.2 (d, *J* = 2.7 Hz, 1C), 130.80 (d, *J* = 10.6 Hz, 2C), 130.78 (d, *J* = 99.0 Hz, 1C), 129.3 (2C), 129.03 (1C), 128.97 (1C), 128.93 (1C), 128.91 (1C), 128.85 (2C+1C), 126.6 (2C), 125.5 (2C), 123.7 (d, *J* = 10.6 Hz, 1C), 120.3 (d, *J* = 9.3 Hz, 1C), 34.6 (1C), 31.2 (3C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 37.66; HRMS (APCI) m/z ([M+H]⁺) calcd for C₃₂H₃₀OP: 461.2029, found: 461.2038.

(*E*)-2-(4-Methoxystyryl)-1,3-diphenylphosphindole 1-oxide (3ac): Purified by silica gel column chromatography with hexane/ethyl acetate (1/2, v/v): 30 mg (69%, 0.10 mmol scale); Yellow solid; m.p. 91.2-92.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.81 (m, 2H), 7.67 (dd, *J* = 9.3, 7.2 Hz, 1H), 7.59-7.55 (m, 2H), 7.54-7.48 (m, 2H), 7.47-7.40 (m, 5H), 7.32 (td, *J* = 7.4, 3.9 Hz, 1H), 7.22-7.16 (m, 3H), 7.12 (d, *J* = 16.4 Hz, 1H), 6.76 (dd, *J* = 23.9, 16.3 Hz, 1H), 6.77-6.74 (m, 2H), 3.76 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.8 (1C), 148.4 (d, *J* = 21.3 Hz, 1C), 143.7 (d, *J* = 26.0 Hz, 1C), 135.0 (d, *J* = 5.4 Hz, 1C), 132.8 (d, *J* = 14.4 Hz, 1C), 133.1 (d, *J* = 95.0 Hz, 1C), 132.9 (d, *J* = 1.2 Hz, 1C), 132.3 (d, *J* = 105.8 Hz, 1C), 132.2 (d, *J* = 2.8 Hz, 1C), 130.9 (d, *J* = 98.8 Hz, 1C), 130.8 (d, *J* = 10.8 Hz, 2C), 129.8 (1C), 129.0 (2C), 128.89 (1C), 128.86 (1C), 128.84 (1C), 128.80 (1C), 128.7 (1C), 128.2 (2C), 123.6 (d, *J* = 10.4 Hz, 1C), 118.9 (d, *J* = 9.2 Hz, 1C), 114.0 (2C), 55.3 (1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 37.70; HRMS (APCI) m/z ([M+H]⁺) calcd for C₂₉H₂₄O₂P: 435.1508, found: 435.1499.

(*E*)-1,3-Diphenyl-2-(4-(trifluoromethyl)styryl)phosphindole 1-oxide (3ad): Purified by silica gel column chromatography with hexane/ethyl acetate (1/2, v/v): 29 mg (61%, 0.10 mmol scale); Yellow solid; m.p. 194.7-196.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88-7.81 (m, 2H), 7.70 (dd, *J* = 9.9, 7.2 Hz, 1H), 7.62-7.58 (m, 2H), 7.56-7.52 (m, 2H), 7.49-7.44 (m, 7H), 7.37 (td, *J* = 7.4, 3.9 Hz, 1H), 7.34 (d, *J* = 8.5 Hz, 2H), 7.23 (dd, *J* = 7.6, 3.0 Hz, 1H), 7.17 (d, *J* = 16.4 Hz, 1H), 6.94 (dd, *J* = 23.2, 16.4 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 151.3 (d, *J* = 21.0 Hz, 1C), δ 143.2 (d, *J* = 22.9 Hz, 1C), 140.3 (1C), 133.4 (d, *J* = 4.8 Hz, 1C), 133.3 (d, *J* = 13.8 Hz, 1C), 133.1 (d, *J* = 1.8 Hz, 1C), 132.41 (d, *J* = 106.1 Hz, 1C), 132.40 (d, *J* = 2.8 Hz, 1C), 129.4 (d, *J* = 10.8 Hz, 1C), 129.2 (2C), 129.11 (1C), 129.06 (1C), 129.0 (2C+1C), 126.9 (2C), 125.4 (q, *J* = 3.8 Hz, 2C), 124.1714 (d, *J* = 10.5 Hz, 1C), 124.0 (q, *J* = 279.7 Hz, 1C), 123.3 (d, *J* = 9.3 Hz, 1C); ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -62.61; ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 37.36; HRMS (APCI) m/z ([M+H]⁺) calcd for

(*E*)-2-(4-Chlorostyryl)-1,3-diphenylphosphindole 1-oxide (3ae): Purified by silica gel column chromatography with hexane/ethyl acetate (1/2, v/v): 36 mg (80%, 0.10 mmol scale); Yellow solid; m.p. 104.6-106.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.81 (m, 2H), 7.68 (dd, J = 9.9, 7.2 Hz, 1H), 7.60-7.50 (m, 4H), 7.48-7.42 (m, 5H), 7.34 (td, J = 7.5, 3.9 Hz, 1H), 7.20 (dd, J = 7.6, 3.0 Hz, 1H), 7.17 (s, 4H), 7.11 (d, J = 16.4 Hz, 1H), 6.84 (dd, J = 23.4, 16.3 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 150.1 (d, J = 21.1 Hz, 1C), 143.4 (d, J = 25.6 Hz, 1C), 135.4 (1C), 133.820 (d, J = 5.1 Hz, 1C), 133.816 (1C), 133.4 (d, J = 14.0 Hz, 1C), 133.0 (d, J = 1.8 Hz, 1C), 132.6 (d, J = 98.1 Hz, 1C), 132.35 (d, J = 2.8 Hz, 1C), 132.34 (d, J = 106.2 Hz, 1C), 130.8 (d, J = 10.6 Hz, 2C), 130.5 (d, J = 98.8 Hz, 1C), 129.2 (d, J = 3.0 Hz, 1C), 129.15 (1C), 129.11 (1C), 129.08 (1C), 128.99 (1C), 128.96 (3C), 128.7 (2C), 128.0 (2C), 124.0 (d, J = 10.7 Hz, 1C), 121.4 (d, J = 9.4 Hz, 1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 37.52; HRMS (APCI) m/z ([M+H]⁺) calcd for C₂₈H₂₁ClOP: 439.1013, found: 439.0991.

