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1. Experimental Section

1.1 Reagents and Methods

  Unless otherwise described, all reagents and anhydrous solvents used in this work 

were purchased from commercial sources and used without further purification. D2O 

was purchased from Sigma-Aldrich, and dimethyl sulfoxide (DMSO, 99.7%, Superdry, 

with molecular sieves, J&K Seal), acetonitrile (MeCN, 99.9%, Superdry, with 

molecular sieves, J&K Seal) and N,N-dimethylformamide (DMF, 99.8%, Superdry, 

with molecular sieves, J&K Seal) were purchased from J&K Scientific Co. Ltd. 

(Beijing, China). 2-((E)-2-((E)-2-Chloro-3-(2-((E)-3,3-dimethyl-1-propylindolin-2-

ylidene)ethylidene)cyclohex-1-en-1-yl)vinyl)-3,3-dimethyl-1-propyl-3H-indol-1-ium 

iodide (IR-780) was purchased from JiangSu Aikon Biomedical R&D Co., Ltd. 

(Nanjing, China). Resorcinol were purchased from Bide Pharmaceutical Technology 

Co., Ltd. (Shanghai, China). Deionized water was used to prepare the buffer solutions 

and as the analyte. For column chromatography, 300−400 mesh silica gel was used to 

purify the crude product.

  1H NMR and 13C NMR spectra were recorded on a Bruker AVANCE II-400 MHz 

spectrometer at 400 and 100 MHz in DMSO-d6, respectively. Tetramethylsilane (TMS) 

was used as an internal standard. All chemical shift data are reported in the standard δ 

notation of parts per million (ppm). Splitting patterns were designed as follows: s 

(singlet), d (doublet), t (triplet) and m (multiplet). High-resolution mass spectra 

(HRMS) were measured on a Q-TOF Premier ESI mass spectrometer. Fourier 

transform-infrared spectra (FTIR) were measured on a Bruker INVENIO R, and pH 

values of the samples were measured using a PHS-3E pH meter. UV-visible spectra 

were measured on a Shimadzu UV-3600 spectrophotometer. Photoluminescence 

spectra were recorded on a Horiba Jobin Yvon Fluoromax-4 fluorescence 

spectrophotometer. Transient photoluminescence decay characteristics of the solution 

samples were recorded on a Single Photon Counting Controller FluoroHub-B 

(Horiba Jobin Yvon). Photographs were taken using a Huawei Mate20 smartphone.

1.2 Synthesis and Characterization.
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  Synthesis of (E)-2-(2-(6-hydroxy-2,3-dihydro-1H-xanthen-4-yl)vinyl)-3,3-dimethyl-

1-propyl-3H-indol-1-ium iodide (Cy). Scheme S1 shows the synthetic route for the 

sensor Cy. Under a nitrogen atmosphere, resorcinol (110 mg, 1 mmol) and K2CO3 (138 

mg, 1 mmol) were added to a two-necked flask containing 5 mL anhydrous acetonitrile, 

and then the mixtures were stirred at room temperature for 20 min. After that, the 

acetonitrile solutions of IR-780 (267 mg, 0.2 mmol) were added to the reaction system, 

and the whole reaction was heated at 50 °C for 4 h. Then the solvent was removed by 

rotary evaporation, and the residual solid was chromatographed with a silica gel column 

using dichloromethane/methanol (50/1, v/v) as an eluent to finally obtain a blue-green 

powder (yield: 67%).

The reaction mechanism for the synthesis of Cy is unique. As shown in Scheme S2, 

IR-780 and resorcinol under the basic conditions will undergo the straightforward 

nucleophilic substitution of chlorine atom, retro-Knoevenagel reaction, cyclization 

reaction and dehydration reaction in sequence,1 then finally obtain the target compound 

Cy. The molecular structure of the sensor Cy was characterized by 1H NMR, 13C NMR 

spectra, HRMS analyses and FTIR spectra (Figure S1-Figure S4). Due to the efficient 

hydrogen-deuterium exchange of the phenolic hydroxyl group of Cy in the deuterated 

reagent, the relevant hydrogen signal is indiscernible in the 1H NMR spectrum. Hence, 

the FTIR spectrum was used for supplementary characterization, and the peak around 

