Supplementary Information

C–H amidation of 2-aryl azlactones under iridium(III) catalysis: access to chiral amino acids

Min Seo Park,[‡] Eunjae Chung,[‡] Neeraj Kumar Mishra, Sang Hoon Han, Sangil Han, Saegun Kim* and In Su Kim*

School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea

* Corresponding authors. E-mail: <u>ksk6696@skku.edu</u> (S.Kim), <u>insukim@skku.edu</u> (I.S.Kim)

List of the Contents

General methods	S3
General procedure and characterization data for the synthesis of 2-	aryl azlactones (1a–1t
and 5a–5e)	S4–S16
General procedure and characterization data for the amidation of 2	-aryl azlactones using
acyl azides (3a–3t, 4b–4k, and 6a–6e)	S17–S35
General procedure and characterization data for the transformation i	nto chiral amino acids
(9a and 9b) and racemic amino acid (9c)	\$36-\$39
Experimental procedure of gram-scale reaction of 1a	S40
General procedure and characterization data for the formation of	iridacycle-1a (CCDC
2162876)	S41

X-ray crystallographic data of compound 3a (CCDC 2154665) S42-S4	9
X-ray crystallographic data of iridacycle-1a (CCDC 2162876) S50-S6	0
¹ H, ¹³ C, and ¹⁹ F NMR spectra of all compounds S61–S130)
HRMS data of all compounds S131-S193	3

General methods

Commercially available reagents were used without additional purification, unless otherwise stated. Sealed tubes $(13 \times 100 \text{ mm}^2)$ were purchased from Fischer Scientific and dried in oven for overnight and cooled at room temperature prior to use. Thin layer chromatography was carried out using plates coated with Kieselgel 60 F₂₅₄ (Merck). For flash column chromatography, E. Merck Kieselgel 60 (230–400 mesh) was used. Nuclear magnetic resonance spectra (¹H and ¹³C NMR) were recorded on a Bruker Unity 400 spectrometers and 700 spectrometers in CDCl₃ solution and chemical shifts are reported as parts per million (ppm). Resonance patterns are reported with the notations s (singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). Coupling constants (*J*) are reported in hertz (Hz). IR spectra were recorded on a JASCO FT/IR-4600 spectrophotometer and are reported as cm⁻¹. High-resolution mass spectra (HRMS) were recorded on a JEOL JMS-600 spectrometer. Enantiomeric excess (ee %) was determined by analytical liquid chromatography (HPLC) with DAICEL CHIRALPAK[®] AD-H (4.6 × 250 mm) in comparison with racemic samples.

General procedure and characterization data for the synthesis of 2-aryl azlactones (1a–1t and 5a–5e)

To an oven-dried sealed tube charged with benzoic acid (10 mmol), 1-aminocyclopropane-1-carboxylic acid (11 mmol, 1.1 equiv), HOBt (13 mmol, 1.3 equiv), EDCI (15 mmol, 1.5 equiv), and DIPEA (30 mmol, 3 equiv) was added in DCM (50 mL) under air. The reaction mixture was allowed to stir for 12 h at room temperature. The reaction mixture was diluted with DCM (50 mL) and poured into saturated NaCl solution. Extractive workup with DCM (2 x 50 mL). The combined organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (*n*-hexanes/EtOAc = 30:1 to 15:1) to afford 2-phenyloxazol-5(4*H*)-ones (**1a–1t** and **5a–5e**).

5-(p-Tolyl)-6-oxa-4-azaspiro[2.4]hept-4-en-7-one (1a)

1.61 g (80%); white solid; mp = 101.1–103.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 2.42 (s, 3H), 1.88–1.82 (m, 2H), 1.81–1.75 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 178.8, 162.0, 143.1, 129.7, 127.3, 123.4, 48.3, 21.8, 19.7; IR (KBr) υ 3093, 2923, 1808, 1635, 1573, 1511, 1446, 1411, 1319, 1268, 1180, 1103, 1029, 1006, 971, 917, 863, 829 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₂H₁₁NO₂ [M]⁺ 201.0790, found 201.0787.

5-(4-Chlorophenyl)-6-oxa-4-azaspiro[2.4]hept-4-en-7-one (1b)

1.32 g (60%); white solid; mp = 121.3–123.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 1.90–1.85 (m, 2H), 1.83–1.78 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 178.3, 161.0, 138.7, 129.3, 128.69, 124.7, 48.5, 19.9; IR (KBr) υ 3104, 3085, 3062, 2927, 1801, 1731, 1631, 1596, 1565, 1488, 1403, 1311, 1268, 1087, 1033, 1002, 968, 914, 860, 840 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₁H₈CINO₂ [M]⁺ 221.0244, found 221.0240.

5-(4-(Trifluoromethyl)phenyl)-6-oxa-4-azaspiro[2.4]hept-4-en-7-one (1c)

1.45 g (57%); white solid; mp = 110.5–112.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.8 Hz, 2H), 7.77 (d, *J* = 8.8 Hz, 2H), 1.97–1.92 (m, 2H), 1.90–1.85 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 178.0, 160.7, 133.9 (q, *J*_{C-F} = 32.5 Hz), 129.5, 127.7, 125.5 (q, *J*_{C-F} = 4.0 Hz), 124.7 (q, *J*_{C-F} = 270.9 Hz), 48.7, 20.2; IR (KBr) v 2927, 2854, 1808, 1635, 1577, 1515, 1438, 1411, 1322, 1272, 1160, 1122, 1099, 1068, 1006, 971, 914, 856 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₂H₈F₃NO₂ [M]⁺ 255.0507, found 255.0509.

5-Phenyl-6-oxa-4-azaspiro[2.4]hept-4-en-7-one (1d)

599.0 mg (32%); white solid; mp = 152.0–154.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 7.2 Hz, 2H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.48 (t, *J* = 7.2 Hz, 2H), 1.90–1.84 (m, 2H), 1.83–1.77 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 178.6, 161.9, 132.5, 128.9, 127.4, 126.3, 48.4, 19.8; IR (KBr) υ 2923, 2854, 1789, 1631, 1577, 1492, 1450, 1322, 1268, 1180, 1103, 1033, 1006, 971, 921, 863 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₁H₉NO₂ [M]⁺ 187.0633, found 187.0634.

5-(m-Tolyl)-6-oxa-4-azaspiro[2.4]hept-4-en-7-one (1e)

1.25 g (62%); white solid; mp = 110.9–112.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.77–7.75 (m, 1H), 7.37–7.36 (m, 2H), 2.41 (s, 3H), 1.90–1.84 (m, 2H), 1.83–1.77 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 178.1, 162.1, 138.8, 133.3, 128.8, 127.8, 126.1, 124.6, 48.3, 21.4, 19.7; IR (KBr) υ 3008, 2927, 2854, 1793, 1724, 1627, 1577, 1481, 1457, 1430, 1303, 1276, 1199, 1110, 1037, 971, 921, 887 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₂H₁₁NO₂ [M]⁺ 201.0790, found 201.0788.

5-(3-Chlorophenyl)-6-oxa-4-azaspiro[2.4]hept-4-en-7-one (1f)

1.06 g (48%); white solid; mp = 113.8–116.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.42 (t, *J* = 8.0 Hz, 1H), 1.92–1.87 (m, 2H), 1.85–1.80 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 178.1, 160.7, 135.2, 132.5, 130.3, 127.9, 127.4, 125.4, 48.5, 20.1; IR (KBr) v 2927, 2854, 1793, 1724, 1627, 1573, 1481, 1461, 1427, 1303, 1276,

1199, 1110, 1033, 971, 921, 890 cm⁻¹; HRMS (quadrupole, EI) calcd for $C_{11}H_8CINO_2$ [M]⁺ 221.0244, found 221.0240.

5-(3-Bromophenyl)-6-oxa-4-azaspiro[2.4]hept-4-en-7-one (1g)

1.45 g (43%); white solid; mp = 111.4–114.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.36 (t, *J* = 8.0 Hz, 1H), 1.92–1.86 (m, 2H), 1.85–1.790 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 178.1, 160.6, 135.4, 130.5, 130.3, 128.1, 125.9, 123.0, 48.5, 20.1; IR (KBr) υ 2927, 2854, 1808, 1635, 1562, 1473, 1423, 1322, 1303, 1272, 1195, 1168, 1114, 1025, 971, 917, 871 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₁H₈BrNO₂ [M]⁺ 264.9738, found 264.9735.

5-(o-Tolyl)-6-oxa-4-azaspiro[2.4]hept-4-en-7-one (1h)

1h

1.33 g (63%); white solid; mp = 116.6–118.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.0 Hz, 1H), 7.40 (t, *J* = 8.0 Hz, 1H), 7.31–7.28 (m, 2H), 2.62 (s, 3H), 1.90–1.84 (m, 2H), 1.83–1.77 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 178.8, 162.0, 139.3, 131.9, 131.6, 129.5, 126.1, 125.1, 48.5, 22.1, 19.9; IR (KBr) υ 3097, 3023, 2985, 2927, 1789, 1623, 1569, 1488, 1457, 1427, 1322, 1261, 1095, 998, 979, 925, 860 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₂H₁₁NO₂ [M]⁺ 201.0790, found 201.0790.

5-(2-Fluorophenyl)-6-oxa-4-azaspiro[2.4]hept-4-en-7-one (1i)

656.6 mg (32%); white solid; mp = 134.2–135.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (td, *J* = 7.6, 2.0 Hz, 1H), 7.55–7.49 (m, 1H), 7.27–7.18 (m, 2H), 1.96–1.89 (m, 2H), 1.87–1.79 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 178.0, 161.1 (d, *J*_{C-F} = 258.8 Hz), 158.5 (d, *J*_{C-F} = 5.8 Hz), 134.0 (d, *J*_{C-F} = 8.7 Hz), 130.2, 124.5 (d, *J*_{C-F} = 3.6 Hz), 117.1 (d, *J*_{C-F} = 21.1 Hz), 114.7 (d, *J*_{C-F} = 9.8 Hz), 48.4, 20.2; IR (KBr) υ 3100, 3008, 2927, 1793, 1631, 1577, 1492, 1454, 1423, 1319, 1272, 1230, 1095, 1006, 975, 925, 863, 821 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₁H₈FNO₂ [M]⁺ 205.0539, found 205.0538.

5-(Naphthalen-2-yl)-6-oxa-4-azaspiro[2.4]hept-4-en-7-one (1j)

1.35 g (57%); white solid; mp = 160.1–161.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 8.02 (d, *J* = 8.4 Hz, 1H), 7.95–7.87 (m, 3H), 7.61–7.54 (m, 2H), 1.94–1.88 (m, 2H), 1.87–1.81 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 178.6, 162.0, 135.2, 132.8, 129.2, 128.9, 128.5, 128.3, 128.0, 127.1, 123.5, 123.1, 48.6, 19.9; IR (KBr) υ 3085, 3058, 3035, 3008, 1793, 1627, 1592, 1508, 1450, 1423, 1357, 1322, 1276, 1234, 1095, 1018, 968, 944, 921, 890, 829 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₅H₁₁NO₂ [M]⁺ 237.0790, found 237.0785.

5-(Pyren-1-yl)-6-oxa-4-azaspiro[2.4]hept-4-en-7-one (1k)

1.03 g (33%); yellow solid; mp = 241.7–243.3 °C; ¹H NMR (700 MHz, CDCl₃) δ 9.43 (d, J = 9.8 Hz, 1H), 8.60 (d, J = 8.4 Hz, 1H), 8.28 (t, J = 8.4 Hz, 2H), 8.25–8.18 (m, 3H), 8.10–8.06 (m, 2H), 2.08–2.06 (m, 2H), 1.94–1.92 (m, 2H); ¹³C NMR (175 MHz, CDCl₃) δ 178.6, 162.3, 134.1, 131.2, 130.6, 130.3, 129.8, 129.0, 127.4, 127.3, 126.7, 126.6, 126.5, 125.0, 124.9, 124.6, 124.3, 118.8, 48.9, 20.2; IR (KBr) υ 3043, 2919, 2854, 1793, 1608, 1538, 1511, 1461, 1384, 1322, 1253, 1238, 1199, 1091, 1064, 998, 971, 917, 840 cm⁻¹; HRMS (quadrupole, EI) calcd for C₂₁H₁₃NO₂ [M]⁺ 311.0946, found 311.0941.

5-(Benzo[d][1,3]dioxol-5-yl)-6-oxa-4-azaspiro[2.4]hept-4-en-7-one (11)

0.95 g (41%); white solid; mp = 143.3–145.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.4 Hz, 1H), 7.40 (s, 1H), 6.88 (d, *J* = 8.4 Hz, 1H), 6.05 (s, 2H), 1.85–1.80 (m, 2H), 1.78–1.73 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 178.6, 161.3, 151.3, 148.3, 122.9, 120.2, 108.6, 107.2, 102.0, 48.3, 19.6; IR (KBr) υ 3104, 3012, 2904, 1801, 1639, 1492, 1450, 1365, 1326, 1299, 1265, 1230, 1087, 1037, 1014, 975, 906, 844, 817 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₂H₉NO₄ [M]⁺ 231.0532, found 231.0530.

5-(1-Methyl-1*H*-indol-5-yl)-6-oxa-4-azaspiro[2.4]hept-4-en-7-one (1m)

1.37 g (57%); white solid; mp = 173.3–174.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.87 (dd, *J* = 8.8, 1.6 Hz, 1H), 7.38 (d, *J* = 8.8 Hz, 1H), 7.13 (d, *J* = 3.2 Hz, 1H), 6.58 (d, *J* = 3.2 Hz, 1H), 3.83 (s, 3H), 1.88–1.82 (m, 2H), 1.81–1.74 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 179.2, 163.0, 138.7, 130.5, 128.3, 121.5, 120.6, 117.3, 109.7, 102.6, 48.2, 33.2, 19.4; IR (KBr) υ 3097, 3004, 2923, 1789, 1708, 1627, 1565, 1488, 1454, 1423, 1319, 1272, 1241, 1180, 1149, 1087, 1010, 975, 917, 890, 848, 802 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₄H₁₂N₂O₂ [M]⁺ 240.0899, found 240.0899.

5-(Furan-3-yl)-6-oxa-4-azaspiro[2.4]hept-4-en-7-one (1n)

545.4 mg (31%); white solid; mp = 120.1–121.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.01– 7.98 (m, 1H), 7.50 (t, *J* = 2.0 Hz, 1H), 6.80 (dd, *J* = 2.4, 0.8 Hz, 1H), 1.85–1.79 (m, 2H), 1.78– 1.71 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 178.1, 157.1, 145.3, 144.6, 114.9, 108.2, 47.7, 19.5; IR (KBr) υ 3151, 3116, 2927, 1797, 1654, 1511, 1400, 1319, 1272, 1160, 1130, 1052, 975, 937, 917, 871, 829 cm⁻¹; HRMS (quadrupole, EI) calcd for C₂₁H₁₅NO₂ [M]⁺ 177.0426, found 177.0426.