(*E*)-2-(4-Bromostyryl)-1,3-diphenylphosphindole 1-oxide (3af): Purified by silica gel column chromatography with hexane/ethyl acetate (1/2, v/v) and GPC (CHCl₃): 19 mg (38%, 0.10 mmol scale); Yellow solid; m.p. 106.2-107.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.80 (m, 2H), 7.68 (dd, J = 9.8, 7.1 Hz, 1H) 7.60-7.56 (m, 2H), 7.54-7.51 (m, 2H), 7.48-7.42 (m, 5H), 7.38-7.35 (m,1H), 7.34-7.31 (m, 2H), 7.20 (dd, J = 7.6, 3.0 Hz, 1H), 7.12-7.07 (m, 3H), 6.85 (dd, J = 23.4, 16.4 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 150.2 (d, J = 21.0 Hz, 1C), 143.4 (d, J = 25.7 Hz, 1C), 135.8 (1C), 133.9 (d, J = 5.2 Hz, 1C), 133.4 (d, J = 14.0 Hz, 1C), 133.0 (d, J = 2.6 Hz, 1C), 132.6 (d, J = 95.3 Hz, 1C), 132.4 (d, J = 103.4 Hz, 1C), 132.3 (d, J = 2.8 Hz, 1C), 131.6 (2C), 130.8 (d, J = 10.7 Hz, 2C), 130.5 (d, J = 99.0 Hz, 1C), 129.3 (1C), 129.2 (2C), 129.11 (2C), 129.07 (1C), 129.0 (1C), 128.94 (2C), 128.2 (2C), 124.0 (d, J = 10.7 Hz, 1C), 122.1 (1C), 121.5 (d, J = 9.4 Hz, 1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 37.46; HRMS (APCI) m/z ([M+H]⁺) calcd for C₂₈H₂₁BrOP: 483.0508, found: 483.0516.

(*E*)-2-(2-([1,1'-Biphenyl]-4-yl)vinyl)-1,3-diphenylphosphindole 1-oxide (3ag): Purified by silica gel column chromatography with hexane/ethyl acetate (1/2, v/v): 39 mg (80%, 0.10 mmol scale); Yellow solid; m.p. 106.2-107.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.89-7.83 (m, 2H), 7.68 (dd, *J* = 9.8, 7.2 Hz, 1H), 7.61-7.57 (m, 2H), 7.55-7.50 (m, 4H), 7.48-7.44 (m, 7H), 7.43-7.38 (m, 2H), 7.37-7.29 (m, 4H), 7.23-7.19 (m, 2H), 6.93 (dd, *J* = 23.7, 16.4 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 149.6 (d, *J* = 21.3 Hz, 1C), δ 143.5 (d, *J* = 25.8 Hz, 1C), 140.9 (1C), 140.5 (1C), 136.0 (1C), 134.9 (1C), 134.8 (1C), 133.6 (d, *J* = 14.4 Hz, 1C), 133.0 (d, *J* = 1.1 Hz, 1C), 132.9 (d, *J* = 95.4 Hz, 1C), 132.4 (d, *J* = 105.8 Hz, 1C), 132.3 (d, *J* = 2.8 Hz, 1C), 130.8 (d, *J* = 10.6 Hz, 2C), 130.7 (d, *J* = 99.0 Hz, 1C), 129.3 (2C), 129.10 (1C), 129.08 (1C), 129.05 (1C), 129.02 (1C), 128.99 (1C), 128.92 (2C), 128.80 (2C), 127.4 (1C), 127.3 (1C), 127.2 (2C), 126.9 (2C), 123.8 (d, *J* = 10.6 Hz, 1C), 121.0 (d, *J* = 9.2 Hz, 1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 37.58; HRMS (APCI) m/z ([M+H]⁺) calcd for C₃₄H₂₆OP: 481.1716, found: 481.1735.

(*E*)-2-(2-Methylstyryl)-1,3-diphenylphosphindole 1-oxide (3ah): Purified by silica gel column chromatography with hexane/ethyl acetate (1/2v/v): 34 mg (81%, 0.10 mmol scale); Yellow solid; m.p. 184.6-186.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.89-7.83 (m, 2H), 7.68 (dd, J = 9.9, 7.2 Hz, 1H), 7.58-7.54 (m, 2H), 7.53-7.50 (m, 2H), 7.48-7.42 (m,5H), 7.36-7.32 (m, 2H), 7.27-7.25 (m, 1H), 7.21 (dd, J = 7.6, 3.0 Hz, 1H), 7.09-7.01 (m, 3H), 6.76 (dd, J = 23.6, 16.2 Hz, 1H), 2.10 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 149.2 (d, J = 21.0 Hz, 1C), δ 143.8 (d, J = 25.7 Hz, 1C), 136.4 (1C), 135.9 (1C), 133.6334 (d, J = 5.6 Hz, 1C), 133.61165 (d, J = 14.3 Hz, 1C), 133.61165 (d, J = 14.3 Hz, 1C), 130.9 (d, J = 10.6 Hz, 2C), 130.8 (d, J = 98.3 Hz, 1C), 130.3 (1C), 129.2 (2C), 129.06 (d, J = 6.9 Hz, 1C), 129.0 (2C), 128.94 (1C), 128.92 (1C), 128.88 (2C), 128.1 (1C), 125.9 (1C), 124.9 (1C), 123.8 (d, J = 10.5 Hz, 1C), 121.7 (d, J = 9.3 Hz, 1C), 19.5 (1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 37.58; HRMS (APCI) m/z ([M+H]⁺) calcd for C₂₉H₂₄OP: 419.1559, found: 419.1568.