3100 cm-1 indicates the existence of OH. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 

8.54 (d, J = 14.8 Hz, 1H), 7.75 (d, J = 6.0 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.55 (s, 

1H), 7.52 (d, J = 8.8 Hz, 1H), 7.48 (d, J = 8.4 Hz, 1H), 7.41 (t, J = 7.2 Hz, 1H), 6.90 (s, 

1H), 6.86 (dd, J = 8.4, 2.0 Hz, 1H), 6.49 (d, J = 14.8 Hz, 1H), 4.34 (t, J = 6.8 Hz, 2H), 

2.72 (t, J = 5.6 Hz, 2H), 2.67 (t, J = 6.0 Hz, 2H), 1.85-1.80 (m, 4H), 1.75 (s, 6H), 0.99 

(t, J = 7.2Hz, 3H). 13C NMR (100 MHz, DMSO-d6) δ (ppm): 176.7, 163.3, 161.4, 154.9, 

144.3, 142.2, 135.2, 129.8, 129.3, 126.9, 125.8, 123.2, 115.8, 114.9, 114.4, 113.3, 

103.6, 102.5, 50.5, 46.3, 28.7, 28.1, 24.1, 21.2, 20.5, 11.5. HRMS (ESI) m/z for 

C28H30INO2 (M-I) + Calcd.: 412.2271, Found: 412.2275.
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1.3 Calculation of the pKa value
Prepare buffer solutions of the sensor Cy with various pH values from 4.01 to 10.02 

and characterize the corresponding fluorescence spectra. The pKa value of Cy was 

calculated by regression analysis of the fluorescence intensity as a function of pH, 

where the analysis should fit to the Henderson-Hasselbalch-type mass action equation:

log [(Fmax - F)/(F - Fmin)] = pKa - pH

Where F is the fluorescence emission intensity at 725 nm, Fmax and Fmin are the 

corresponding maximum and minimum limiting values of F, respectively.

1.4 Detection the relative content of H2O and D2O
Typically, the stock solution of Cy was prepared by dissolving Cy in ultra-dry DMF 
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(2 mM). Then, 22.5 μL Cy was added to D2O (or H2O or D2O-H2O mixtures) and the 

final concentration of the sensor was 100 μM. UV-vis absorption and fluorescence 

emission spectra were conducted on the as-prepared solution samples. During the 

measurements, the lids of the cuvettes are always closed to prevent D2O from absorbing 

moisture so as to affect the analytical results. All the experiments were repeated in 

triplicate to obtain consistent values.

In all subsequent experiments, the concentration of the sensor solution was fixed at 

100 μM and the detection system contained 5 vol% DMF.

1.5 RGB colorimetric
The stock solutions of the sensor Cy were added to different systems separately, 

which contained distinct H2O-D2O relative content. The detection process is shown in 

Scheme 2. Pictures of samples were taken with a smartphone and opened with the 

smartphone analysis application (APP). The detection region was selected in the APP 

(Palette Cam). Generally, the middle part of the reaction solution was selected for 

sampling. The numerical values of RGB were computed by the APP software and the 

calibration curve was obtained through data analysis.

1.6 Method reliability
Randomly prepare five samples with various H2O-D2O content (unknown relative 

proportion). The prepared samples were subjected to analysis with FTIR spectra 

(classical instrumental method) and the proposed Cy sensor, including absorption, 

fluorescence and RGB three channels. The FTIR spectra of all samples were performed 

on a Bruker INVENIO R Fourier transform-infrared spectrophotometer with the 

attenuated total reflection (ATR) mode.
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2. Supplementary Tables and Figures
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Fig. S1 1H NMR spectrum of Cy in DMSO-d6.
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Fig. S3 HRMS spectrum of Cy.
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Table S1 The chemical and physical properties of H2O and D2O

Property H2O D2O

Melting point / ℃ 0.00 3.79

Boiling point / ℃ 100 101.4

Relative density / g·mL-1 (20 ℃) 0.997 1.108

Heat of evaporation / kJ·mol-1 40.67 41.6

Heat of fusion / kJ·mol-1 6.008 6.276

Freezing point lowered / °C 1.86 2.00

Surface tension (at 25 °C, N·m-

1)