5-(Thiophen-2-yl)-6-oxa-4-azaspiro[2.4]hept-4-en-7-one (10)

0.48 g (25%); white solid; mp = 99.6–101.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (dd, J = 3.6, 1.2 Hz, 1H), 7.56 (dd, J = 4.8, 1.6 Hz, 1H), 7.15 (dd, J = 5.2, 4.0 Hz, 1H), 1.89–1.83 (m, 2H), 1.82–1.75 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 178.0, 157.8, 131.1, 131.0, 128.9, 128.1, 48.2, 19.7; IR (KBr) υ 3120, 3077, 1797, 1623, 1515, 1419, 1365, 1303, 1272, 1226, 1091, 1045, 964, 914, 848 cm⁻¹; HRMS (quadrupole, EI) calcd for C₉H₇NO₂S [M]⁺ 193.0197, found 193.0198.

5-(Pyridin-4-yl)-6-oxa-4-azaspiro[2.4]hept-4-en-7-one (1p)

0.54 g (28%); white solid; mp = 190.5–192.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, J = 4.8 Hz, 2H), 7.82 (d, J = 6.0 Hz, 2H), 1.99–1.93 (m, 2H), 1.91–1.86 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 177.5, 160.2, 150.6, 133.7, 120.8, 48.9, 20.6; IR (KBr) υ 3097, 1801, 1646, 1592, 1558, 1538, 1415, 1400, 1330, 1229, 1272, 1110, 1087, 1018, 971, 921, 867, 836 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₀H₈N₂O₂ [M]⁺ 188.0586, found 188.0585.

5-(Prop-1-en-2-yl)-6-oxa-4-azaspiro[2.4]hept-4-en-7-one (1q)

0.44 g (30%); white solid; mp = 86.6–89.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 5.97–5.96 (m, 1H), 5.63–5.62 (m, 1H), 2.03 (s, 3H), 1.83–1.77 (m, 2H), 1.76–1.71 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 178.4, 162.7, 131.3, 123.5, 48.5, 19.7, 17.8; IR (KBr) υ 3093, 3008, 2935, 1797, 1735, 1643, 1592, 1454, 1342, 1319, 1276, 1157, 1060, 968, 929, 867 cm⁻¹; HRMS (quadrupole, EI) calcd for C₈H₉NO₂ [M]⁺ 151.0633, found 151.0634.

5-(Cyclohex-1-en-1-yl)-6-oxa-4-azaspiro[2.4]hept-4-en-7-one (1r)

0.54 g (28%); white solid; mp = 57.2–58.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.81–6.78 (m, 1H), 2.33–2.29 (m, 2H), 2.27–2.22 (m, 2H), 1.77–1.74 (m, 2H), 1.72–1.62 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 178.7, 162.6, 137.5, 125.6, 48.0, 25.8, 23.6, 21.8, 21.6, 19.3; IR (KBr) υ 3097, 3012, 2935, 2681, 1805, 1650, 1604, 1438, 1388, 1322, 1272, 1095, 1076, 998, 975, 921, 863 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₁H₁₃NO₂ [M]⁺ 191.0946, found 191.0945.

4-Isopropyl-2-(*p*-tolyl)oxazol-5(4*H*)-one (1s)

1.02 g (47%); white solid; mp = 51.1–53.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 4.30 (d, *J* = 4.4 Hz, 1H), 2.45 (s, 3H), 2.42–2.36 (m, 1H), 1.16 (d, *J* = 6.8 Hz, 3H), 1.04 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 178.0, 161.9, 143.6, 129.6, 128.0, 123.2, 70.7, 31.4, 21.8, 18.8, 17.6; IR (KBr) υ 2965, 21927, 1877, 1820, 1650, 1616, 1511, 1461, 1411, 1322, 1295, 1245, 1180, 1145, 1041, 1014, 944, 883, 829 cm⁻¹; HRMS (quadrupole, EI) calcd for C_{13H15}NO₂ [M]⁺ 217.1103, found 217.1103.

4-Methyl-2-(p-tolyl)oxazol-5(4H)-one (1t)

0.96 g (51%); white solid; mp = 77.8–80.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 4.43 (d, J = 7.6 Hz, 1H), 2.42 (s, 3H), 1.58 (d, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 179.3, 161.7, 143.6, 129.6, 127.9, 123.2, 61.1, 21.8, 17.1; IR (KBr) υ 3035, 2985, 2935, 1816, 1754, 1650, 1612, 1511, 1446, 1411, 1315, 1257, 1157, 1106, 1045, 995, 910, 875, 825 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₁H₁₁NO₂ [M]⁺ 189.0790, found 189.0787.

2-(7-Oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)phenyl acetate (5a)

1.35 g (55%); white solid; mp = 96.8–97.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.56 (td, *J* = 8.0, 1.6 Hz, 1H), 7.37 (td, *J* = 8.0, 1.6 Hz, 1H), 7.16 (dd, *J* = 8.0, 1.2 Hz, 1H), 2.29 (s, 3H), 1.86–1.83 (m, 2H), 1.81–1.78 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 177.9, 169.7, 159.0, 149.6, 133.4, 130.1, 126.5, 124.2, 119.4, 48.3, 21.2, 20.1; IR (KBr) υ 3016, 2935, 1808, 1766, 1635, 1492, 1450, 1369, 1315, 1268, 1191, 1087, 1006, 975, 914, 863, 821 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₃H₁₁NO₄ [M]⁺ 245.0688, found 245.0687.

5-((8*R*,9*S*,13*S*,14*S*)-13-Methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta [*a*]phenanthren-3-yl)-6-oxa-4-azaspiro[2.4]hept-4-en-7-one (5b)

2.21 g (61%); white solid; mp = 258.9–261.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.4 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 1H), 2.98–2.94 (m, 2H), 2.55–2.33 (m, 3H), 2.20–1.98 (m, 4H), 1.88–1.75 (m, 4H), 1.65–1.49 (m, 6H), 0.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.5, 178.7, 162.8, 144.8, 137.4, 127.8, 126.0, 124.7, 123.7, 50.6, 48.3, 48.0, 44.8, 37.9, 35.9, 31.6, 29.3, 26.3, 25.7, 21.7, 19.7, 13.9; IR (KBr) v 2931, 2873, 1805, 1731, 1631, 1604, 1569, 1496, 1415, 1373, 1330, 1311, 1265, 1218, 1172, 1087, 1037, 1010, 971, 887, 848 cm⁻¹; HRMS (quadrupole, EI) calcd for C₂₃H₂₅NO₃ [M]⁺ 363.1834, found 363.1834.

5-(4-(1-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)vinyl)phenyl)-6-oxa-4azaspiro[2.4]hept-4-en-7-one (5c)

2.32 g (56%); white solid; mp = 148.1–149.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.4 Hz, 2H), 7.38 (d, *J* = 8.4 Hz, 2H), 7.13 (s, 1H), 7.08 (s, 1H), 5.82 (s, 1H), 5.32 (s, 1H), 1.95 (s, 3H), 1.90–1.84 (m, 2H), 1.83–1.76 (m, 2H), 1.70 (s, 4H), 1.30 (s, 6H), 1.27 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 178.7, 161.8, 149.1, 145.2, 144.5, 142.5, 138.0, 132.8, 128.3, 128.2, 127.4, 127.1, 125.0, 117.0, 48.4, 35.3, 35.3, 34.1, 34.0, 32.1, 32.0, 20.1, 19.8; IR (KBr) υ 2958, 2923, 2861, 1808, 1743, 1635, 1500, 1457, 1407, 1365, 1319, 1268, 1234, 1091, 1029, 1002, 971, 910, 860 cm⁻¹; HRMS (quadrupole, EI) calcd for C₂₈H₃₁NO₂ [M]⁺ 413.2355, found 413.2351.

5-(4'-((1,7'-Dimethyl-2'-propyl-1*H*,3'*H*-[2,5'-bibenzo[d]imidazol]-3'-yl)methyl)-[1,1'biphenyl]-2-yl)-6-oxa-4-azaspiro[2.4]hept-4-en-7-one (5d)

2.49 mg (43%); white solid; mp = 95.9–98.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.81 (m, 2H), 7.55–7.51 (m, 2H), 7.45–7.41 (m, 2H), 7.38–7.29 (m, 4H), 7.27–7.25 (m, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 5.46 (s, 2H), 3.83 (s, 3H), 2.94 (t, *J* = 8.0 Hz, 2H), 2.77 (s, 3H), 1.92–1.83 (m, 2H), 1.61–1.48 (m, 4H), 1.05 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 178.2, 162.5, 156.7, 154.5, 141.6, 140.4, 136.6, 135.2, 131.7, 131.2, 131.1, 130.0, 129.7, 129.6, 129.4, 127.8, 126.1, 125.6, 123.9, 122.8, 122.7, 119.4, 109.7, 109.3, 47.9, 47.2, 32.0, 30.0, 22.0, 19.3, 17.0, 14.2; IR (KBr) v 3043, 2962, 2873, 1805, 1739, 1639, 1511, 1450, 1407, 1319, 1272, 1157, 1091, 1056, 1002, 971, 914, 860 cm⁻¹; HRMS (quadrupole, EI) calcd for C₃₇H₃₃N₅O₂ [M]⁺ 579.2634, found 579.2629.

(*S*)-2-(3-Ethoxy-4-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)phenyl)-*N*-(3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl)acetamide (5e)

2.12 g (41%); brown solid; mp = 149.7–150.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.0 Hz, 1H), 7.23–7.17 (m, 2H), 7.08–7.03 (m, 2H), 6.90–6.88 (m, 2H), 6.73 (d, J = 8.8 Hz, 1H), 5.37 (q, J = 8.4 Hz, 1H), 4.10–4.01 (m, 2H), 3.55 (s, 2H), 2.92 (s, 2H), 2.62 (s, 2H), 1.90–1.83 (m, 2H), 1.82–1.75 (m, 2H), 1.73–1.70 (m, 2H), 1.62–1.50 (m, 2H), 1.40 (t, J = 6.8 Hz, 4H), 0.91 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 179.0, 168.7, 160.6, 158.4, 152.6, 141.3, 138.7, 131.1, 128.1, 127.8, 125.2, 123.0, 121.3, 114.7, 114.0, 64.9, 50.0, 48.2, 46.8, 44.4, 26.9, 25.4, 24.2, 22.9, 22.6, 19.8, 14.6; IR (KBr) υ 3293, 2931, 2865, 2800, 1801, 1639, 1535, 1492, 1430, 1384, 1303, 1268, 1253, 1168, 1103, 1037, 1002, 975, 917, 860 cm⁻¹; HRMS (quadrupole, FAB) calcd for C₃₁H₄₀N₃O₄ [M+H]⁺ 518.3019, found 518.3019.

General procedure and characterization data for the amidation of 2-aryl azlactones using acyl azides (3a–3t, 4b–4k, and 6a–6e)

To an oven-dried sealed tube charged with 2-aryl azlactones (0.2 mmol, 100 mol %), $[IrCp*Cl_2]_2$ (4.0 mg, 0.005 mmol, 2.5 mol %), AgNTf₂ (7.8 mg, 0.02 mmol, 10 mol %), LiOAc (4.0 mg, 0.06 mmol, 30 mol %), and acyl azides (0.3 mmol, 150 mol %) was added DCE (1 mL) under air at room temperature. The reaction mixture was allowed to stir at 50 °C for 24 h. The reaction mixture was cooled to room temperature, diluted with EtOAc (3 mL) and concentrated in vacuo. The residue was purified by flash column chromatography (*n*-hexane:EtOAc) to afford the corresponding products **3a–3t**, **4b–4k**, and **6a–6e**.

N-(5-Methyl-2-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)phenyl)benzamide (3a)

54.6 mg (85%); white solid; mp = 140.7–141.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.92 (s, 1H), 8.82 (s, 1H), 7.93 (d, *J* = 7.2 Hz, 2H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 6.99 (d, *J* = 8.4 Hz, 1H), 2.45 (s, 3H), 1.86 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 176.6, 166.0, 162.7, 145.2, 140.2, 135.2, 132.1, 128.8, 128.7, 127.5, 124.1, 120.8, 109.3, 47.6, 22.4, 20.0; IR (KBr) v 3232, 3104, 2923, 1812, 1677, 1619, 1577, 1542, 1500, 1446, 1415, 1326, 1268, 1191, 1157, 1106, 1079, 1006, 979, 925, 890, 856, 821 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₉H₁₆N₂O₃ [M]⁺ 320.1161, found 320.1163.

N-(5-Chloro-2-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)phenyl)benzamide (3b)

62.8 mg (92%); white solid; mp = 215.2–216.8 °C; ¹H NMR (700 MHz, CDCl₃) δ 11.98 (s, 1H), 9.06 (d, J = 2.1 Hz, 1H), 7.90 (d, J = 7.0 Hz, 2H), 7.81 (d, J = 8.4 Hz, 1H), 7.55 (t, J = 7.0 Hz, 1H), 7.46 (t, J = 8.4 Hz, 2H), 7.14 (dd, J = 8.4, 2.1 Hz, 1H), 1.90–1.85 (m, 2H), 1.93–1.88 (m, 4H); ¹³C NMR (175 MHz, CDCl₃) δ 175.8, 166.0, 162.1, 141.0, 140.2, 134.7, 132.3, 129.8, 128.8, 127.5, 123.3, 120.4, 110.1, 47.7, 20.2; IR (KBr) v 3178, 3116, 3085, 2923, 1816, 1677, 1616, 1577, 1531, 1496, 1411, 1322, 1276, 1245, 1103, 1076, 1006, 975, 921, 852 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₈H₁₃ClN₂O₃ [M]⁺ 340.0615, found 340.0615.

N-(2-(7-Oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)-5-(trifluoromethyl)phenyl)benzamide (3c)

60.7 mg (81%); white solid; mp = 185.4–187.7 °C; ¹H NMR (700 MHz, CDCl₃) δ 12.04 (s, 1H), 9.35 (s, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 7.0 Hz, 2H), 7.56 (t, J = 7.0 Hz, 1H), 7.47 (t, J = 8.4 Hz, 2H), 7.42 (d, J = 7.7 Hz, 1H), 1.98–1.96 (m, 2H), 1.95–1.94 (m, 2H); ¹³C NMR (175 MHz, CDCl₃) δ 175.5, 166.1, 161.9, 140.6, 135.2 (q, J_{C-F} = 3.9 Hz), 134.6, 132.5, 129.5, 128.8, 127.5, 123.4 (q, J_{C-F} = 270.9 Hz), 119.4 (q, J_{C-F} = 3.9 Hz), 117.4 (q, J_{C-F} = 3.9 Hz), 114.2, 47.9, 20.5; IR (KBr) υ 3131, 3062, 2923, 2854, 1816, 1670, 1612, 1581, 1550, 1504, 1423, 1322, 1280, 1226, 1172, 1133, 1072, 1002, 917, 894, 833 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₉H₁₃F₃N₂O₃ [M]⁺ 374.0878, found 374.0879.