(*E*)-1,3-Diphenyl-2-(2,4,6-trimethylstyryl)phosphindole 1-oxide (3ai): Purified by silica gel column chromatography with hexane/ethyl acetate (1/2, v/v) and GPC (CHCl₃): 14 mg (31%, 0.10 mmol scale); Yellow solid; m.p. 89.5-91.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90-7.84 (m, 2H), 7.69 (dd, *J* = 9.9, 7.2 Hz, 1H), 7.54-7.41 (m, 9H), 7.33 (td, *J* = 7.2, 3.8, Hz, 1H), 7.22 (dd, *J* = 7.6, 3.0 Hz, 1H), 7.13 (d, *J* = 16.7 Hz, 1H), 6.73 (s, 2H), 6.37 (dd, *J* = 23.8, 16.7 Hz, 1H), 2.18 (s, 3H), 1.97 (6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 149.0 (d, *J* = 21.1 Hz, 1C), 143.6 (d, *J* = 26.0 Hz, 1C), 136.8 (1C), 136.0 (2C), 134.7 (d, *J* = 5.7 Hz, 1C), 133.561 (d, *J* = 14.6 Hz, 1C), 133.557 (1C), 133.2 (d, *J* = 95.3 Hz, 1C), 132.9 (d, *J* = 1.3 Hz, 1C), 132.5 (d, *J* = 105.7 Hz, 1C), 132.2 (d, *J* = 2.8 Hz, 1C), 131.0 (d, *J* = 10.7 Hz, 2C), 130.7 (d, *J* = 98.9 Hz, 1C), 129.1 (1C), 129.0 (3C), 128.86 (1C), 128.85 (2C), 128.7 (4C), 125.8 (d, *J* = 9.0 Hz, 1C), 123.7 (d, *J* = 10.4 Hz, 1C), 20.9 (1C), 20.7 (2C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 37.39; HRMS (APCI) m/z ([M+H]⁺) calcd for C₃₁H₂₈OP: 447.1872, found: 447.1854.

(*E*)-2-(2-(Perfluorophenyl)vinyl)-1,3-diphenylphosphindole 1-oxide (3aj): Purified by silica gel column chromatography with hexane/ethyl acetate (1/2, v/v): 37 mg (74%, 0.10 mmol scale); Yellow solid; m.p. 193.0-194.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.79 (m, 2H), 7.71 (dd, *J* = 10.0, 7.2 Hz, 1H), 7.59-7.38 (m, 10H), 7.28 (dd, *J* = 7.6, 3.0 Hz, 1H), 7.15 (dd, *J* = 22.4, 16.8 Hz, 1H), 7.00 (d, *J* = 16.9 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 152.5 (d, *J* = 20.8 Hz, 1C), 144.6 (dm, *J* = 253.7 Hz, 2C), 142.2 (d, *J* = 25.3 Hz, 1C), 140.0 (dm, *J* = 259.0 Hz, 1C), 137.6 (dm, *J* = 249.3 Hz, 2C), 133.2 (d, *J* = 1.6 Hz, 1C), 132.850 (d, *J* = 13.8 Hz, 1C), 132.848 (d, *J* = 95.4 Hz, 1C), 132.49 (d, *J* = 106.2 Hz, 1C), 132.48 (d, *J* = 2.9 Hz, 1C), 130.7 (d, *J* = 10.7 Hz, 2C), 130.0 (d, *J* = 99.2 Hz, 1C), 129.8 (d, *J* = 10.9 Hz, 1C), 129.4 (1C), 129.3 (d, *J* = 9.8 Hz, 1C), 129.1 (2C), 129.0 (1C+1C+1C), 128.9 (2C), 124.5 (d, *J* = 10.6 Hz, 1C), 118.9 (dt, *J* = 3.0, 2.5 Hz, 1C), 112.2 (td, *J* = 13.3, 4.0 Hz 1C); ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -141.86 (d, *J* = 21.5 Hz), -141.88 (d, *J* = 21.5 Hz), -155.3 (t, *J* = 20.7 Hz), -162.8 (t, *J* = 20.9 Hz), -162.9 (t, *J* = 20.9 Hz); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 36.80; HRMS (APCI) m/z ([M+H]⁺) calcd for C₂₈H₁₇F₅OP: 495.0932, found: 495.0953.

(*E*)-2-(2-(Naphthalen-1-yl)vinyl)-1,3-diphenylphosphindole 1-oxide (3ak): Purified by silica gel column chromatography with hexane/ethyl acetate (1/2, v/v): 42 mg (91%, 0.10 mmol scale); Yellow solid; m.p. 233.0-234.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.97-7.91 (m, 3H), 7.77-7.69 (m, 4H), 7.59-7.55 (m, 3H), 7.53-7.35 (m, 10H), 7.32 (t, *J* = 7.8 Hz, 1H), 7.23 (dd, *J* = 7.6, 3.0 Hz, 1H), 6.91 (dd, *J* = 23.6, 16.1 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 149.6 (d, *J* = 21.1 Hz, 1C), 143.7 (d, *J* = 25.8 Hz, 1C), 134.5 (1C), 133.6 (d, *J* = 14.6 Hz, 1C), 135.5 (1C), 133.4 (d, *J* = 95.3 Hz, 1C), 133.0 (1C), 132.9 (d, *J* = 7.6 Hz, 1C), 132.31 (d, *J* = 2.8 Hz, 1C), 132.30 (d, *J* = 105.8 Hz, 1C), 131.1 (1C), 131.0 (d, *J* = 10.6 Hz, 2C), 130.9 (d, *J* = 98.5 Hz, 1C), 129.2 (2C), 129.15 (1C), 129.12 (1C), 129.05 (1C), 129.0 (2C), 128.6 (1C), 128.4 (1C), 126.2 (1C), 125.9 (1C), 125.4 (1C), 123.9 (d, *J* = 10.6 Hz, 1C), 123.37 (1C), 123.36 (d, *J* = 9.1 Hz, 1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 37.39; HRMS (APCI) m/z ([M+H]⁺) calcd for C₃₂H₂₄OP: 455.1559, found: 455.1548.