0.07198 0.07187

Ion product constant (Kw) 1.00×10-14 2.00×10-15

Refractive index (at 20 °C) 1.33298 1.32844

pH 6.4-7.0 7.5
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Fig. S5 The fluorescence spectra of Cy in D2O and H2O, where the concentration of Cy is 3.3 × 

10-5 mol/L (a), 6.7 × 10-5 mol/L (b), 1.0 × 10-4 mol/L (c), 1.33 × 10-4 mol/L (d), 1.67 × 10-4 mol/L 

(e) and 2.0 × 10-4 mol/L (f) respectively (inset: the photos of Cy in D2O and H2O, respectively). (g) 

Optimization diagram of the sensor concentration.

In the preliminary experiments, we found that the concentration of Cy could affect 

the output of the ratiometric signal, thus affecting the sensitivity of the sensor. On this 

basis, we optimized the concentration of Cy through comparing the difference of these 

ratiometric signals between D2O and H2O. As shown in Fig. S5, when the sensor 

concentration is 1.33 × 10-4 M, the ratio of ratiometric signal (R) reaches the maximum. 

Nevertheless, considering the effect of naked-eye visualization, we finally chosen the 

concentration of 1 × 10-4 M to realize the good sensitivity and distinct color difference 

at the same time.
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50%, v/v). (b) Relationship between A688/A603 of Cy with D2O content in total volume. (c) 

Fluorescence emission spectra of Cy in H2O-D2O mixtures with different D2O fractions (0-26%, 
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Table S2 The fitted photoluminescence lifetime data of Cy in D2O, H2O and 50 vol% 

of D2O at 298 K (λex = 590 nm).

λex (nm) λem (nm)
Life time 

(ns)
content (%) χ2

685 τ = 1.01 100 0.95
D2O 590

725 τ = 0.97 100 0.91

685 τ = 0.73 100 1.0250 vol% 

D2O
590

725 τ = 0.70 100 0.82

685 τ = 0.32 100 1.10
H2O 590

725 τ = 0.35 100 1.20
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Scheme. S3 Schematic illustration of the basic construction of 3D-printed setup.
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Fig. S12 (a) Calibration curve of the G/B ratio of corresponding solutions analyzed with a 

smartphone versus H2O contents in H2O-D2O mixtures; and (b) linear relationship between the G/B 

ratio and the H2O contents in H2O-D2O mixtures ranging from 33% to 100%.
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Fig. S13 (a) FTIR spectra of pure D2O, pure H2O and five samples prepared by random addition of 

H2O into D2O. (b) Determination of the H2O content in H2O-D2O mixtures by the FTIR reference 

method and our proposed methods.

Table S3 Analytical results for the determination of H2O content in total volume (%)

Sample no. FTIR
Colorimetric 

channel
Fluorescence 

channel
RGB

1 14.7 ± 0.1 13.7 ± 1.1 14.3 ± 1.3 --[a]

2 38.2 ± 0.2 38.7 ± 0.1 38.6 ± 1.9 35.9 ± 1.0

3 56.7 ± 0.2 59.2 ± 0.3 57.7 ± 2.0 53.0 ± 0.7

4 69.8 ± 0.3 67.8 ± 0.1 67.7 ± 0.1 62.0 ± 0.4

5 89.8 ± 0.1 89.8 ± 0.1 89.1 ± 0.6 91.0 ± 0.1

[a] The ratio of G/B obtained by taking picture of this sample was not within the linear range, so the H2O 

content calculation was not done.
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Table S4. Comparison of currently reported organic small-molecule optical sensors based on the acid-base response mechanism for 

distinguishing between H2O and D2O.