N-(2-(7-Oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)phenyl)benzamide (3d)

47.8 mg (78%); white solid; mp = 165.9–167.1 °C; ¹H NMR (700 MHz, CDCl₃) δ 11.98 (s, 1H), 8.99 (d, *J* = 8.4 Hz, 1H), 7.96–7.84 (m, 3H), 7.60 (t, *J* = 8.4 Hz, 1H), 7.56 (t, *J* = 7.7 Hz, 1H), 7.48 (t, *J* = 8.4 Hz, 2H), 7.20 (t, *J* = 7.7 Hz, 1H), 1.93–1.91 (m, 2H), 1.90–1.88 (m, 2H); ¹³C NMR (175 MHz, CDCl₃) δ 176.3, 166.1, 162.7, 140.3, 135.2, 134.0, 132.1, 129.0, 128.7, 127.5, 123.1, 120.4, 111.9, 47.8, 20.1; IR (KBr) v 3255, 2923, 2854, 1816, 1677, 1616, 1585, 1546, 1500, 1450, 1299, 1268, 1168, 1106, 1083, 1006, 925, 871 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₈H₁₄N₂O₃ [M]⁺ 306.1004, found 306.1002.

N-(4-Methyl-2-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)phenyl)benzamide (3e)

55.8 mg (87%); white solid; mp = 206.5–207.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.65 (s, 1H), 8.66 (d, *J* = 8.8 Hz, 1H), 7.74–7.71 (m, 2H), 7.52 (s, 1H), 7.35–7.31 (m, 1H), 7.26 (t, *J* = 7.6 Hz, 2H), 7.19 (d, *J* = 8.4 Hz, 1H), 2.18 (s, 3H), 1.70–1.68 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 176.4, 165.7, 162.6, 137.9, 135.2, 134.6, 132.7, 131.9, 129.0, 128.6, 127.4, 120.3, 111.6, 47.7, 20.8, 20.1; IR (KBr) v 3112, 2919, 2854, 1808, 1731, 1677, 1612, 1538, 1500, 1454, 1407, 1303, 1268, 1203, 1079, 1033, 975, 917, 840 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₉H₁₆N₂O₃ [M]⁺ 320.1161, found 320.1160.

N-(4-Chloro-2-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)phenyl)benzamide (3f)

53.2 mg (78%); white solid; mp = 205.8–206.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.89 (s, 1H), 8.96 (d, *J* = 8.8 Hz, 1H), 7.92–7.90 (m, 3H), 7.58–7.45 (m, 4H), 1.96–1.89 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 165.9, 161.7, 138.8, 134.8, 133.7, 132.3, 128.8, 128.5, 128.2, 127.5, 121.8, 113.0, 47.9, 20.4; IR (KBr) υ 3170, 3106, 3023, 2911, 1809, 1657, 1601, 1595, 1566, 1480, 1401, 1392, 1302, 1216, 1183, 1176, 1096, 978, 925, 849 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₈H₁₃ClN₂O₃ [M]⁺ 340.0615, found 340.0612.

N-(4-Bromo-2-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)phenyl)benzamide (3g)

54.8 mg (71%); white solid; mp = 242.3–243.8 °C; ¹H NMR (700 MHz, CDCl₃) δ 11.89 (s, 1H), 8.91 (d, *J* = 8.4 Hz, 1H), 8.05 (d, *J* = 2.1 Hz, 1H), 7.91 (d, *J* = 7.0 Hz, 2H), 7.67 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.56 (t, *J* = 7.0 Hz, 1H), 7.47 (t, *J* = 8.4 Hz, 2H), 1.95–1.90 (m, 4H); ¹³C NMR (175 MHz, CDCl₃) δ 175.6, 166.0, 161.7, 139.3, 136.6, 134.9, 132.3, 131.4, 128.8, 127.5, 122.0, 115.5, 113.4, 47.9, 20.3; IR (KBr) υ 3112, 2923, 2854, 1816, 1727, 1681, 1612, 1573, 1527, 1496, 1388, 1295, 1257, 1099, 1076, 1014, 975, 921, 879, 840 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₈H₁₃BrN₂O₃ [M]⁺ 384.0110, found 384.0108.

N-(3-Methyl-2-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)phenyl)benzamide (3h)

58.4 mg (91%); white solid; mp = 164.4–165.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.52 (s, 1H), 8.62 (d, *J* = 8.0 Hz, 1H), 7.84 (d, *J* = 7.2 Hz, 2H), 7.50 (t, *J* = 7.2 Hz, 1H), 7.44–7.37 (m, 3H), 6.98 (d, *J* = 7.2 Hz, 1H) 2.56 (s, 3H), 1.84 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 176.8, 165.6, 163.1, 139.7, 139.6, 135.3, 132.6, 132.0, 128.7, 127.3, 126.9, 118.9, 113.3, 46.8, 23.2, 20.1; IR (KBr) υ 3070, 2981, 2931, 1812, 1724, 1670, 1600, 1550, 1492, 1454, 1326, 1292, 1253, 1184, 1114, 1091, 1033, 1002, 983, 921, 867 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₉H₁₆N₂O₃ [M]⁺ 320.1161, found 320.1161.

N-(3-Fluoro-2-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)phenyl)benzamide (3i)

41.6 mg (64%); white solid; mp = 176.0–178.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.96 (s, 1H), 8.75 (d, *J* = 8.8 Hz, 1H), 7.90 (d, *J* = 7.6 Hz, 2H), 7.57–7.46 (m, 4H), 6.95–6.91 (m, 1H), 1.93–1.90 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 176.3, 166.0, 161.6 (d, *J*_{C-F} = 258.1 Hz), 160.9, 141.1, 135.0, 134.6 (d, *J*_{C-F} = 10.5 Hz), 132.3, 128.8, 127.5, 116.3 (d, *J*_{C-F} = 3.6 Hz), 111.1 (d, *J*_{C-F} = 22.1 Hz), 102.2, 46.6, 20.2; IR (KBr) υ 3247, 3097, 2927, 1812, 1731, 1677, 1608, 1581, 1550, 1465, 1299, 1268, 1184, 1110, 1076, 1006, 979, 925, 867 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₈H₁₃FN₂O₃ [M]⁺ 324.0910, found 324.0906.

N-(3-(7-Oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)naphthalen-2-yl)benzamide (3j)

56.3 mg (79%); white solid; mp = 210.6–211.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.9 (s, 1H), 9.43 (s, 1H), 7.98 (d, *J* = 7.6 Hz, 2H), 7.88 (dd, *J* = 13.6, 8.4 Hz, 2H), 7.62–7.54 (m, 2H), 7.51–7.44 (m, 3H), 1.94 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 166.0, 162.6, 136.1, 135.4, 135.2, 132.0, 131.2, 129.4, 128.9, 128.7, 128.7, 128.0, 127.4, 126.0, 117.7, 112.5, 48.0, 20.2; IR (KBr) υ 3262, 3104, 3058, 2923, 1816, 1677, 1631, 1604, 1550, 1484, 1442, 1361, 1334, 1307, 1272, 1076, 991, 921, 894, 752 cm⁻¹; HRMS (quadrupole, EI) calcd for C₂₂H₁₆N₂O₃ [M]⁺ 356.1161, found 356.1157.

N-(1-(7-Oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)pyren-2-yl)benzamide (3k)

44.0 mg (51%); yellow solid; mp = 181.4–182.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.77 (s, 1H), 9.56 (s, 1H), 8.62 (d, *J* = 9.6 Hz, 1H), 8.20–7.96 (m, 8H), 7.61–7.51 (m, 3H), 2.00–1.98 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 177.0, 165.8, 163.2, 137.0, 135.4, 134.8, 132.3, 132.2, 131.0, 130.7, 130.5, 129.7, 128.8, 127.6, 127.4, 126.9, 126.6, 126.2, 124.8, 123.9, 121.4, 117.4, 107.7, 47.3, 20.4; IR (KBr) υ 3050, 2923, 2854, 1816, 1724, 1681, 1596, 1558, 1469, 1376, 1330, 1299, 1268, 1184, 1095, 1072, 1002, 921, 879, 829 cm⁻¹; HRMS (quadrupole, EI) calcd for C₂₈H₁₈N₂O₃ [M]⁺ 430.1317, found 430.1314.

N-(6-(7-Oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)benzo[d][1,3]dioxol-5-yl)benzamide (31)

53.3 mg (76%); white solid; mp = 174.1–176.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.76 (s, 1H), 7.95 (d, *J* = 7.6 Hz, 2H), 7.56–7.44 (m, 4H), 6.76 (d, *J* = 8.4 Hz, 1H), 6.14 (s, 2H), 1.79–1.70 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 176.6, 164.0, 161.7, 152.5, 141.1, 133.6, 132.3, 128.7, 127.7, 124.4, 121.5, 110.7, 105.1, 102.4, 47.7, 19.8; IR (KBr) v 3282, 3062, 2904, 1812, 1689, 1635, 1600, 1527, 1465, 1303, 1268, 1160, 1114, 1049, 1025, 979, 925, 875 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₉H₁₄N₂O₅ [M]⁺ 350.0903, found 350.0901.

N-(1-Methyl-5-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)-1H-indol-6-yl)benzamide (3m)

36.7 mg (51%); white solid; mp = 233.5–235.1 °C; ¹H NMR (500 MHz, CDCl₃) δ 12.21 (s, 1H), 9.04 (s, 1H), 8.24 (s, 1H), 7.99 (d, *J* = 7.0 Hz, 2H), 7.54 (t, *J* = 7.5 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.09 (d, *J* = 3.0 Hz, 1H), 6.54 (d, *J* = 3.0 Hz, 1H), 3.82 (s, 3H), 1.87–1.84 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 146.8, 165.9, 163.5, 139.2, 134.6, 131.8, 130.9, 128.6, 127.4, 123.9, 123.1, 120.5, 105.7, 102.6, 101.1, 47.6, 33.2, 19.6; IR (KBr) v 3239, 3104, 2923, 1808, 1735, 1700, 1666, 1604, 1535, 1461, 1376, 1353, 1303, 1268, 1180, 1079, 979, 921, 860 cm⁻¹; HRMS (quadrupole, EI) calcd for C₂₁H₁₇N₃O₃ [M]⁺ 359.1270, found 359.1270.

N-(3-(7-Oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)furan-2-yl)benzamide (3n)

16.1 mg (38%); white solid; mp = 153.8–155.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.12 (s, 1H), 8.06 (s, 1H), 7.50–7.46 (m, 2H), 7.30 (t, *J* = 8.0 Hz. 2H), 7.08 (t, *J* = 7.6 Hz, 1H), 6.72 (s, 1H) 1.66–1.61 (m, 2H), 1.14–1.09 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 164.8, 164.8, 145.9, 144.3, 138.0, 129.0, 124.5, 121.7, 120.2, 108.4, 36.6, 16.3; IR (KBr) v 3293, 2923, 2854, 1646, 1596, 1504, 1438, 1326, 1238, 1168, 1079, 1018, 941, 875, 825 cm⁻¹; HRMS (quadrupole, EI) calcd for C₂₁H₁₈N₂O₅ [M]⁺ 296.0797, found 296.0796.

N-(2-(7-Oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)thiophen-3-yl)benzamide (30)

28.8 mg (46%); white solid; mp = 209.6–211.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.13 (s, 1H), 8.34 (d, *J* = 5.2 Hz, 1H), 7.93 (d, *J* = 7.2Hz, 2H), 7.60–7.47 (m, 4H), 1.85 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 176.3, 164.5, 159.2, 143.1, 134.0, 132.4, 130.7, 128.9, 127.5, 122.9, 106.9, 47.5, 19.9; IR (KBr) υ 3729, 3698, 3625, 3598, 2919, 1805, 1673, 1608, 1581, 1407, 1292, 1234, 1087, 971, 890 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₆H₁₂N₂O₃S [M]⁺ 312.0569, found 312.0566.

(Z)-N-(2-(7-Oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)prop-1-en-1-yl)benzamide (3q)

27.5 mg (51%); white solid; mp = 148.6–151.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.39 (d, *J* = 11.2Hz, 1H), 7.84 (dd, *J* = 8.4, 1.2Hz, 2H), 7.62–7.59 (m, 1H), 7.56 (dt, *J* = 7.2, 1.6Hz, 1H), 7.50–7.46 (m, 2H), 2.03 (d, *J* = 1.2Hz, 3H), 1.83–1.80 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 177.3, 164.5, 164.2, 132.9, 132.7, 132.4, 128.9, 127.6, 101.1, 47.4, 20.0, 15.6; IR (KBr) v 3243, 3066, 2923, 2854, 1805, 1677, 1646, 1577, 1527, 1488, 1446, 1357, 1322, 1280, 1241, 1203, 1160, 1052, 979, 925, 890, 852 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₅H₁₄N₂O₃ [M]⁺ 270.1004, found 270.1001.

N-(2-(7-Oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)cyclohexan-1-yl)benzamide (3r)

27.2 mg (44%); white solid; mp = 164.9–166.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 12.15 (s, 1H), 7.87 (d, *J* = 7.2 Hz, 2H), 7.53 (dt, *J* = 7.2, 1.6 Hz, 1H), 7.43 (t, *J* = 8.0 Hz, 2H), 3.19–3.15 (m, 2H), 2.48–2.44 (m, 2H), 1.80–1.77 (m, 2H), 1.75–1.68 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 177.5, 165.6, 164.3, 149.4, 135.1, 132.1, 128.6, 127.8, 101.2, 47.1, 28.6, 24.0, 21.9, 21.6, 19.6; IR (KBr) v 2935, 2857, 1805, 1681, 1631, 1581, 1531, 1492, 1268, 1184, 1160, 1079, 1029, 991, 925, 898, 856 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₈H₁₈N₂O₃ [M]⁺ 310.1317, found 310.1315.

N-(2-(4-Isopropyl-5-oxo-4,5-dihydrooxazol-2-yl)-5-methylphenyl)benzamide (3s)

43.8 mg (65%); white solid; mp = 102.6–105.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 12.30 (s, 1H), 8.88 (s, 1H), 8.05 (d, *J* = 8.8 Hz, 2H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.48 (t, *J* = 8.0 Hz, 2H), 7.00 (d, *J* = 8.0 Hz, 1H), 4.42 (d, *J* = 4.8 Hz, 1H), 2.47–2.40 (m, 4H), 1.21 (d, *J* = 6.8 Hz, 3H), 0.98 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 166.2, 163.1, 145.6, 140.9, 135.1, 132.1, 129.7, 128.7, 127.7, 124.0, 120.9, 108.7, 70.3, 31.5, 22.4, 19.5, 17.5; IR (KBr) υ 3235, 2965, 2923, 1828, 1681, 1627, 1581, 1542, 1450, 1419, 1334, 1280, 1180, 1130, 1095, 1033, 944, 871, 821 cm⁻¹; HRMS (quadrupole, EI) calcd for C₂₀H₂₀N₂O₃ [M]⁺ 336.1474, found 336.1469.

N-(5-Methyl-2-(4-methyl-5-oxo-4,5-dihydrooxazol-2-yl)phenyl)benzamide (3t)

26.0 mg (42%); white solid; mp = 103.1–105.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 12.23 (s, 1H), 8.84 (s, 1H), 8.02 (d, *J* = 7.6 Hz, 2H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.55–7.46 (m, 3H), 6.98 (d, *J* = 8.0 Hz, 1H), 4.57 (q, *J* = 7.6 Hz, 1H), 2.44 (s, 3H), 1.63 (d, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.9, 166.1, 162.8, 145.6, 140.8, 135.1, 132.1, 129.6, 128.8, 127.7, 124.0, 120.9, 108.8, 60.4, 22.4, 17.2; IR (KBr) v 3232, 3112, 2927, 2857, 1824, 1681, 1627, 1581, 1542, 1446, 1419, 1322, 1276, 1172, 1145, 1110, 998, 917, 890, 863 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₈H₁₆N₂O₃ [M]⁺ 308.1161, found 308.1160.