(*E*)-1,3-Diphenyl-2-(2-(pyren-1-yl)vinyl)phosphindole 1-oxide (3al): Purified by silica gel column chromatography with hexane/ethyl acetate (1/2, v/v): 28 mg (%, 0.10 mmol scale); Orange solid; m.p. 214.7-216.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 16.1 Hz, 1H), 8.14 (dd, *J* = 7.6, 3.0 Hz, 2H), 8.04-7.93 (m, 9H), 7.75 (dd, *J* = 9.9, 7.2 Hz, 1H), 7.62-7.52 (m, 8H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.38 (td, *J* = 7.4, 3.8 Hz, 1H), 7.26 (dd, *J* = 7.6, 3.0 Hz, 1H), 7.1 (dd, *J* = 23.6, 16.1 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 149.5 (d, *J* = 21.1 Hz, 1C), 143.8 (d, *J* = 25.6 Hz, 1C), 133.7 (d, *J* = 14.0 Hz, 1C), 133.6 (d, *J* = 95.3 Hz, 1C), 133.1 (d, *J* = 1.9 Hz, 1C), 132.8 (d, *J* = 5.0 Hz, 1C), 132.4 (d, *J* = 2.8 Hz, 1C), 132.3 (d, *J* = 106.8 Hz, 1C), 129.3 (2C), 129.21 (1C), 129.18 (1C), 129.13 (d, *J* = 4.5 Hz, 1C), 129.06 (1C), 129.04 (1C), 128.98 (2C), 128.6 (1C), 127.8 (1C), 127.6 (1C), 127.3 (1C), 126.0 (1C), 125.4 (1C), 123.0 (1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 37.52; HRMS (APCI) m/z ([M+H]⁺) calcd for C₃₈H₂₆OP: 529.1716, found: 529.1701.

2,2'-((1*E***,1'***E***)-1,4-Phenylenebis(ethene-2,1-diyl))bis(1,3-diphenylphosphindole 1-oxide) (a 1:1 mixture of diastereomers) (3am):** Purified by GPC (CHCl₃): 18 mg (47%, 0.050 mmol scale); Yellow solid; m.p. 194.7-196.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.78 (m, 4H), 7.66 (dd, *J* = 9.8, 7.0 Hz, 2H), 7.57-7.48 (m, 8H), 7.45-7.40 (m, 10H), 7.33 (td, *J* = 7.4, 3.8 Hz, 2H), 7.19 (dd, *J* = 7.7, 2.7 Hz, 2H), 7.10 (d, *J* = 2.5 Hz, 4H), 7.06 (dd, *J* = 16.4, 2.9 Hz, 2H), 6.83 (dd, *J* = 23.6, 16.3 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 149.7 (d, *J* = 21.2 Hz, 2C), 143.5 (d, *J* = 25.6 Hz, 2C), 136.8 (2C), 134.6 (d, *J* = 5.1 Hz, 2C), 133.5 (d, *J* = 14.2 Hz, 2C), 132.8 (d, *J* = 94.8 Hz, 2C), 133.0 (2C), 132.4 (d, *J* = 104.3 Hz, 2C), 132.2 (2C), 130.8 (d, *J* = 10.7 Hz, 4C), 130.6 (d, *J* = 98.4 Hz, 2C), 129.2 (4C), 129.1 (d, *J* = 4.0 Hz, 2C), 129.00 (4C), 128.97 (2C), 128.90 (2C), 128.88 (4C), 126.9 (4C), 123.8 (d, *J* = 10.4 Hz, 2C), 121.2 (d, *J* = 9.2 Hz, 2C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 37.46, 37.44; HRMS (APCI) m/z ([M+H]⁺) calcd for C₅₀H₃₇O₂P₂: 731.2263, found: 731.2250.

(*E*)-4-(1-Oxido-1,3-diphenylphosphindol-2-yl)but-3-en-2-one (3an): Purified by GPC (CHCl₃): 26 mg (71%, 0.10 mmol scale); Pale yellow solid; m.p. 166.3-168.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80-7.68 (m, 2H), 7.71 (dd, *J* = 9.9, 7.2 Hz, 1H), 7.60-7.54 (m, 4H), 7.50-7.40 (m, 6H), 7.29 (dd, *J* = 7.8, 3.0 Hz, 1H), 7.25 (dd, *J* = 23.4, 16.0 Hz, 1H), 6.71 (d, *J* = 16.0 Hz, 1H), 2.14 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.7 (1C), 157.8 (d, *J* = 22.2 Hz, 1C), 142.6 (d, *J* = 24.9 Hz, 1C), 133.8 (d, *J* = 9.3 Hz, 1C), 133.2 (d, *J* = 1.9 Hz, 1C), 133.0 (d, *J* = 106.0 Hz, 1C), 132.6 (d, *J* = 2.8 Hz, 1C), 132.4 (d, *J* = 13.6 Hz, 1C), 130.824 (d, *J* = 4.0 Hz, 1C), 130.76 (d, *J* = 11.3 Hz, 2C), 130.77 (d, *J* = 96.5 Hz, 1C), 130.6 (d, *J* = 10.7 Hz, 1C), 129.8 (1C), 129.5 (d, *J* = 102.0 Hz, 1C), 129.3 (d, *J* = 9.4 Hz, 1C), 129.2 (1C), 129.09 (2C), 129.08 (1C), 129.0 (2C), 125.2 (d, *J* = 10.3 Hz, 1C), 28.8 (1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 36.36; HRMS (APCI) m/z ([M+H]⁺) calcd for C₂₄H₂₀O₂P: 371.1195, found: 371.1195.