Sensor[a] Response Solvent LOD Application Ref

O N

O

O
NH

F

F

NIM-2F

Colorimetric Ratiometric DMSO 0.24 vol% -- 2

O O
H

O
H

O

NH2O

AF

Absorption and Fluorescence 
Dual Ratiometric

DMSO 0.08 vol% -- 2

O
H

N

O

O

O
H

O

N

O O
O

CF-D2O

Fluorescence Turn-off
DMSO 

(10 μM 0.33 vol%)
0.165 vol% -- 3

O O

HO

HO

ES

Colorimetric Ratiometric and 
Fluorescence Turn-off

DMSO -- -- 4

N

N

COOHHOOC

TPA-DP-COOH

Fluorescence Turn-off H2O
49.08 ppm
0.23 ppm -- 5

NI

HTI

OH

Absorption and Fluorescence 
Dual Ratiometric

DMSO 
(20 μM 0.2 vol%)

0.19 vol%
(H2O in D2O)

0.59 vol%
(D2O in H2O)

-- 6
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N

O

OH

I

Cy

Absorption and Fluorescence 
Dual Ratiometric

DMF 
(100 μM 5 vol%)

0.061 vol%
(H2O in D2O)
0.079 vol%

(D2O in H2O)

RGB 
colorimetry

This 
work

         [a] The full names of these sensors:

NIM-2F: (E)-6-(3,5-difluoro-4-hydroxystyryl)-2-(2-(dimethylamino)ethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione

              AF: 5-amino-3',6'-dihydroxy-3H-spiro[isobenzofuran-1,9'-xanthen]-3-one

              CF-D2O: 3'-hydroxy-6'-(4-(7-hydroxy-2-oxo-2H-chromene-3-carbonyl)piperazin-1-yl)-3H-spiro[isobenzofuran-1,9'-xanthen]-3-one

              ES: 6,7-dihydroxy-2H-chromen-2-one

              TPA-DP-COOH: 4-(4-(diphenylamino)phenyl)-2,6-dimethylpyridine-3,5-dicarboxylic acid

              HIT: (E)-2-(4-hydroxystyryl)-3,3-dimethyl-1-propyl-3H-indol-1-ium iodide
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Table S5 Comparison of currently reported optical sensors based on other response mechanism for distinguishing between H2O and D2O.

Sensor Name Type of system Mechanism Response LOD Ref

p-CPDs Carbon polymer dots O-H oscillator quenching Fluorescence Turn-off 0.10 vol % 7

Eu1:Tb5-PCM-22 MOF O-H oscillator quenching Ratiometric Fluorescence -- 8

SCU-UEu-1 MOF O-H oscillator quenching Ratiometric Fluorescence 1 vol% 9

Poly-Eu-2 MOF O-H oscillator quenching Fluorescence Turn-off 18.3 ppm 10

{[Tb(HL)(H2O)2]·

x(solv)}n

MOF O-H oscillator quenching Ratiometric Fluorescence 0.48 vol % 11

PT10 Organic polymers O-H oscillator quenching Phosphorescence Turn-off 0.1 vol% 12

TCPP
Purely organic small 

molecules
O-H oscillator quenching

ultraviolet−visible, Fluorescence 
and electrochemiluminescence 

Turn-on
0.29 nM 13

Cy
Purely organic small 

molecules
Acid-base response

Absorption and Fluorescence 
Dual Ratiometric

0.061 vol%  
(H2O in D2O) 
0.079 vol%  

(D2O in H2O)

This 
work
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Table S6. The advantages and disadvantages of representative D2O optical sensors.

Sensor Advantages Disadvantages

NIM-2F
naked-eye visualization, absorption ratiometric 

response
poor water-solubility, single channel response, 

insufficient detection sensitivity

AF
absorption/fluorescence dual-channel ratiometric 

response
poor water-solubility and naked-eye visualization, 

insufficient detection sensitivity

CF-D2O
water-solubility, two turn-on fluorescence signals 

response
single channel response, poor naked-eye 

visualization, insufficient detection sensitivity

ES
readily available sensor, absorption/fluorescence dual-

channel response, 
poor water-solubility and naked-eye visualization

TPA-DP-COOH brilliant water-solubility and sensitivity of detection
single channel response, poor naked-eye 

visualization

HIT
water-solubility, absorption/fluorescence dual-channel 

ratiometric response
insufficient naked-eye visualization and detection 

sensitivity

Cy
water-solubility, absorption/fluorescence dual-channel 

ratiometric response, naked-eye visualization
insufficient detection sensitivity
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