4-Methyl-N-(5-methyl-2-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)phenyl)benzamide (4b)

56.9 mg (85%); white solid; mp = 225.6–227.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.85 (s, 1H), 11.80 (s, 1H), 7.80 (d, *J* = 8.0 Hz, 2H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.24–7.22 (m, 2H), 6.95 (d, *J* = 8.0 Hz, 1H), 2.42 (s, 3H), 2.39 (s, 3H), 1.85–1.83 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 176.5, 165.9, 162.6, 145.1, 142.6, 140.3, 132.4, 129.3, 128.8, 127.5, 123.9, 120.7, 109.2, 47.6, 22.3, 21.6, 19.9; IR (KBr) v 3259, 2919, 2861, 1812, 1735, 1666, 1619, 1577, 1546, 1511, 1415, 1322, 1272, 1187, 1087, 1006, 975, 921, 887, 856 cm⁻¹; HRMS (quadrupole, EI) calcd for C₂₀H₁₈N₂O₃ [M]⁺ 334.1317, found 334.1318.

4-Methoxy-N-(5-methyl-2-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)phenyl)benzamide (4c)

60.3 mg (86%); white solid; mp = 225.6–227.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.83 (s, 1H), 8.82 (s, 1H), 7.91 (d, *J* = 8.8 Hz, 2H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.00–6.94 (m, 3H), 3.88 (s, 3H), 2.45 (s, 3H), 1.89–1.87 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 176.6, 165.6, 162.7, 162.7, 145.1, 140.4, 129.4, 128.8, 127.5, 123.8, 120.7, 113.9, 109.2, 55.6, 47.7, 22.4, 19.9; IR (KBr) υ 3262, 2923, 2854, 1805, 1666, 1616, 1581, 1511, 1415, 1322, 1257, 1184, 1087, 1006, 975, 925, 887, 856 cm⁻¹; HRMS (quadrupole, EI) calcd for C₂₀H₁₈N₂O₄ [M]⁺ 350.1267, found 350.1268.

N-(5-Methyl-2-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)phenyl)-4-(trifluoromethyl) benzamide (4d)

49.8 mg (64%); white solid; mp = 178.3–180.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 12.03 (s, 1H), 8.80 (s, 1H), 8.05 (d, *J* = 8.0 Hz, 2H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.74 (d, *J* = 8.4 Hz, 2H), 7.05 (d, *J* = 8.8 Hz, 1H), 2.47 (s, 3H), 1.93–1.84 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 164.5, 162.8, 145.3, 139.7, 138.5, 133.7 (q, *J*_{C-F} = 32.5 Hz), 129.0, 127.9, 125.8 (d, *J*_{C-F} = 3.6 Hz), 124.6, 123.7 (d, *J*_{C-F} = 271.2 Hz), 120.9, 109.5, 47.6, 22.4, 20.0; IR (KBr) υ 3228, 3112, 2923, 2857, 1808, 1685, 1619, 1581, 1546, 1446, 1419, 1326, 1295, 1272, 1160, 1110, 1064, 1006, 975, 921, 894, 856 cm⁻¹; HRMS (quadrupole, EI) calcd for C₂₀H₁₅F₃N₂O₃ [M]⁺ 388.1035, found 388.1032.

3-Methyl-N-(5-methyl-2-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)phenyl)benzamide (4e)

53.5 mg (80%); white solid; mp = 182.7–184.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.89 (s, 1H), 8.83 (s, 1H), 7.79–7.73 (m, 3H), 7.32 (d, *J* = 4.8 Hz, 2H), 6.99 (d, *J* = 8.0 Hz, 1H), 2.44 (s, 3H), 2.41 (s, 3H), 1.87 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 176.5, 166.0, 162.6, 145.1, 140.2, 138.3, 135.1, 132.7, 128.8, 128.6, 128.0, 124.8, 124.0, 120.7, 109.2, 47.6, 22.3, 21.5, 19.9; IR (KBr) v 3100, 2919, 2857, 1808, 1673, 1619, 1577, 1546, 1419, 1326, 1292, 1268, 1083, 1037,

1006, 979, 921, 890, 863 cm⁻¹; HRMS (quadrupole, EI) calcd for $C_{20}H_{18}N_2O_3$ [M]⁺ 334.1317, found 334.1318.

3,4-Dimethoxy-*N*-(5-methyl-2-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)phenyl) benzamide (4f)

63.2 mg (83%); white solid; mp = 194.4–196.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.81 (s, 1H), 8.81 (s, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 2.0 Hz, 1H), 7.47 (d, *J* = 8.4, 2.0 Hz, 1H), 7.00 (d, *J* = 7.2 Hz, 1H), 6.87 (d, *J* = 8.4 Hz, 1H), 3.96 (s, 6H), 2.46 (s, 3H), 1.90–1.87 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 176.5, 165.7, 162.8, 152.4, 149.3, 145.1, 140.3, 128.9, 127.9, 123.9, 120.8, 120.0, 111.6, 110.2, 109.3, 56.3, 56.2, 47.7, 22.4, 19.9; IR (KBr) v 3270, 2927, 2846, 1805, 1670, 1619, 1581, 1515, 1446, 1415, 1311, 1265, 1226, 1176, 1087, 1014, 983, 925, 867, 821 cm⁻¹; HRMS (quadrupole, EI) calcd for C₂₁H₂₀N₂O₅ [M]⁺ 380.1372, found 380.1368.

2-Fluoro-N-(5-methyl-2-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)phenyl)benzamide (4g)

43.2 mg (63%); white solid; mp = 183.2–185.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.92 (s, 1H), 8.80 (s, 1H), 8.02 (td, *J* = 8.0, 2.0 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.53–7.48 (m, 1H), 7.28 (td, *J* = 8,0, 1.2Hz, 1H), 7.16–7.11 (m, 1H), 7.04–7.01 (m, 1H), 2.45 (s, 3H), 1.85–1.82 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 177.0, 162.6 (d, *J*_{C-F} = 2.2Hz), 161.5 (d, *J*_{C-F} = 52.7Hz), 158.8, 144.7, 139.6, 133.6 (d, *J*_{C-F} = 8.8Hz), 131.9 (d, *J*_{C-F} = 2.3Hz), 128.8, 124.8 (d, *J*_{C-F} = 3.6Hz), 124.5, 121.8, 116.3 (d, *J*_{C-F} = 23.3Hz), 109.9, 47.8, 22.3, 19.9; IR (KBr) v 3231, 3081, 1814, 1679, 1649, 1632, 1619, 1582, 1544, 1454, 1415, 1391, 1300, 1267, 1009, 980, 925, 860, 819, 753 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₉H₁₅FN₂O₃ [M]⁺ 338.1067, found 338.1065.

N-(5-Methyl-2-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)phenyl)-2-naphthamide (4h)

54.1 mg (73%); white solid; mp = 219.6–220.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 12.13 (s, 1H), 8.90 (s, 1H), 8.46 (s, 1H), 8.03 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.94–7.83 (m, 3H), 7.62–7.56 (m, 2H), 7.03 (d, *J* = 8.0 Hz, 1H), 2.49 (s, 3H), 1.94–1.92 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 176.5, 166.1, 162.8, 145.3, 140.3, 132.8, 132.5, 129.0, 128.6, 128.6, 128.4, 128.2, 128.1, 128.0, 127.1, 124.1, 124.0, 120.8, 109.3, 47.7, 22.4, 20.0; IR (KBr) 3262, 3054, 2923, 2854, 1808, 1739, 1670, 1619, 1581, 1546, 1419, 1299, 1268, 1230, 1203, 1130, 1079, 1006, 979, 925, 863 cm⁻¹; HRMS (quadrupole, EI) calcd for C₂₃H₁₈N₂O₃ [M]⁺ 370.1317, found 370.1314.

N-(5-Methyl-2-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)phenyl)cinnamamide (4i)

53.4 mg (77%); white solid; mp = 177.3–179.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.33 (s, 1H), 8.74 (s, 1H), 7.78 (d, *J* = 4.8 Hz, 1H), 7.68 (d, *J* = 8.8 Hz, 1H), 7.52–7.51 (m, 2H), 7.42–7.38 (m, 3H), 6.98 (d, *J* = 4.8 Hz, 1H), 6.43 (d, *J* = 8.8 Hz, 1H), 2.44 (s, 3H), 1.94–1.91 (m, 2H), 1.90–1.87 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 176.5, 164.7, 162.5, 145.0, 141.9, 140.1, 134.7, 130.2, 129.0, 128.8, 128.0, 124.0, 122.1, 120.9, 109.0, 47.7, 22.3, 20.1; IR (KBr) υ 3235, 3104, 2923, 1808, 1677, 1619, 1577, 1542, 1446, 1419, 1326, 1261, 1191, 1145, 1091, 1006, 975, 921, 863 cm⁻¹; HRMS (quadrupole, EI) calcd for C₂₁H₁₈N₂O₃ [M]⁺ 346.1317, found 346.1316.

N-(5-Methyl-2-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)phenyl)thiophene-2-carboxamide (4j)

42.5 mg (65%); white solid; mp = 162.5–164.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.88 (s, 1H), 8.72 (s, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.61–7.54 (m, 2H), 7.11 (dd, *J* = 4.0, 5.2 Hz, 1H), 6.99 (d, *J* = 8.0 Hz, 1H), 2.43 (s, 3H), 1.95–1.86 (m, 4H); ¹³C NMR (175 MHz, CDCl₃) δ 176.5, 162.6, 160.5, 145.1, 140.4, 139.9, 131.2, 128.9, 128.8, 127.8, 124.1, 120.8, 109.1, 47.7, 22.3, 20.0; IR (KBr) υ 3089, 2923, 1812, 1716, 1662, 1619, 1577, 1546, 1415, 1353, 1292, 1276, 1168, 1099, 1037, 1010, 979, 925, 875, 836 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₇H₁₄N₂O₃S [M]⁺ 326.0725, found 326.0726.

N-(5-Methyl-2-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)phenyl)hexanamide (4k)

15.1 mg (24%); yellow solid; mp = 74.1–76.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.0 (s, 1H), 8.62 (s, 1H), 7.76 (d, *J* = 8.4 Hz, 1H), 6.95 (d, *J* = 8.4 Hz, 1H), 2.41 (s, 3H), 2.36 (t, *J* = 8.0 Hz, 2H) 1.84 (brs, 4H), 1.75–1.67 (m, 2H), 1.38–1.32 (m, 4H), 0.91 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.7, 172.4, 162.4, 144.9, 140.0, 128.7, 123.8, 120.7, 108.8, 47.7, 38.7, 31.4, 25.3, 22.5, 22.3, 20.0, 14.0; IR (KBr) v 3262, 2954, 2923, 2857, 1816, 1700, 1623, 1581, 1538, 1446, 1419, 1326, 1265, 1187, 1091, 1006, 979, 921, 863, 817 cm⁻¹; HRMS (quadrupole, EI) calcd for C₁₈H₂₂N₂O₃ [M]⁺ 314.1630, found 314.1632.

3-Benzamido-2-(4-methyl-5-oxo-4,5-dihydrooxazol-2-yl)phenyl acetate (6a)

60.5 mg (83%); white solid; mp = 180.0–181.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.95 (s, 1H), 8.79 (d, *J* = 8.4 Hz, 1H), 7.82 (d, *J* = 6.8 Hz, 2H), 7.53–7.46 (m, 2H), 7.40 (t, *J* = 8.0 Hz, 2H), 6.82 (d, *J* = 8.0 Hz, 1H), 2.32 (s, 3H), 1.82 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 169.9, 165.9, 160.9, 150.0, 141.2, 135.1, 133.9, 132.2, 128.7, 127.4, 118.7, 118.6, 106.8, 46.4, 21.1, 20.3; IR (KBr) υ 3274, 3085, 1927, 1816, 1770, 1685, 1608, 1581, 1542, 1496, 1461, 1369, 1299, 1265, 1195, 1118, 1076, 1010, 979, 921, 871 cm⁻¹; HRMS (quadrupole, EI) calcd for C_{19H16}N₂O₅ [M]⁺ 364.1059, found 352.1058.

N-((8*R*,9*S*,13*S*,14*S*)-13-Methyl-17-oxo-3-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-2-yl)benzamide (6b)

50.2 mg (52%); white solid; mp = 258.6–260.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.74 (s, 1H), 8.93 (s, 1H), 7.87 (d, *J* = 7.6 Hz, 2H), 7.56 (s, 1H), 7.50–7.38 (m, 3H), 2.87–2.83 (m, 2H), 2.52–2.43 (m, 2H), 2.31–2.25 (m, 1H), 2.12–1.96 (m, 4H), 1.81 (s, 3H), 1.64–1.55 (m, 3H), 1.50–1.41 (m, 3H), 1.19 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 176.4, 165.8, 162.4, 146.5, 137.9, 135.1, 132.0, 131.5, 128.9, 128.7, 127.4, 119.9, 117.4, 109.6, 50.6, 48.0, 47.6, 45.1, 37.8, 35.9, 31.5, 28.7, 26.3, 25.7, 21.6, 20.0, 13.9; IR (KBr) υ 3278, 3058, 2923, 2854, 1801, 1739, 1677, 1612, 1585, 1527, 1504, 1454, 1407, 1326, 1299, 1272, 1191, 1110, 1076, 1006, 983, 929, 898, 863 cm⁻¹; HRMS (quadrupole, EI) calcd for C₃₀H₃₀N₂O₄ [M]⁺ 482.2206, found 482.2204.

N-(2-(7-Oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)-5-(1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)vinyl)phenyl)benzamide (6c)

86.3 mg (81%); white solid; mp = 195.4–196.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.83 (s, 1H), 9.12 (s, 1H), 7.82 (d, *J* = 7.2 Hz, 2H), 7.65 (d, *J* = 8.4 Hz, 1H), 7.40 (t, *J* = 7.2 Hz, 1H), 7.33 (t, *J* = 7.2 Hz, 2H), 7.03 (s, 1H), 6.96 (s, 1H), 6.69 (d, *J* = 8.0 Hz, 1H), 5.84 (s, 1H), 5.25 (s, 1H), 1.87 (s, 3H), 1.75 (s, 4H), 1.57 (s, 4H), 1.127–1.16 (m, 12H); ¹³C NMR (100 MHz, CDCl₃)

δ 176.3, 166.0, 162.5, 149.0, 146.8, 144.4, 142.4, 140.4, 137.9, 135.2, 132.8, 132.0, 128.8, 128.7, 128.2, 128.1, 127.5, 122.1, 118.2, 117.7, 110.7, 47.7, 35.4, 35.3, 34.1, 34.0, 32.1, 32.0, 20.1, 20.0; IR (KBr) ν 3270, 2958, 2923, 2861, 1816, 1685, 1616, 1573, 1535, 1419, 1326, 1268, 1191, 1106, 1076, 1006, 979, 917, 856 cm⁻¹; HRMS (quadrupole, EI) calcd for C₃₅H₃₆N₂O₃ [M]⁺ 532.2726, found 532.2728.