Ethyl (*E***)-3-(1-oxido-1,3-diphenylphosphindol-2-yl)acrylate (3ao):** Purified by silica gel column chromatography with hexane/ethyl acetate (1/2, v/v): 25 mg (62%, 0.10 mmol scale); Pale yellow solid; m.p. 144.6-146.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80-7.74(m, 2H), 7.70 (dd, J = 9.9, 7.2 Hz, 1H), 7.59-7.53 (m, 4H), 7.52-7.40 (m, 6H), 7.39 (dd, J = 23.7, 16.1 Hz, 1H), 7.28 (dd, J = 7.4, 2.8 Hz, 1H), 6.43 (dd, J = 16.0, 1.1 Hz, 1H), 4.14 (dq, J = 10.9, 7.1 Hz, 1H), 4.06 (dq, J = 10.9, 7.1 Hz, 1H), 1.21 (t, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.6 (1C), 156.7 (d, J = 20.6 Hz, 1C), 142.5 (d, J = 25.2 Hz, 1C), 135.5 (d, J = 9.1 Hz, 1C), 133.0 (d, J = 105.5 Hz, 1C), 133.1 (d, J = 1.5 Hz, 1C), 132.5 (d, J = 3.1 Hz, 1C), 129.7 (1C), 129.5 (d, J = 105.6 Hz, 1C), 129.23 (d, J = 8.8 Hz, 1C), 129.18 (1C), 129.1 (2C), 129.0 (2C+1C), 125.1 (d, J = 10.5 Hz, 1C), 123.6 (d, J = 4.6 Hz, 1C), 60.5 (1C), 14.2 (1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 36.43; HRMS (APCI) m/z ([M+H]⁺) calcd for C₂₅H₂₂O₃P: 401.1301, found: 401.1298.

A 92:8 mixture of (*E*)-3-(1-Oxido-1,3-diphenylphosphindol-2-yl)acrylonitrile ((*E*)-3ap) and (*Z*)-3-(1-Oxido-1,3-diphenylphosphindol-2-yl)acrylonitrile ((*Z*)-3ap): Purified by silica gel column chromatography with hexane/ethyl acetate (1/2, v/v): 25 mg (62%, 0.10 mmol scale); Pale yellow solid; m.p. 82.8-84.5 °C; ¹H NMR (400 MHz, CDCl₃) for (*E*)-3ap: δ 7.76-7.69 (m, 3H), 7.62-7.45 (m, 8H), 7.40-7.38 (m, 2H), 7.32 (dd, *J* = 7.3, 2.8 Hz, 1H), 7.07 (dd, *J* = 22.2, 16.5 Hz, 1H), 5.90 (dd, *J* = 16.6, 1.0 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) for (*E*)-3ap: δ 157.4 (d, *J* = 19.8 Hz, 1C), 142.1 (d, *J* = 24.6 Hz, 1C), 141.8 (d, *J* = 9.2 Hz, 1C), 133.4 (d, *J* = 2.0 Hz, 1C), 133.0 (d, *J* = 2.9 Hz, 1C), 132.7 (d, *J* = 106.3 Hz, 1C), 131.8 (d, *J* = 12.9 Hz, 1C), 131.0 (d, *J* = 11.0 Hz, 1C), 130.7 (d, *J* = 10.9 Hz, 2C), 130.2 (1C), 130.0 (d, *J* = 96.8 Hz, 1C), 129.42 (d, *J* = 10.0 Hz, 1C), 129.41 (1C), 129.3 (1C), 129.2 (2C), 128.9 (2C), 128.8 (d, *J* = 96.2 Hz, 1C), 125.7 (d, *J* = 10.5 Hz, 1C), 117.9 (1C), 101.3 (d, *J* = 5.6 Hz, 1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) for (*E*)-3ap: δ 36.01; HRMS (APCI) m/z ([M+H]⁺) calcd for C₂₃H₁₇NOP: 354.1042, found: 354.1044.