N-(4'-((1,7'-Dimethyl-2'-propyl-1*H*,3'*H*-[2,5'-bibenzo[*d*]imidazol]-3'-yl)methyl)-2-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)-[1,1'-biphenyl]-3-yl)benzamide (6d)

100.7 mg (72%); white solid; mp = 133.3–135.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.77 (brs, 1H), 7.79 (d, *J* = 7.6 Hz, 1H), 7.70–7.68 (m, 1H), 7.51–7.46 (m, 1H), 7.38 (td, *J* = 7.6, 1.6 Hz, 1H), 7.29–7.25 (m, 5H), 7.22–7.16 (m, 4H), 7.07 (t, *J* = 7.6 Hz, 2H), 6.98 (d, *J* = 8.4 Hz, 2H), 6.90 (t, *J* = 7.6 Hz, 1H), 5.35 (s, 2H), 3.55 (s, 3H), 2.87 (t, *J* = 8.0 Hz, 2H), 2.80 (s, 3H), 1.84–1.79 (m, 2H), 1.63–1.60 (m, 2H), 1.49–1.46 (m, 2H), 1.00 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 178.2, 166.9, 162.8, 158.0, 152.5, 144.2, 141.4, 140.6, 137.8, 134.8, 134.7, 131.8, 131.0, 130.1, 129.4, 129.0, 128.7, 127.9, 127.5, 126.0, 125.6, 124.6, 124.5, 124.3, 124.1, 120.6, 118.0, 110.6, 109.7, 47.9, 47.2, 31.6, 29.9, 21.8, 19.4, 14.3, 14.1; IR (KBr) v 3054, 2958, 2927, 2857, 1805, 1735, 1662, 1596, 1531, 1504, 1442, 1396, 1319, 1268, 1091, 1060, 1002, 971, 914, 860 cm⁻¹; HRMS (quadrupole, FAB) calcd for C₄₄H₃₈N₆O₃ [M+H]⁺ 699.3078, found 699.3080.

(*S*)-*N*-(3-Ethoxy-5-(2-((3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl)amino)-2-oxoethyl)-2-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)phenyl)benzamide (6e)

43.4 mg (34%); yellow sticky solid; ¹H NMR (400 MHz, CDCl₃) δ 11.47 (s, 1H), 8.30 (s, 1H), 7.81 (d, *J* = 7.6 Hz, 2H), 7.49 (t, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.12 (s, 2H), 7.06 (d, *J* = 7.6 Hz, 1H), 7.01–6.99 (m, 1H), 6.77 (d, *J* = 8.8 Hz, 1H), 6.64 (s, 1H), 5.32 (q, *J* = 7.6 Hz, 1H), 4.02–3.91 (m, 2H), 3.52 (s, 2H), 2.89 (s, 2H), 2.58 (s, 2H), 2.10 (s, 4H), 1.78 (s, 4H), 1.67 (s, 2H), 1.60–1.53 (m, 3H), 1.34 (t, *J* = 6.8 Hz, 3H), 0.86 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 177.5, 168.7, 165.6, 162.4, 159.3, 152.6, 142.0, 140.5, 138.9, 135.2, 132.2, 128.7, 127.9, 127.8, 127.3, 125.2, 122.9, 113.9, 108.7, 102.6, 65.2, 50.0, 46.8, 46.7, 44.8, 31.0, 26.8, 25.4, 24.3, 22.9, 22.6, 19.8, 14.7; IR (KBr) υ 3289, 2931, 2861, 1812, 1677, 1604, 1573, 1538, 1496, 1438, 1388, 1280, 1141, 1106, 1064, 1006, 979, 921, 863 cm⁻¹; HRMS (quadrupole, EI) calcd for C₃₈H₄₄N₄O₅ [M]⁺ 636.3312, found 636.3311.

General procedure and characterization data for the transformation into chiral amino acids (9a and 9b) and racemic amino acid (9c)

To an oven-dried sealed tube charged with 2-amidobenzoyl azlactone **3s** (0.2 mmol, 100 mol %), urea catalyst **7** (0.01 mmol, 5 mol %) was added DCE (1 mL) followed by allyl alcohol (**8**) (0.3 mmol, 150 mol %) under air at room temperature. The reaction mixture was allowed to stir at room temperature for 48 h. The reaction mixture was diluted with EtOAc (3 mL) and concentrated in vacuo. The residue was purified by flash column chromatography (*n*-hexane:EtOAc) to afford the corresponding compound **9a**. Enantiomeric excess (ee %) of **9a** was determined by analytical liquid chromatography (HPLC) with DAICEL CHIRALPAK[®] AD-H (4.6 × 250 mm) in comparison with racemic samples.

51.3 mg (65%); white solid; mp = 105.0–107.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 12.05 (s, 1H), 8.69 (s, 1H), 8.01 (d, *J* = 6.8, 1.6 Hz, 1H), 7.53–7.48 (m, 4H), 6.93 (d, *J* = 8.4 Hz, 1H), 6.76 (d, *J* = 8.4 Hz, 1H), 5.96–5.87 (m, 1H), 5.35 (d, *J* = 17.2 Hz, 1H), 5.26 (d, *J* = 10.4 Hz, 1H), 4.79 (dd, *J* = 4.8, 8.4 Hz, 1H), 4.72–4.62 (m, 2H), 2.42 (s, 3H), 2.35–2.27 (m, 1H), 1.01 (d, *J* = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 169.1, 165.6, 144.1, 140.2, 135.0, 131.8, 131.5, 128.8, 127.4, 126.7, 123.8, 122.0, 119.3, 117.3, 66.1, 57.4, 31.7, 22.0, 19.1, 18.0; IR (KBr) v 3313, 3066, 2965, 2931, 1739, 1673, 1643, 1604, 1581, 1523, 1446, 1376, 1288, 1187, 1149, 991, 929 cm⁻¹; HRMS (quadrupole, EI) calcd for C₂₃H₂₆N₂O₄ [M]⁺ 394.1893, found 394.1893; HPLC (Chiralcel AD-H column, *n*-hexanes:*i*-PrOH = 90:10, 1.0 mL/min, 254 nm), t_{major} = 8.8 min, t_{minor} = 29.7 min; ee = 89%.

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	8.716	68	5362	211.7	0.3815	94.302	0.73
2	29.717	88	324	2.7	1.424	5.698	1.002

Allyl (2-benzamido-4-methylbenzoyl)-L-alaninate (9b)

70 mg (96%); white solid; mp = 108.9–111.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 12.13 (s, 1H), 8.70 (s, 1H), 8.02 (d, *J* = 6.4 Hz, 2H), 7.54–7.47 (m, 4H), 6.94–6.84 (m, 2H), 5.96–5.87 (m, 1H), 5.37–5.24 (m, 2H), 4.84–4.67 (m, 3H), 2.42 (s, 3H), 1.55 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 168.8, 165.6, 144.2, 140.4, 135.0, 131.9, 131.4, 128.8, 127.5, 126.8, 123.8,

122.0, 119.1, 116.9, 66.3, 48.6, 22.0, 18.7; IR (KBr) υ 3324, 3066, 2927, 1743, 1670, 1643, 1604, 1581, 1527, 1446, 1380, 1295, 1203, 1172, 1118, 1033, 979, 929, 902 cm⁻¹; HRMS (quadrupole, EI) calcd for C₂₁H₂₂N₂O₄ [M]⁺ 366.1580, found 366.1577; HPLC (Chiralcel AD-H column, *n*-hexanes:*i*-PrOH = 90:10, 1 mL/min, 254 nm), t_{major} = 12.4 min, t_{minor} = 35.9 min; ee = 83%.

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	12.438	BV R	5175.7	191.1	0.4019	91,648	0.618
2	35.95	88	471.7	5.7	1.0085	8.352	0.555

Allyl 1-(2-benzamido-4-methylbenzamido)cyclopropane-1-carboxylate (9c)

23.3 mg (31%); white solid; mp = 162.2–163.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.95 (s, 1H), 8.67 (s, 1H), 8.02 (dd, J = 8.4, 1.6Hz, 2H), 7.56–7.47 (m, 3H), 7.41 (d, J = 8.0Hz, 1H), 6.91 (d, J = 8.0Hz, 1H), 6.78 (s, 1H), 5.83–5.73 (m, 1H) 5.21 (dd, J = 17.2, 2.4Hz, 1H), 5.07 (dd, J = 10.4, 1.6Hz, 1H), 4.57 (dt, J = 5.6, 1.6Hz, 2H), 2.42 (s, 3H), 1.74–1.70 (m, 2H), 1.31–1.28 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 170.8, 165.7, 144.3, 140.2, 134.9, 131.9, 131.7, 128.8, 127.5, 126.7, 123.8, 122.2, 118.4, 117.4, 66.1, 34.2, 22.1, 17.9; IR (KBr) v 3324, 2923, 2854, 1727, 1650, 1608, 1581, 1527, 1442, 1322, 1284, 1168, 1033, 979, 933 cm⁻¹; HRMS (quadrupole, EI) calcd for C₂₂H₂₂N₂O₄ [M]⁺ 378.1580, found 378.1581.

Experimental procedure of gram-scale reaction of 1a

To an oven-dried sealed tube charged with 2-aryl azlactone **1a** (1 g, 5.0 mmol, 100 mol %), [IrCp*Cl₂]₂ (99.6 mg, 0.125 mmol, 2.5 mol %), AgNTf₂ (194.0 mg, 0.5 mmol, 10 mol %), LiOAc (99.0 mg, 1.5 mmol, 30 mol %), and acyl azide **2a** (1.1 g, 7.5 mmol, 150 mol %) was added DCE (25 mL) under air at room temperature. The reaction mixture was allowed to stir at 50 °C for 24 h. The reaction mixture was cooled to room temperature, diluted with EtOAc (45 mL) and concentrated in vacuo. The residue was purified by flash column chromatography (*n*hexane:EtOAc = 10:1 to 8:1) to afford 1.15 g of **3a** in 72% yield.

General procedure and characterization data for the formation of iridacycle-1a (CCDC 2162876)

To an oven-dried sealed tube charged with 2-phenyl azlactone (1a) (0.4 mmol, 100 mol %), $[IrCp*Cl_2]_2$ (159.4 mg, 0.2 mmol, 50 mol %), Li_2CO_3 (14.8 mg, 0.2 mmol, 50 mol %) and AgTFA (44.2 mg, 0.2 mmol, 50 mol %) was added DCE (10 mL) under Ar at room temperature. The reaction mixture was allowed to stir at 40 °C for 24 h. The reaction mixture was cooled to room temperature, diluted with EtOAc (3 mL) and concentrated in vacuo. The resulting powder was crystalized with (*n*-hexanes/EtOAc) at room temperature to afford **iridacycle-1a** (82.1 mg) in 32% yield.

(5-Methyl-2-(7-oxo-6-oxa-4-azaspiro[2.4]hept-4-en-5-yl)phenyl)(1,2,3,4,5pentamethylcyclopenta-2,4-dien-1-yl)((trifluoromethoxy)carbonyl)iridium (iridacylce-1a)

82.1 mg (32%); yellow solid; mp = 203.2–205.0 °C; ¹H NMR (700 MHz, CDCl₃) δ 7.93 (s, 1H), 7.43 (d, *J* = 7.7 Hz, 1H), 6.93 (d, *J* = 7.7 Hz, 1H), 2.46 (s, 3H), 2.21–2.18 (m, 1H), 1.99–1.95 (m, 1H), 1.89–1.85 (m, 1H), 1.77–1.75 (m, 1H), 1.72 (s, 15H); ¹³C NMR (175 MHz, CDCl₃) δ 178.1, 174.7, 164.1, 162.8 (d, *J*_{C-F} = 35.8 Hz), 143.8, 136.8, 129.4, 126.3, 124.4, 114.4 (d, *J*_{C-F} = 289.2 Hz), 87.3, 48.5, 22.4, 18.0, 17.8, 9.9; IR (KBr) v 2989, 2919, 1847, 1824, 1704, 1612, 1581, 1538, 1461, 1376, 1326, 1276, 1187, 1137, 1033, 1010, 921, 879, 836 cm⁻¹; HRMS (quadrupole, EI) calcd for C₂₄H₂₅F₃IrNO₄ [M]⁺ 641.1365, found 641.1362.

X-ray crystallographic data of compound 3a (CCDC 2154665)

Detailed experimental description for the crystal measurement of compound 3a

Crystals grew as colorless blocks in dichloromethane by slow evaporation from pentane. The crystal structures of compound **3a** were determined by standard crystallographic methods. A colorless plate-like-shaped crystal (0.020 x 0.100 x 0.160 mm³) was used for single-crystal X-ray diffraction. The data were collected at 296 (2) K using a Bruker D8 Venture equipped with $I\mu$ S micro-focus sealed tube Mo K α (λ = 0.71073 Å) and a PHOTON III M14 detector in Western Seoul Center of Korea Basic Science Institute. Data collection and integration were performed with SMART APEX3 software package (SAINT). Absorption correction was performed by multi-scan method implemented in SADABS. The structure was solved by direct methods and refined by full-matrix least-squares on F^2 using SHELXTL program package (version 6.14). All the non-hydrogen atoms were refined anisotropically, and hydrogen atoms were added to their geometrically ideal positions.

Details of crystal data, data collection and structure refinement are listed in Table S1. Further details of the individual structures can be obtained from the Cambridge Crystallographic Data Centre by quoting CCDC 2154665.

Sample preparation (vapor diffusion)

Compound **3a** (3.8 mg) was dissolved with 1 mL of CH_2Cl_2 in opened inner vessel, and pentane (5 mL) as an anti-solvent has been employed in closed outer vessel. After vapor diffusion for 9 days, the single crystals of compound **3a** were obtained.

Axis	dx/mm	20/°	ω/°	φ/°	χ/°	Width/°	Frames	Time/s	Wavelength/Å	Voltage/kV	Current/mA	Temperature/K
Omega	60.586	18.54	-174.46	-156.00	54.74	1.00	206	10.00	0.71073	50	30.0	n/a
Omega	60.586	27.81	-165.19	0.00	54.74	1.00	206	10.00	0.71073	50	30.0	n/a
Omega	60.586	18.54	-174.46	102.00	54.74	1.00	206	10.00	0.71073	50	30.0	n/a
Omega	60.586	18.54	-174.46	-54.00	54.74	1.00	206	10.00	0.71073	50	30.0	n/a
Omega	60.586	18.54	-174.46	153.00	54.74	1.00	206	10.00	0.71073	50	30.0	n/a
Phi	60.586	18.54	31.54	0.00	54.74	1.00	360	10.00	0.71073	50	30.0	n/a
Phi	60.586	0.00	0.00	0.00	54.74	360.00	1	108.00	0.71073	50	30.0	n/a

Table S1: Data collection details for 3a.