Diethyl (E)-(2-(1-oxido-1,3-diphenylphosphindol-2-yl)vinyl)phosphonate (3aq): Purified by GPC (CHCl₃): 29 mg (62%, 0.10 mmol scale); Yellow solid; m.p. 129.5-131.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.72 (m, 2H), 7.7 (dd, J = 9.7, 7.5 Hz, 1H), 7.58-7.39 (m, 10H), 7.28 (dd, J = 7.5, 2.9 Hz, 1H), 7.19 (ddd, J = 22.8, 21.7, 17.4 Hz, 1H), 6.33 (dd, J = 17.4, 17.4 Hz, 1H), 3.99 (qd, J = 7.2, 7.1 Hz, 2H), 3.78 (dqd, J = 10.1, 7.6, 7.1 Hz, 1H), 3.68 (dqd, J = 10.1, 7.3, 7.1 Hz, 1H), 1,25 (t, J = 7.0 Hz, 3H), 1.04 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 156.0 (d, J = 20.6 Hz, 1C), 142.5 (dd, J = 25.7, 2.2 Hz, 1C), 139.7 (dd, J = 9.1, 7.6 Hz, 1C), 133.2 (d, J = 1.8 Hz, 1C), 132.8 (d, J = 105.6 Hz, 1C), 132.3 (d, J = 13.6 Hz, 1C), 132.5 (d, J = 2.8 Hz, 1C), 131.0 (dd, J = 96.9, 26.4 Hz, 1C), 130.8 (d, J = 10.8 Hz, 2C), 130.4 (d, J = 10.5 Hz, 1C), 129.8 (1C), 129.6 (d, J = 105.7 Hz, 1C), 129.2 (d, J = 9.9 Hz, 1C), 129.1 (3C), 129.0 (3C), 125.2 (d, J = 10.6 Hz, 1C), 120.7 (dd, J = 185.7, 4.7 Hz, 1C), 61.9 (d, J = 5.3 Hz, 1C), 61.7 (d, 5.2 Hz, 1C), 16.3 (d, J = 6.6 Hz, 1C), 16.1 (d, J = 6.4 Hz, 1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 36.66 (d, J = 3.9 Hz), 17.52 (d, J = 3.9 Hz); HRMS (APCI) m/z ([M+H]⁺) calcd for C₂₆H₂₇O₄P₂: 465.1379, found: 465.1399.

(*E*)-6-Methyl-1-phenyl-2-styryl-3-(*p*-tolyl)phosphindole 1-oxide (3ba): Purified by silica gel column chromatography with hexane/ethyl acetate (1/1, v/v): 36 mg (80%, 0.10 mmol scale); Yellow solid; m.p. 101.1-102.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.82 (m, 2H), 7.54-7.42 (m, 4H), 7.38-7.33 (m, 4H), 7.27-7.10 (m, 8H), 6.90 (dd, J = 23.7, 16.4 Hz, 1H), 2.48 (s, 3H), 2.33 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 150.0 (d, J = 21.4 Hz, 1C), 141.0 (d, J = 26.0 Hz, 1C), 139.4 (d, J = 10.5 Hz, 1C), 138.9 (1C), 137.1 (1C), 134.4 (d, J = 5.2 Hz, 1C), 133.4 (d, J = 1.6 Hz, 1C), 132.6 (d, J = 105.5 Hz, 1C), 132.1 (d, J = 2.7 Hz, 1C), 131.5 (d, J = 96.2 Hz, 1C), 131.0 (d, J = 98.7 Hz, 1C), 130.8 (d, J = 10.5 Hz, 2C), 130.7 (d, J = 13.7 Hz, 1C), 129.7 (d, J = 9.7 Hz, 1C), 129.2 (2C), 129.0 (1C), 128.9 (1C), 128.4 (2C), 128.0 (1C), 126.7 (2C), 123.7 (d, J = 11.1 Hz, 1C), 121.2 (d, J = 9.4 Hz, 1C), 21.5 (1C), 21.3 (1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 37.60; HRMS (APCI) m/z ([M+H]⁺) calcd for C₃₀H₂₆OP: 433.1716, found: 433.1713.

(*E*)-6-(*tert*-Butyl)-3-(4-(*tert*-butyl)phenyl)-1-phenyl-2-styrylphosphindole 1-oxide (3ca): Purified by silica gel column chromatography with hexane/ethyl acetate (2/1, v/v): 30 mg (58%, 0.10 mmol scale); Yellow solid; m.p. 124.5-126.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88-7.82 (m, 2H), 7.72 (dd, J = 10.8, 1.72 Hz, 1H), 7.57 (d, J = 8.5 Hz, 2H), 7.51-7.44 (m, 4H), 7.40 (d, J = 8.2 Hz, 2H), 7.29-7.12 (m, 7H), 6.94 (dd, J = 23.6, 16.4 Hz, 1H), 1.42 (s, 9H), 1.28 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 152.7 (d, J = 9.3 Hz, 1C), 152.1 (1C), 149.6 (d, J = 21.2 Hz, 1C), 141.1 (d, J = 26.1 Hz, 1C), 137.2 (1C), 134.5 (d, J = 5.3 Hz, 1C), 132.3 (d, J = 105.5 Hz, 1C), 132.1 (d, J = 2.8 Hz, 1C), 131.8 (d, J = 96.3 Hz, 1C), 131.1 (d, J = 98.4 Hz, 1C), 130.9 (d, J = 10.9 Hz, 2C), 130.6 (d, J = 14.4 Hz, 1C), 129.9 (d, J = 1.6 Hz, 1C), 125.7 (dC), 128.9 (1C), 128.8 (1C), 128.4 (2C), 127.9 (1C), 126.8 (2C), 126.0 (d, J = 10.0 Hz, 1C), 125.7 (2C), 123.7 (d, J = 11.4 Hz, 1C), 121.3 (d, J = 9.4 Hz, 1C), 35.1 (1C), 34.9 (1C), 31.4 (3C), 31.2 (3C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 38.09; HRMS (APCI) m/z ([M+H]⁺) calcd for C₃₆H₃₈OP: 517.2655, found: 517.2662.

(*E*)-6-Methoxy-3-(4-methoxyphenyl)-1-phenyl-2-styrylphosphindole 1-oxide (3da): Purified by silica gel column chromatography with hexane/ethyl acetate (1/1, v/v): 35 mg (74%, 0.10 mmol scale); Yellow solid; m.p. 94.5-96.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.81 (m, 2H), 7.54-7.42 (m, 3H), 7.40 (d, *J* = 8.6 Hz, 2H), 7.27-7.13 (m, 7H), 7.083 (d, *J* = 8.8 Hz, 2H), 7.078 (d, *J* = 16.3 Hz, 1H), 6.92 (dd, *J* = 8.6, 0.76 Hz, 1H), 6.89 (dd, *J* = 24.0, 16.4 Hz, 1H), 3.92 (s, 3H), 3.80 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.7 (d, *J* = 13.4 Hz, 1C), 160.1 (1C), 149.7 (d, *J* = 21.2 Hz, 1C), 137.2 (1C), 136.1 (d, *J* = 25.7 Hz, 1C), 134.6 (d, *J* = 104.4 Hz, 1C), 133.5 (d, *J* = 5.3 Hz, 1C), 132.2 (d, *J* = 2.8 Hz, 1C), 130.9 (d, *J* = 98.6 Hz, 1C), 130.8 (d, *J* = 10.8 Hz, 2C), 130.6 (2C), 130.1 (d, *J* = 97.9 Hz, 1C), 129.0 (1C), 128.9 (1C), 128.5 (2C), 127.8 (1C), 126.6 (2C), 125.9 (d, *J* = 14.7 Hz, 1C), 125.0 (d, *J* = 12.5 Hz, 1C), 121.3 (d, *J* = 9.7 Hz, 1C), 118.1 (d, *J* = 1.4 Hz, 1C), 114.5 (d, *J* = 11.0 Hz, 1C), 114.2

(2C), 55.7 (1C), 55.4 (1C); ${}^{31}P{}^{1}H$ NMR (162 MHz, CDCl₃) δ 37.29; HRMS (APCI) m/z ([M+H]⁺) calcd for C₃₀H₂₆O₃P: 465.1614, found: 465.1614.

(*E*)-6-Chloro-3-(4-chlorophenyl)-1-phenyl-2-styrylphosphindole 1-oxide (3ea): Purified by silica gel column chromatography with hexane/ethyl acetate (1/2, v/v): 42 mg (86%, 0.10 mmol scale); Yellow solid; m.p. 181.3-183.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.80 (m, 2H), 7.62 (dd, *J* = 10.0, 2.0 Hz, 1H), 7.58-7.53 (m, 3H), 7.50-7.46 (m, 2H), 7.41-7.38 (m, 3H), 7.28-7.19 (m, 5H), 7.17 (dd, *J* = 16.3, 0.72 Hz, 1H), 7.09 (dd, *J* = 8.2, 3.3 Hz, 1H), 6.81 (dd, *J* = 24.0, 16.3 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 147.2 (d, *J* = 20.1 Hz, 1C), 141.4 (d, *J* = 25.3 Hz, 1C), 136.5 (1C), 136.4 (d, *J* = 5.3 Hz, 1C), 135.5 (d, *J* = 14.3 Hz, 1C), 135.3 (1C), 134.4 (d, *J* = 103.6 Hz, 1C), 133.6 (d, *J* = 95.0 Hz, 1C), 132.9 (d, *J* = 1.7 Hz, 1C), 132.7 (d, *J* = 2.8 Hz, 1C), 131.6 (d, *J* = 14.5 Hz, 1C), 130.7 (d, *J* = 10.9 Hz, 2C), 130.6 (2C), 129.7 (d, *J* = 100.1 Hz, 1C), 129.4 (2C), 129.4 (1C), 129.3 (1C), 129.1 (1C), 128.6 (3C), 126.9 (2C), 124.5 (d, *J* = 11.4 Hz, 1C), 120.2 (d, *J* = 9.1 Hz, 1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 36.60; HRMS (APCI) m/z ([M+H]⁺) calcd for C₂₈H₂₀Cl₂OP: 473.0623, found: 473.0632.

(*E*)-6-Fluoro-3-(4-fluorophenyl)-1-phenyl-2-styrylphosphindole 1-oxide (3fa): Purified by silica gel column chromatography with hexane/ethyl acetate (2/1, v/v) and GPC (CHCl₃): 21 mg (47%, 0.10 mmol scale); Yellow solid; m.p. 234.7-236.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.80 (m, 2H), 7.58-7.53 (m, 1H), 7.50-7.41 (m, 4H), 7.40-7.36 (m, 1H), 7.30-7.09 (m, 10H), 6.80 (dd, *J* = 24.1, 16.4 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.4 (dd, *J* = 251.7, 15.4 Hz, 1C), 163.1 (d, *J* = 248.0 Hz, 1C), 147.7 (dd, *J* = 20.8, 1.7 Hz, 1C), 139.2 (dd, *J* = 25.3, 3.1 Hz, 1C), 136.7 (1C), 135.6 (d, *J* = 5.8 Hz, 1C), 135.0 (dd, *J* = 104.4, 6.6 Hz, 1C), 133.1 (dd, *J* = 96.5, 3.6 Hz, 1C), 132.6 (d, *J* = 2.9 Hz, 1C), 131.1 (d, *J* = 7.9 Hz, 2C), 130.7 (d, *J* = 10.8 Hz, 2C), 129.8 (d, *J* = 99.8 Hz, 1C), 129.3 (dd, *J* = 15.7, 2.4 Hz, 1C), 129.2 (1C), 129.1 (1C), 128.6 (2C), 128.4 (1C), 126.8 (2C), 125.1 (dd, *J* = 12.3, 7.7)

Hz, 1C), 120.5 (d, J = 9.4 Hz, 1C), 119.6 (d, J = 22.3 Hz, 1C), 116.8 (dd, J = 23.8, 10.6 Hz, 1C), 116.3 (d, J = 21.4 Hz, 2C); ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -110.8 (d, J = 5.4 Hz), -111.2; ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 36.32 (d, J = 5.4 Hz); HRMS (APCI) m/z ([M+H]⁺) calcd for C₂₆H₂₀F₂OP: 441.1214, found: 441.1221.