A total of 1391 frames were collected. The total exposure time was 3.89 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using an orthorhombic unit cell yielded a total of 56517 reflections to a maximum θ angle of 28.29° (0.75 Å resolution), of which 4026 were independent (average redundancy 14.038, completeness = 99.9%, R_{int} = 12.73%, R_{sig} = 6.37%) and 2506 (62.25%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 11.6867(10) Å, <u>b</u> = 19.3211(17) Å, <u>c</u> = 7.1481(6) Å, volume = 1614.0(2) Å³, are based upon the refinement of the XYZ-centroids of 5067 reflections above 20 $\sigma(I)$ with 5.471° < 2 θ < 43.62°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.910. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9860 and 0.9980.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P c a 21, with Z = 4 for the formula unit, $C_{19}H_{16}N_2O_3$. The final anisotropic full-matrix least-squares refinement on F² with 218 variables converged at R1 = 6.90%, for the observed data and wR2 = 13.72% for all data. The goodness-of-fit was 1.029. The largest peak in the final difference electron density synthesis was 0.146 e⁻/Å³ and the largest hole was -0.182 e⁻/Å³ with an RMS deviation of 0.036 e⁻/Å³. On the basis of the final model, the calculated density was 1.318 g/cm³ and F(000), 672 e⁻.

1 0				
Chemical formula	$C_{19}H_{16}N_2O_3$			
Formula weight	320.34 g/mol			
Temperature	296(2) K			
Wavelength	0.71073 Å	0.71073 Å		
Crystal size	0.020 x 0.100 x 0.160 m	0.020 x 0.100 x 0.160 mm		
Crystal habit	colorless plate	colorless plate		
Crystal system	orthorhombic	orthorhombic		
Space group	P c a 2 ₁			
Unit cell dimensions	a = 11.6867(10) Å	$\alpha = 90^{\circ}$		
	b = 19.3211(17) Å	$\beta = 90^{\circ}$		
	c = 7.1481(6) Å	$\gamma = 90^{\circ}$		
Volume	1614.0(2) Å ³			
Z	4			
Density (calculated)	1.318 g/cm^3			

Table S2. Sample and crystal data for 3a.

Absorption coefficient	0.091 mm ⁻¹
F(000)	672

Table S3. Data collection and structure refinement for 3a.

Theta range for data collection	2.04 to 28.29°		
Index ranges	-15≤h≤15, -25≤k	≤25, -9≤1≤9	
Reflections collected	56517		
Independent reflections	4026 [R(int) = 0.12]	273]	
Coverage of independent reflections	99.9%		
Absorption correction	Multi-Scan		
Max. and min. transmission	0.9980 and 0.9860		
Structure solution technique	direct methods		
Structure solution program	SHELXT 2018/2 (Sheldrick, 2018)	
Refinement method	Full-matrix least-s	quares on F ²	
Refinement program	SHELXL-2018/3 (Sheldrick, 2018)	
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	4026 / 1 / 218		
Goodness-of-fit on F ²	1.029		
Final R indices	2506 data; I>2σ(I)	$R_1 = 0.0690, wR_2 = 0.1191$	
	all data $R_1 = 0.1231, wR_2 = 0.1372$		
Weighting scheme	w=1/[$\sigma^{2}(F_{o}^{2})+(0.0432P)^{2}+0.6033P$] where P=($F_{o}^{2}+2F_{c}^{2}$)/3		
Absolute structure parameter	-0.7(10)		
Largest diff. peak and hole	0.146 and -0.182 e	Å-3	
R.M.S. deviation from mean	0.036 eÅ ⁻³		

Table S4. Atomic coordinates and equivalent isotropic atomic displacement parameters (\AA^2) for 3a.

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.4714(4)	0.9408(2)	0.6842(7)	0.0548(12)
C2	0.5797(5)	0.9703(2)	0.6785(8)	0.0653(15)

C3	0.6602(4)	0.9456(2)	0.5581(8)	0.0612(14)
C4	0.6360(4)	0.8914(2)	0.4430(9)	0.0591(12)
C5	0.5272(3)	0.8613(2)	0.4475(8)	0.0504(11)
C6	0.4452(3)	0.88554(19)	0.5682(6)	0.0389(9)
C7	0.3258(3)	0.8577(2)	0.5745(6)	0.0388(9)
C8	0.2141(3)	0.75301(19)	0.4885(5)	0.0336(9)
C9	0.2233(3)	0.68135(19)	0.4564(6)	0.0384(9)
C10	0.1227(3)	0.6430(2)	0.4321(7)	0.0456(10)
C11	0.0180(3)	0.6743(2)	0.4337(7)	0.0512(11)
C12	0.0077(3)	0.7449(2)	0.4622(6)	0.0452(10)
C13	0.1060(3)	0.7833(2)	0.4894(6)	0.0445(10)
C14	0.8935(3)	0.7803(3)	0.4534(9)	0.0708(14)
C15	0.3334(3)	0.64644(18)	0.4434(6)	0.0391(9)
C16	0.4394(4)	0.5515(2)	0.4153(9)	0.0636(13)
C17	0.5096(3)	0.6134(2)	0.4288(7)	0.0477(10)
C18	0.6211(4)	0.6186(3)	0.3209(7)	0.0650(15)
C19	0.6239(5)	0.6114(3)	0.5258(7)	0.0669(15)
N1	0.3144(3)	0.79171(16)	0.5121(5)	0.0383(8)
N2	0.4338(3)	0.67144(15)	0.4436(5)	0.0418(8)
01	0.2469(3)	0.89217(14)	0.6347(5)	0.0599(9)
02	0.3269(2)	0.57426(13)	0.4279(6)	0.0601(9)
03	0.4609(3)	0.49159(16)	0.3988(9)	0.1021(15)

Table S5. Bond lengths (Å) for 3a.

C1-C6	1.387(6)	C1-C2	1.389(6)
C1-H1	0.93	C2-C3	1.361(7)
С2-Н2	0.93	C3-C4	1.362(7)
С3-Н3	0.93	C4-C5	1.399(5)
C4-H4	0.93	C5-C6	1.372(6)
С5-Н5	0.93	C6-C7	1.496(5)
C7-O1	1.216(5)	C7-N1	1.358(5)
C8-C13	1.393(5)	C8-N1	1.400(5)
C8-C9	1.408(5)	C9-C10	1.401(5)
C9-C15	1.456(5)	C10-C11	1.365(5)
C10-H10	0.93	C11-C12	1.385(6)
C11-H11	0.93	C12-C13	1.380(6)
C12-C14	1.501(6)	С13-Н13	0.93

C14-H14A	0.96	C14-H14B	0.96
C14-H14C	0.96	C15-N2	1.268(4)
C15-O2	1.401(4)	C16-O3	1.191(5)
C16-O2	1.389(5)	C16-C17	1.454(6)
C17-N2	1.433(4)	C17-C19	1.505(7)
C17-C18	1.518(7)	C18-C19	1.472(6)
C18-H18A	0.97	C18-H18B	0.97
C19-H19A	0.97	C19-H19B	0.97
N1-H1A	0.86		

Table S6. Bond angles (°) for 3a.

C6-C1-C2	120.0(4)	С6-С1-Н1	120.0
С2-С1-Н1	120.0	C3-C2-C1	120.3(4)
С3-С2-Н2	119.9	С1-С2-Н2	119.9
C2-C3-C4	120.6(4)	С2-С3-Н3	119.7
С4-С3-Н3	119.7	C3-C4-C5	119.6(5)
С3-С4-Н4	120.2	С5-С4-Н4	120.2
C6-C5-C4	120.5(4)	С6-С5-Н5	119.8
С4-С5-Н5	119.8	C5-C6-C1	119.0(4)
C5-C6-C7	123.2(4)	C1-C6-C7	117.7(4)
01-C7-N1	123.8(4)	01-C7-C6	121.4(4)
N1-C7-C6	114.8(3)	C13-C8-N1	122.3(3)
C13-C8-C9	118.9(3)	N1-C8-C9	118.8(3)
С10-С9-С8	118.5(3)	C10-C9-C15	119.3(3)
C8-C9-C15	122.2(3)	C11-C10-C9	121.1(4)
С11-С10-Н10	119.5	С9-С10-Н10	119.5
C10-C11-C12	121.1(4)	C10-C11-H11	119.5
С12-С11-Н11	119.5	C13-C12-C11	118.5(4)
C13-C12-C14	120.1(4)	C11-C12-C14	121.3(4)
C12-C13-C8	121.9(4)	С12-С13-Н13	119.0
С8-С13-Н13	119.0	C12-C14-H14A	109.5
C12-C14-H14B	109.5	H14A-C14-H14B	109.5
С12-С14-Н14С	109.5	H14A-C14-H14C	109.5
H14B-C14-H14C	109.5	N2-C15-O2	115.5(3)
N2-C15-C9	129.9(3)	O2-C15-C9	114.7(3)
O3-C16-O2	120.9(4)	O3-C16-C17	133.4(5)
O2-C16-C17	105.7(3)	N2-C17-C16	107.4(3)

N2-C17-C19	122.4(4)	C16-C17-C19	120.7(4)
N2-C17-C18	121.1(4)	C16-C17-C18	120.3(4)
C19-C17-C18	58.3(3)	C19-C18-C17	60.4(4)
C19-C18-H18A	117.7	C17-C18-H18A	117.7
C19-C18-H18B	117.7	C17-C18-H18B	117.7
H18A-C18-H18B	114.8	C18-C19-C17	61.3(4)
C18-C19-H19A	117.6	C17-C19-H19A	117.6
C18-C19-H19B	117.6	C17-C19-H19B	117.6
H19A-C19-H19B	114.7	C7-N1-C8	128.6(3)
C7-N1-H1A	115.7	C8-N1-H1A	115.7
C15-N2-C17	105.9(3)	C16-O2-C15	105.5(3)

Table S7. Anisotropic atomic displacement parameters (Å²) for 3a. The anisotropic atomic displacement factor exponent takes the form: - $2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂]

2.0 [
	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂		
C1	0.062(3)	0.037(2)	0.065(3)	-0.013(2)	0.001(2)	0.000(2)		
C2	0.081(4)	0.043(3)	0.072(4)	-0.011(3)	-0.017(3)	-0.017(3)		
C3	0.050(3)	0.054(3)	0.080(4)	0.008(3)	-0.013(3)	-0.017(2)		
C4	0.042(2)	0.057(3)	0.078(3)	0.002(3)	0.011(3)	-0.004(2)		
C5	0.047(2)	0.039(2)	0.065(3)	-0.006(2)	-0.003(3)	- 0.0038(19)		
C6	0.044(2)	0.0260(19)	0.046(2)	0.003(2)	-0.001(2)	0.0019(17)		
C7	0.039(2)	0.034(2)	0.043(2)	- 0.0006(19)	0.0017(19)	0.0050(19)		
C8	0.031(2)	0.038(2)	0.032(2)	0.0045(17)	0.0008(15)	0.0005(16)		
С9	0.037(2)	0.043(2)	0.035(2)	0.001(2)	0.0049(19)	- 0.0008(17)		
C10	0.045(2)	0.043(2)	0.049(3)	-0.004(2)	-0.002(2)	- 0.0086(18)		
C11	0.040(2)	0.061(3)	0.053(3)	0.005(3)	-0.001(2)	-0.009(2)		
C12	0.033(2)	0.061(3)	0.041(2)	0.002(2)	0.0018(19)	0.0003(19)		
C13	0.046(2)	0.041(2)	0.046(3)	0.001(2)	0.005(2)	0.007(2)		
C14	0.038(2)	0.091(4)	0.083(4)	0.014(4)	-0.002(3)	0.005(2)		
C15	0.048(2)	0.0288(19)	0.040(2)	0.003(2)	-0.003(2)	0.0003(17)		
C16	0.064(3)	0.045(3)	0.082(4)	-0.004(3)	-0.011(3)	0.015(2)		
C17	0.043(2)	0.044(2)	0.056(3)	0.001(2)	-0.001(2)	0.0112(18)		
C18	0.050(3)	0.076(4)	0.068(4)	-0.003(3)	0.010(3)	0.017(3)		
C19	0.054(3)	0.078(4)	0.069(4)	0.008(3)	-0.008(3)	0.015(3)		

N1	0.0302(17)	0.0316(17)	0.053(2)	- 0.0027(16)	0.0011(15)	0.0053(14)
N2	0.0389(18)	0.0393(17)	0.047(2)	0.0000(18)	0.0024(18)	0.0041(15)
01	0.0471(17)	0.0476(16)	0.085(3)	- 0.0167(17)	0.0066(17)	0.0067(17)
02	0.0548(19)	0.0325(14)	0.093(2)	- 0.0034(19)	-0.004(2)	0.0004(13)
03	0.091(3)	0.0406(18)	0.174(4)	-0.004(3)	-0.011(3)	0.0209(18)

Table S8. Hydrogen atomic coordinates and
isotropic atomic displacement parameters (Ų)
for 3a.

	x/a	y/b	z/c	U(eq)
H1	0.4165	0.9581	0.7659	0.066
H2	0.5974	1.0071	0.7573	0.078
H3	0.7322	0.9660	0.5544	0.073
H4	0.6916	0.8744	0.3620	0.071
H5	0.5103	0.8246	0.3680	0.061
H10	0.1273	0.5954	0.4146	0.055
H11	-0.0474	0.6478	0.4154	0.061
H13	0.0998	0.8307	0.5089	0.053
H14A	-0.1609	0.7549	0.5270	0.106
H14B	-0.1321	0.7821	0.3259	0.106
H14C	-0.0997	0.8265	0.5018	0.106
H18A	0.6441	0.5790	0.2464	0.078
H18B	0.6413	0.6632	0.2681	0.078
H19A	0.6461	0.6516	0.5985	0.08
H19B	0.6489	0.5674	0.5768	0.08
H1A	0.3770	0.7709	0.4833	0.046

X-ray crystallographic data of iridacycle-1a (CCDC 2162876)

Detailed experimental description for the crystal measurement of iridacycle-1a

Crystals grew as light pink rods in dichloromethane by slow evaporation from pentane. The crystal structures of **iridacycle-1a** were determined by standard crystallographic methods. A colorless plate-like-shaped crystal (0.020 x 0.080 x 0.250 mm³) was used for single-crystal X-ray diffraction. The data were collected at 296 (2) K using a Bruker D8 Venture equipped with $I\mu$ S micro-focus sealed tube Mo K α (λ = 0.71073 Å) and a PHOTON III M14 detector in Western Seoul Center of Korea Basic Science Institute. Data collection and integration were performed with SMART APEX3 software package (SAINT). Absorption correction was performed by multi-scan method implemented in SADABS. The structure was solved by direct methods and refined by full-matrix least-squares on F^2 using SHELXTL program package (version 6.14). All the non-hydrogen atoms were refined anisotropically, and hydrogen atoms were added to their geometrically ideal positions.

Details of crystal data, data collection and structure refinement are listed in Table S9. Further details of the individual structures can be obtained from the Cambridge Crystallographic Data Centre by quoting CCDC 2162876.

Sample preparation (vapor diffusion)

Iridacycle-1a (3.3 mg) was dissolved with 1 mL of CH_2Cl_2 in opened inner vessel, and pentane (4 mL) as an anti-solvent has been employed in closed outer vessel. After vapor diffusion for 6 days, the single crystals of **iridacycle-1a** were obtained.

Axis	dx/mm	20/°	ω/°	φ/°	χ/°	Width/°	Frames	Time/s	Wavelength/Å	Voltage/kV	Current/mA	Temperature/K
Omega	60.501	18.54	-174.46	-156.00	54.74	0.50	412	10.00	0.71073	50	30.0	n/a
Omega	60.501	27.81	-165.19	0.00	54.74	0.50	412	10.00	0.71073	50	30.0	n/a
Omega	60.501	18.54	-174.46	102.00	54.74	0.50	412	10.00	0.71073	50	30.0	n/a
Omega	60.501	18.54	-174.46	-54.00	54.74	0.50	412	10.00	0.71073	50	30.0	n/a
Omega	60.501	18.54	-174.46	153.00	54.74	0.50	412	10.00	0.71073	50	30.0	n/a
Omega	60.501	18.54	-174.46	-105.00	54.74	0.50	412	10.00	0.71073	50	30.0	n/a
Omega	60.501	18.54	-174.46	51.00	54.74	0.50	412	10.00	0.71073	50	30.0	n/a
Phi	60.501	18.54	-174.46	0.00	54.74	0.50	720	10.00	0.71073	50	30.0	n/a
Phi	60.501	0.00	0.00	0.00	54.74	360.00	1	108.00	0.71073	50	30.0	n/a

Table S9: Data collection details for iridacycle-1a.

A total of 3605 frames were collected. The total exposure time was 10.04 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 107010 reflections to a maximum θ angle of 28.45° (0.75 Å resolution), of which 5722 were independent (average redundancy 18.702, completeness = 99.0%, R_{int} = 4.63%, R_{sig} = 1.63%) and 5480 (95.77%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 8.971(2) Å, <u>b</u> = 27.011(6) Å, <u>c</u> = 9.490(2) Å, β = 93.878(7)°, volume = 2294.3(9) Å³, are based upon the refinement of the XYZ-centroids of 9688 reflections above 20 $\sigma(I)$ with 5.459° < 2 θ < 56.89°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.482. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.3210 and 0.8920.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 1 21/c 1, with Z = 4 for the formula unit, $C_{24}H_{25}F_3IrNO_4$. The final anisotropic full-matrix least-squares refinement on F² with 314 variables converged at R1 = 2.61%, for the observed data and wR2 = 5.60% for all data. The goodness-of-fit was 1.178. The largest peak in the final difference electron density synthesis was 0.903 e⁷/Å³ and the largest hole was -1.297 e⁷/Å³ with an RMS deviation of 0.087 e⁷/Å³. On the basis of the final model, the calculated density was 1.855 g/cm³ and F(000), 1248 e⁻.

Chemical formula	$C_{24}H_{25}F_3IrNO_4$	C ₂₄ H ₂₅ F ₃ IrNO ₄				
Formula weight	640.65 g/mol					
Temperature	296(2) K	296(2) K				
Wavelength	0.71073 Å	0.71073 Å				
Crystal size	0.020 x 0.080 x 0.2	0.020 x 0.080 x 0.250 mm				
Crystal habit	light pink rod	light pink rod				
Crystal system	monoclinic	monoclinic				
Space group	$P 2_1/c$	$P_{2_1/c}$				
Unit cell dimensions	a = 8.971(2) Å	$\alpha = 90^{\circ}$				
	b = 27.011(6) Å	$\beta = 93.878(7)^{\circ}$				
	c = 9.490(2) Å	$\gamma = 90^{\circ}$				
Volume	2294.3(9) Å ³					
Ζ	4					
Density (calculated)	1.855 g/cm^3					

Table S10. Sample and crystal data for iridacycle-1a.

Absorption coefficient	5.874 mm ⁻¹
F(000)	1248

Theta range for data collection	2.28 to 28.45°				
Index ranges	-11≤h≤11, -36≤k≤35, -12≤1≤12				
Reflections collected	107010				
Independent reflections	5722 [R(int) = 0.04]	463]			
Coverage of independent reflections	99.0%				
Absorption correction	Multi-Scan				
Max. and min. transmission	0.8920 and 0.3210				
Structure solution technique	direct methods				
Structure solution program	SHELXT 2018/2 (Sheldrick, 2018)				
Refinement method	Full-matrix least-squares on F ²				
Refinement program	SHELXL-2018/3 (Sheldrick, 2018)				
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$				
Data / restraints / parameters	5722 / 14 / 314				
Goodness-of-fit on F ²	1.178				
Δ/σ_{max}	0.003				
Final R indices	5480 data; I>2σ(I)	$\begin{array}{l} R_1 = 0.0261, \ wR_2 = \\ 0.0553 \end{array}$			
	all data	$R_1 = 0.0278, wR_2 = 0.0560$			
Weighting scheme	w=1/[$\sigma^{2}(F_{o}^{2})+(0.0143P)^{2}+4.2571P$] where P=($F_{o}^{2}+2F_{c}^{2}$)/3				
Largest diff. peak and hole	0.903 and -1.297 eÅ ⁻³				
R.M.S. deviation from mean	0.087 eÅ ⁻³				

Table S12. Atomic coordinates and equivalent isotropic atomic displacement parameters $(Å^2)$ for iridacycle-1a.

U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
C1	0.4610(4)	0.68736(13)	0.1033(4)	0.0397(7)
C2	0.4418(6)	0.65458(18)	0.9756(5)	0.0654(12)

C3	0.3160(5)	0.66054(18)	0.0670(5)	0.0626(11)
C4	0.4672(4)	0.74139(14)	0.0872(4)	0.0476(9)
C5	0.6206(4)	0.71735(12)	0.2655(4)	0.0379(7)
C6	0.7369(4)	0.71807(13)	0.3752(4)	0.0405(7)
C7	0.7816(4)	0.67003(13)	0.4166(4)	0.0381(7)
C8	0.9013(4)	0.66756(15)	0.5179(4)	0.0486(9)
C9	0.9668(4)	0.70996(17)	0.5804(4)	0.0521(10)
C10	0.9140(5)	0.75632(17)	0.5394(5)	0.0609(12)
C11	0.8011(5)	0.76123(15)	0.4354(5)	0.0531(10)
C12	0.0944(5)	0.7047(2)	0.6917(5)	0.0707(14)
C13	0.5850(4)	0.58401(12)	0.5216(3)	0.0360(7)
C14	0.4596(4)	0.58260(12)	0.4194(4)	0.0371(7)
C15	0.4937(4)	0.54889(12)	0.3080(4)	0.0400(7)
C16	0.6401(4)	0.53120(12)	0.3404(4)	0.0410(8)
C17	0.6990(4)	0.55256(12)	0.4714(4)	0.0396(7)
C18	0.5884(5)	0.61084(14)	0.6595(4)	0.0497(9)
C19	0.3139(4)	0.60842(15)	0.4356(5)	0.0514(9)
C20	0.3899(5)	0.53129(16)	0.1874(5)	0.0587(11)
C21	0.7221(5)	0.49543(15)	0.2531(5)	0.0583(11)
C22	0.8436(5)	0.53827(16)	0.5495(5)	0.0539(10)
C23	0.9071(5)	0.59470(15)	0.1416(4)	0.0477(8)
C24	0.9478(4)	0.58554(12)	0.9891(4)	0.0465(8)
F1	0.9702(18)	0.6279(2)	0.9255(12)	0.073(3)
F1*	0.9055(12)	0.6203(3)	0.8975(6)	0.070(2)
F2	0.0866(4)	0.57198(18)	0.9794(4)	0.1145(14)
F3	0.8704(5)	0.55000(15)	0.9292(4)	0.1172(15)
N1	0.5621(3)	0.67613(10)	0.2223(3)	0.0356(6)
01	0.4040(4)	0.76866(12)	0.0049(4)	0.0675(9)
02	0.5674(3)	0.75834(9)	0.1941(3)	0.0493(6)
03	0.7807(3)	0.61273(10)	0.1458(3)	0.0478(6)
04	0.9977(4)	0.58236(17)	0.2357(4)	0.0820(11)
Ir1	0.65405(2)	0.61300(2)	0.32700(2)	0.03164(4)

Table S13. Bond lengths (Å) for iridacycle-1a.

C1-N1	1.432(4)	C1-C4	1.469(5)
C1-C2	1.502(5)	C1-C3	1.508(6)
C2-C3	1.478(7)	C2-H2A	0.97

C2-H2B	0.97	С3-НЗА	0.97
C3-H3B	0.97	C4-O1	1.189(5)
C4-O2	1.387(5)	C5-N1	1.286(4)
C5-O2	1.367(4)	C5-C6	1.424(5)
C6-C11	1.404(5)	C6-C7	1.406(5)
C7-C8	1.394(5)	C7-Ir1	2.067(3)
C8-C9	1.401(5)	C8-H8	0.93
C9-C10	1.385(7)	C9-C12	1.511(6)
C10-C11	1.373(6)	C10-H10	0.93
C11-H11	0.93	C12-H12A	0.96
C12-H12B	0.96	C12-H12C	0.96
C13-C17	1.435(5)	C13-C14	1.436(5)
C13-C18	1.494(5)	C13-Ir1	2.136(3)
C14-C15	1.443(5)	C14-C19	1.499(5)
C14-Ir1	2.166(3)	C15-C16	1.412(5)
C15-C20	1.502(5)	C15-Ir1	2.251(3)
C16-C17	1.438(5)	C16-C21	1.498(5)
C16-Ir1	2.217(3)	C17-C22	1.501(5)
C17-Ir1	2.152(3)	C18-H18A	0.96
C18-H18B	0.96	C18-H18C	0.96
C19-H19A	0.96	C19-H19B	0.96
C19-H19C	0.96	C20-H20A	0.96
C20-H20B	0.96	C20-H20C	0.96
C21-H21A	0.96	C21-H21B	0.96
C21-H21C	0.96	C22-H22A	0.96
C22-H22B	0.96	C22-H22C	0.96
C23-O4	1.213(5)	C23-O3	1.237(5)
C23-C24	1.536(5)	C24-F3	1.294(5)
C24-F2	1.307(5)	C24-F1	1.316(2)
C24-F1*	1.318(2)	N1-Ir1	2.113(3)
O3-Ir1	2.124(3)		

Table S14. Bond angles (°) for iridacycle-1a.

N1-C1-C4	105.4(3)	N1-C1-C2	122.9(3)
C4-C1-C2	120.3(3)	N1-C1-C3	124.7(3)
C4-C1-C3	119.5(3)	C2-C1-C3	58.8(3)
C3-C2-C1	60.8(3)	С3-С2-Н2А	117.7

C1-C2-H2A	117.7	C3-C2-H2B	117.7
C1-C2-H2B	117.7	H2A-C2-H2B	114.8
C2-C3-C1	60.4(3)	С2-С3-НЗА	117.7
С1-С3-НЗА	117.7	С2-С3-Н3В	117.7
С1-С3-Н3В	117.7	НЗА-СЗ-НЗВ	114.9
O1-C4-O2	122.2(4)	O1-C4-C1	131.6(4)
O2-C4-C1	106.2(3)	N1-C5-O2	115.0(3)
N1-C5-C6	120.5(3)	O2-C5-C6	124.4(3)
C11-C6-C7	123.5(4)	C11-C6-C5	124.7(4)
C7-C6-C5	111.9(3)	C8-C7-C6	115.4(3)
C8-C7-Ir1	128.9(3)	C6-C7-Ir1	115.7(3)
C7-C8-C9	122.3(4)	С7-С8-Н8	118.8
С9-С8-Н8	118.8	C10-C9-C8	119.6(4)
C10-C9-C12	120.7(4)	C8-C9-C12	119.7(4)
C11-C10-C9	120.7(4)	С11-С10-Н10	119.6
С9-С10-Н10	119.6	C10-C11-C6	118.3(4)
C10-C11-H11	120.8	C6-C11-H11	120.8
C9-C12-H12A	109.5	C9-C12-H12B	109.5
H12A-C12-H12B	109.5	C9-C12-H12C	109.5
H12A-C12-H12C	109.5	H12B-C12-H12C	109.5
C17-C13-C14	107.7(3)	C17-C13-C18	127.2(3)
C14-C13-C18	125.0(3)	C17-C13-Ir1	71.04(19)
C14-C13-Ir1	71.66(19)	C18-C13-Ir1	126.1(2)
C13-C14-C15	108.5(3)	C13-C14-C19	124.6(3)
C15-C14-C19	126.7(3)	C13-C14-Ir1	69.36(19)
C15-C14-Ir1	74.1(2)	C19-C14-Ir1	126.7(2)
C16-C15-C14	107.1(3)	C16-C15-C20	125.3(3)
C14-C15-C20	127.3(4)	C16-C15-Ir1	70.3(2)
C14-C15-Ir1	67.79(18)	C20-C15-Ir1	131.6(3)
C15-C16-C17	109.6(3)	C15-C16-C21	125.6(3)
C17-C16-C21	124.9(4)	C15-C16-Ir1	72.87(19)
C17-C16-Ir1	68.34(19)	C21-C16-Ir1	125.4(3)
C13-C17-C16	107.2(3)	C13-C17-C22	126.9(3)
C16-C17-C22	125.3(3)	C13-C17-Ir1	69.85(18)
C16-C17-Ir1	73.3(2)	C22-C17-Ir1	128.9(3)
C13-C18-H18A	109.5	C13-C18-H18B	109.5
H18A-C18-H18B	109.5	C13-C18-H18C	109.5

С14-С19-Н19А	109.5	C14-C19-H19B	109.5
H19A-C19-H19B	109.5	С14-С19-Н19С	109.5
H19A-C19-H19C	109.5	H19B-C19-H19C	109.5
С15-С20-Н20А	109.5	С15-С20-Н20В	109.5
H20A-C20-H20B	109.5	С15-С20-Н20С	109.5
H20A-C20-H20C	109.5	H20B-C20-H20C	109.5
C16-C21-H21A	109.5	C16-C21-H21B	109.5
H21A-C21-H21B	109.5	C16-C21-H21C	109.5
H21A-C21-H21C	109.5	H21B-C21-H21C	109.5
C17-C22-H22A	109.5	C17-C22-H22B	109.5
H22A-C22-H22B	109.5	C17-C22-H22C	109.5
H22A-C22-H22C	109.5	H22B-C22-H22C	109.5
O4-C23-O3	130.8(4)	O4-C23-C24	117.3(4)
O3-C23-C24	111.8(3)	F3-C24-F2	104.3(4)
F3-C24-F1	122.6(8)	F2-C24-F1	92.1(7)
F3-C24-F1*	96.7(6)	F2-C24-F1*	112.7(5)
F3-C24-C23	112.2(3)	F2-C24-C23	113.6(3)
F1-C24-C23	110.2(5)	F1*-C24-C23	115.5(4)
C5-N1-C1	106.9(3)	C5-N1-Ir1	114.3(2)
C1-N1-Ir1	138.4(2)	C5-O2-C4	106.4(3)
C23-O3-Ir1	124.7(3)	C7-Ir1-N1	77.27(13)
C7-Ir1-O3	91.36(12)	N1-Ir1-O3	80.53(10)
C7-Ir1-C13	95.89(13)	N1-Ir1-C13	125.14(12)
O3-Ir1-C13	154.28(11)	C7-Ir1-C17	103.23(14)
N1-Ir1-C17	164.16(12)	O3-Ir1-C17	115.18(12)
C13-Ir1-C17	39.11(12)	C7-Ir1-C14	123.69(13)
N1-Ir1-C14	101.34(12)	O3-Ir1-C14	144.66(12)
C13-Ir1-C14	38.97(13)	C17-Ir1-C14	64.91(13)
C7-Ir1-C16	138.66(14)	N1-Ir1-C16	144.05(12)
O3-Ir1-C16	94.51(12)	C13-Ir1-C16	64.16(13)
C17-Ir1-C16	38.39(13)	C14-Ir1-C16	63.18(13)
C7-Ir1-C15	159.95(13)	N1-Ir1-C15	110.85(12)
O3-Ir1-C15	107.85(12)	C13-Ir1-C15	64.28(13)
C17-Ir1-C15	63.80(13)	C14-Ir1-C15	38.09(13)
C16-Ir1-C15	36.84(13)		

Table S15. Anisotropic atomic displacement parameters (\AA^2) for iridacycle-1a.