(*E*)-6,6-Dimethyl-2-phenyl-1-styryl-6*H*-naphtho[1,2,3-*cd*]phosphindole 2-oxide (3ga): Purified by GPC (CHCl₃): 36 mg (80%, 0.10 mmol scale); Yellow solid; m.p. 119.5-121.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 7.5 Hz, 1H), 7.80-7.73 (m, 3H), 7.67 (dd, *J* = 8.0 Hz, 1H), 7.59 (dd, *J* = 22.5, 16.3 Hz, 1H), 7.56 (dd, *J* = 9.44, 7.2 Hz, 1H), 7.53-7.45 (m, 3H), 7.43-7.38 (m, 5H), 7.31 (m, 3H), 7.24 (t, *J* = 7.3 Hz, 1H), 1.75 (s, 3H), 1.71 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 147.2 (1C), 141.3 (d, *J* = 11.1 Hz, 1C), 139.1 (d, *J* = 22.1 Hz, 1C), 137.9 (d, *J* = 28.2 Hz, 1C), 137.2 (d, *J* = 1.1 Hz, 1C), 135.0 (d, *J* = 6.5 Hz, 1C), 132.0 (d, *J* = 2.7 Hz, 1C), 131.5 (d, *J* = 98.4 Hz, 1C), 130.9 (d, *J* = 10.4 Hz, 2C), 130.7 (d, *J* = 105.7 Hz, 1C), 128.6 (2C), 128.5 (d, *J* = 16.6 Hz, 1C), 128.1 (1C), 127.8 (d, *J* = 99.0 Hz, 1C), 127.4 (1C), 127.1 (d, *J* = 9.4 Hz, 1C), 126.8 (2C), 126.6 (1C), 122.1 (d, *J* = 8.0 Hz, 1C), 39.0 (d, *J* = 1.1 Hz, 1C), 33.1 (1C), 32.7 (1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 39.56; HRMS (APCI) m/z ([M+H]⁺) calcd for C₃₁H₂₆OP: 445.1716, found: 445.1731.

 1C), 134.1 (d, J = 95.2 Hz, 1C), 133.8 (d, J = 2.0 Hz, 1C), 133.6 (d, J = 8.4 Hz, 1C), 133.4 (2C), 132.2 (d, J = 2.7 Hz, 1C), 131.9 (d, J = 9.3 Hz, 1C), 131.3 (d, J = 14.6 Hz, 1C), 130.9 (d, J = 97.3 Hz, 1C), 130.7 (d, J = 10.8 Hz, 2C), 129.2 (1C), 129.1 (1C), 128.77 (1C), 128.76 (1C), 128.72 (1C), 128.5 (4C), 128.2 (1C), 128.0 (1C), 127.7 (d, J = 100.0 Hz, 1C), 127.0 (1C), 126.9 (2C), 126.8 (3C), 125.6 (d, J = 5.0 Hz, 1C), 121.3 (d, J = 12.2 Hz, 1C), 120.9 (d, J = 10.3 Hz, 1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 38.34; HRMS (APCI) m/z ([M+H]⁺) calcd for C₃₆H₂₆OP: 505.1716, found: 505.1733.

2,2'-((1*E***,1'***E***)-1,4-Phenylenebis(ethene-2,1-diyl))bis(3-(naphthalen-2-yl)-1-phenylbenzo[g]phosphi ndole 1-oxide) (a 1:1 mixture of diastereomers) (3hm):** Purified by GPC (CHCl₃): 29 mg (61%, 0.050 mmol scale); Red solid; m.p. 229.8-230.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.0 Hz, 2H), 8.03 (dd, *J* = 8.4, 2.8 Hz, 2H), 7.98-7.89 (m, 12H), 7.80 (d, *J* = 7.9 Hz, 2H), 7.63-7.54 (m, 6H), 7.49-7.41 (m, 10H), 7.36 (dd, *J* = 8.5, 1.8 Hz, 2H), 7.17 (d, *J* = 16.2 Hz, 2H), 7.07 (d, *J* = 2.2 Hz, 4H), 6.89 (dd, *J* = 24.1, 16.3 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 149.2 (d, *J* = 22.5 Hz, 2C), 143.0 (d, *J* = 24.8 Hz, 2C), 136.9 (2C), 134.5 (d, *J* = 5.4 Hz, 2C), 134.1 (d, *J* = 94.4 Hz, 2C), 133.8 (2C), 133.6 (d, *J* = 9.0 Hz, 2C), 133.34 (2C), 133.30 (2C), 132.3 (2C), 131.9 (d, *J* = 9.1 Hz, 2C), 131.2 (d, *J* = 14.7 Hz, 2C), 128.5 (2C), 128.3 (2C), 128.0 (2C), 127.7 (d, *J* = 103.9 Hz, 2C), 127.0 (6C), 126.8 (4C), 126.7 (2C), 125.5 (d, *J* = 4.9 Hz, 2C), 121.3 (d, *J* = 12.1 Hz, 2C), 121.2 (d, *J* = 9.8 Hz, 2C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 38.23, 38.21; HRMS (APCI) m/z ([M+H]⁺) calcd for C₆₆H₄₅O₂P₂: 931.2889, found: 931.2889.

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 3ab]

$[^{1}H,\,^{13}C\{^{1}H\},\,^{19}F\{^{1}H\},\,and\,\,^{31}P\{^{1}H\}$ NMR Spectra of **3ad**]

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 3ag]

S47

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 3an]

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of **3ao**]

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 3aq]

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 3ca]

$[{}^{1}H, {}^{13}C{}^{1}H, {}^{19}F{}^{1}H$, and ${}^{31}P{}^{1}H$ NMR Spectra of **3fa**]

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of **3ha**]

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 3hm]

References

(S1) S. Xu, K. Nishimura, K. Saito, K. Hirano and M. Miura, Chem. Sci., doi: 10.1039/D2SC04311D.