The anisotropic atomic displacement factor exponent takes the form: - $2\pi^2 [~h^2~a^{*2}~U_{11}+...+2~h~k~a^*~b^*~U_{12}~]$

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	0.0411(18)	0.0399(18)	0.0383(17)	0.0055(14)	0.0048(14)	0.0079(14)
C2	0.088(3)	0.064(3)	0.042(2)	-0.004(2)	-0.009(2)	0.017(3)
C3	0.055(2)	0.060(3)	0.070(3)	0.009(2)	-0.012(2)	0.000(2)
C4	0.045(2)	0.045(2)	0.054(2)	0.0105(17)	0.0168(17)	0.0103(16)
C5	0.0459(19)	0.0306(16)	0.0388(17)	0.0030(13)	0.0143(14)	0.0033(13)
C6	0.0427(18)	0.0370(17)	0.0431(18)	- 0.0054(14)	0.0118(15)	- 0.0080(14)
С7	0.0409(18)	0.0376(17)	0.0365(16)	- 0.0048(13)	0.0082(13)	- 0.0062(14)
C8	0.051(2)	0.049(2)	0.045(2)	- 0.0019(16)	- 0.0032(16)	- 0.0111(17)
C9	0.046(2)	0.070(3)	0.0416(19)	- 0.0082(18)	0.0105(16)	- 0.0210(19)
C10	0.067(3)	0.057(3)	0.060(3)	-0.016(2)	0.014(2)	-0.031(2)
C11	0.061(2)	0.0380(19)	0.062(2)	- 0.0071(17)	0.016(2)	- 0.0161(17)
C12	0.058(3)	0.102(4)	0.052(2)	-0.009(2)	0.000(2)	-0.033(3)
C13	0.0435(18)	0.0320(15)	0.0331(15)	0.0020(12)	0.0072(13)	0.0033(13)
C14	0.0384(17)	0.0297(15)	0.0436(18)	0.0021(13)	0.0046(14)	- 0.0013(13)
C15	0.0478(19)	0.0301(16)	0.0418(18)	- 0.0017(13)	0.0009(15)	- 0.0043(14)
C16	0.053(2)	0.0283(15)	0.0419(18)	- 0.0006(13)	0.0062(15)	0.0001(14)
C17	0.0459(19)	0.0325(16)	0.0405(17)	0.0034(13)	0.0037(14)	0.0052(14)
C18	0.066(3)	0.047(2)	0.0372(18)	- 0.0048(16)	0.0091(17)	- 0.0015(18)
C19	0.041(2)	0.047(2)	0.066(3)	0.0004(18)	0.0088(18)	0.0002(16)
C20	0.072(3)	0.045(2)	0.057(2)	- 0.0088(18)	-0.011(2)	-0.013(2)
C21	0.077(3)	0.037(2)	0.063(3)	- 0.0115(18)	0.020(2)	0.0079(19)
C22	0.054(2)	0.051(2)	0.055(2)	0.0091(18)	- 0.0045(18)	0.0117(18)
C23	0.047(2)	0.050(2)	0.046(2)	- 0.0052(17)	- 0.0016(16)	- 0.0014(17)

C24	0.047(2)	0.048(2)	0.0454(19)	- 0.0022(16)	0.0086(16)	0.0048(17)
F1	0.076(4)	0.073(4)	0.073(4)	0.0049(18)	0.0130(19)	- 0.0064(18)
F1*	0.073(3)	0.072(3)	0.064(3)	0.0065(16)	0.0056(17)	0.0078(17)
F2	0.067(2)	0.184(4)	0.093(2)	-0.034(3)	0.0129(18)	0.037(2)
F3	0.151(4)	0.127(3)	0.075(2)	-0.049(2)	0.018(2)	-0.066(3)
N1	0.0399(15)	0.0304(13)	0.0368(14)	0.0006(11)	0.0056(11)	0.0038(11)
01	0.0643(19)	0.0584(18)	0.080(2)	0.0307(16)	0.0086(16)	0.0199(15)
O2	0.0592(17)	0.0315(12)	0.0591(16)	0.0071(11)	0.0170(13)	0.0040(11)
O3	0.0485(15)	0.0476(15)	0.0489(14)	0.0019(12)	0.0148(12)	0.0087(12)
04	0.0548(19)	0.135(4)	0.0550(19)	-0.009(2)	- 0.0089(15)	0.021(2)
Ir1	0.03502(7)	0.02800(6)	0.03190(7)	- 0.00241(5)	0.00222(4)	0.00109(5)

Table S16. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å²) for iridacycle-1a.

	x/a	y/b	z/c	U(eq)
H2A	0.4335	0.6704	-0.1164	0.078
H2B	0.4940	0.6231	-0.0215	0.078
H3A	0.2916	0.6327	0.1259	0.075
H3B	0.2310	0.6800	0.0309	0.075
H8	0.9389	0.6367	0.5451	0.058
H10	0.9555	0.7844	0.5829	0.073
H11	0.7679	0.7924	0.4054	0.064
H12A	1.1870	0.7116	0.6506	0.106
H12B	1.0963	0.6715	0.7281	0.106
H12C	1.0810	0.7276	0.7672	0.106
H18A	0.5624	0.5884	0.7324	0.074
H18B	0.5179	0.6376	0.6528	0.074
H18C	0.6869	0.6237	0.6819	0.074
H19A	0.2658	0.5942	0.5134	0.077
H19B	0.2507	0.6046	0.3505	0.077
H19C	0.3318	0.6430	0.4533	0.077
H20A	0.4395	0.5333	0.1011	0.088
H20B	0.3022	0.5518	0.1804	0.088
H20C	0.3617	0.4976	0.2038	0.088

H21A	0.6938	0.4622	0.2754	0.087
H21B	0.8277	0.4994	0.2730	0.087
H21C	0.6973	0.5017	0.1547	0.087
H22A	0.8601	0.5588	0.6316	0.081
H22B	0.9241	0.5426	0.4890	0.081
H22C	0.8391	0.5042	0.5779	0.081

f1 (ppm) 0 190 180 170 160 150 140 130 120 60 50

1c. MS-236-P1_400MHz.3.fid

20 10 6 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 r1 (ppm)

1i. MS-243-P1_400MHz.3.fid

20 10 6 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 r1 (ppm)

S73

S89

S90

125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 11 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 6 -10 f1 (ppm)

S103

S105

S106

S107

S108

S115

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 11 (ppm)

S117

S123

S126

S127

S129

140 130 120 110 100 90 80 70 60 50 40 80 20 10 0 -10 -20 -30 -40 -5 (1 (ppm)

HRMS data of all compounds

[Elemental Composition] Data : HR-MS235-P	Date . 14-Feb-2022 12.42	Page: 1
Sample: SKKU Univ. Prof. Kim Note : SMLab Mass analysis	Date : 14-Feb-2022 12:42	1b
Inlet : Direct RT : 3.04 min	Ion Mode : EI+ Scan#: 92	
Elements : C 15/0, H 12/0, O 2/0, M Mass Tolerance : 1000ppm, 3mm Unsaturation (U.S.) : -0.5 - 70.0	N 1/0, Cl 1/0 1 if m/z < 3, 5mmu if m/z > 5	
Observed m/z Int% Err[ppm / mmu] 221.0240 100.0 -1.5 / -0.3	U.S. Composition 3 8.0 C 11 H 8 O 2 N Cl	

If Mass Section 1 Date : 14-Feb-2022 12:42 Sample: SKU law, Prof. Kim In Mode : E1+ Note : 55Lae Mass analysis In Mode : E1+ Spectrum Type : Normal Icn (MF-Linear) Rener: RT : 3.00 min Cenamt : 22 BP : m/z 221.0240 Int. : 24.23 Output m/z range : 220.0395 to 221.3755 Cut Level : 46.55 % 573766 Seart : 2 220 - - 182 - - 182 - - 182 - - 182 - - 182 - - 182 - - 182 - - 182 - - 182 - - 182 - - 182 - - 182 - - 182 - - 183 - - 184 - - 185 - - 188 - - 188 - - 189 - - 180 - - 180 - - 180 - - 180 - - 180 - - 180 - - 180 - - 181 - - 182 - - <th>85 220.98 220.95 221.08 221.05 221.18 221.15 221.28 221.25 221.30 221.35</th> <th>825 228</th>	85 220.98 220.95 221.08 221.05 221.18 221.15 221.28 221.25 221.30 221.35	825 228
[Mass Spectrum] Date : 14-feb-2022 12:42 Sample: SKU Univ. Prof. Kim Int in Made : EI+ Note : 5M ale Mass analysis In Made : EI+ Spectrum Type : Normal Inc [NF-Linear] In Made : EI+ Spectrum Type : 202.420 Int. : 24.23 Output m/z range : 222.8395 to 221.3755 Cut Level : 46.55 % S228 - 162 - 162 - 162 - 162 - 162 - 162 - 163 - 164 - 165 - 166 - 167 - 168 - 169 - 160 - 160 - 162 - 163 - 164 - 165 - 166 - 167 - 168 - 169 - 169 - 160 - 161		- 82
I Mass Spectrum J Date : 14-Feb-2022 12:42 Sample: 5KXU Univ. Prof. Kim Date : 14-Feb-2022 12:42 Note : SM.ab Mass analysis Inn Mode : EI+ Spectrum Type : Normal Inn (Mr-Linear) Inn Mode : EI+ Spectrum Type : Normal Inn (Mr-Linear) Inn Mode : EI+ Spectrum Type : Normal Inn (Mr-Linear) Inn Mode : EI+ Spectrum Type : 220.8395 to 221.3755 Cut level : 46.56 % 573786 522.8395 to 221.3755 2284 - 182 - 182 - 182 - 182 - 182 - 182 - 182 - 182 - 183 - 184 - 185 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 - 188 -		40 -
I Mass Spectrum J Date : 14-Feb-2022 12:42 Sample: SKU Univ. Prof. Kim Date : 14-Feb-2022 12:42 Note : Shak Mass analysis Inn Mode : EI+ Spectrum Type : Normal Inn [MF-Linear] Scan# : 92 P1 :		68 -
[Mass Spectrum] Date : HA-KS235-P Date : 14-feb-2022 12:42 Sample: SKU Univ. Prof. Kim Note : SKU Univ. Prof. Kim Note : SMLab Mass analysis Ion Mode : EI+ Spectrum Type : Normal Ion (MF-Linear) Scarft : 92 P1 m/z 221.0240 Int. : 24.23 Output m/z range : 220.0395 to 221.3755 Cut Level : 46.56 % 5/3786 220-1 180-1 160-1 180-1 220.0395 to 221.3755 180-1 220.13755 180-1 220.13755 180-1 220.23786 220-1 220.13755 180-1 220.23786 180-1 220.23786 180-1 220.23786 220-1 220.23786 220-1 220.23786 180-1 220.23786 120-1 220.23786 120-1 221.0240		88
[Mass Spectrum] Date : 14-feb-2022 12:42 Sample: BKKU Univ. Prof. Kim Note : 5% ab Mass analysis Inlet : Direct Direct [Inlext] Spectrum Type : Normal Inn [MF-Linear] Scan# : 92 PT : 3.04 min Scan# : 92 Str / 221.0240 Int. : 24.23 Output m/z range : 222.0395 to 221.3755 Cut Level : 46.56 % 220 - - 182 - - 182 - - 182 - - 182 - - 182 - - 182 - - 182 - - 182 - - 182 - - 182 - - 182 - - 182 - - 182 - - 182 - - 183 - - 184 - - 187 - - 188 - - 188 - - 188 -	221.0240	100-
[Mass Spectrum] Date : 14-Feb-2022 12:42 Sample: SKKU Univ. Prof. Kim Note : 5Mlab Mass analysis Inlet : Direct Inn Mude : EI+ Spectrum Type : Normal Ion IMF-LinearJ ET : 3.04 min RT : 3.04 min Scan# : 92 BP : m/z 221.0240 Int. : 24.23 Output m/z range : 220.0395 to 221.3755 Cut Level : 46.56 % 220 - - 180 - - 180 - - 180 - - 180 - - 180 - - 180 - - 180 - - 180 - - 180 - - 180 - - 180 - - 180 - - 180 - - 180 - - 180 - - 180 - - 180 - - 180 - - 180 - - - - - - - - - - - - <td></td> <td>120 -</td>		120 -
<pre>E Mass Spectrum] Data : HR-MS235-P Sample: SKKU Univ. Prof. Kim Note : SMLab Mass analysis Inlet : Direct Spectrum Type : Normal Ion [MF-Linear] RT : 3.04 min Scan# : 92 BP : m/z 221.0240 Int. : 24.23 Output m/z range : 220.8385 to 221.3755 Cut Level : 45.56 % 220 - 180 - 160 - 160 - </pre>		140 -
I Mass Spectrum J Data : HR-MS235-P Sample: SKKU Uhiv. Prof. Kim Note : SMLab Mass analysis Inlet : Direct Spectrum Type : Normal Ion IMF-Linear] RT : 3.04 min BP : m/z 221.0240 Output m/z range : 220.8385 to 221.3755 S73786 220 - 200 - 180 -		160 -
<pre>L Mass Spectrum] Data : HR-MS235-P Sample: SKKU Univ. Prof. Kim Note : SMLab Mass analysis Inlet : Direct Spectrum Type : Normal Ion [MF-Linear] RT : 3.04 min Scan# : 92 BP : m/z 221.0240 Int. : 24.23 Output m/z range : 220.0395 to 221.3755 Cut Level : 46.56 % S73786 220 - 20</pre>		180 -
<pre>L Mass Spectrum] Data : HR-MS235-P Sample: SKKU Uhiv. Prof. Kim Note : SMLab Mass analysis Inlet : Direct Spectrum Type : Normal Ion [MF-Linear] RT : 3.04 min Scan# : 92 BP : m/z 221.0240 Int. : 24.23 Output m/z range : 220.8385 to 221.3755 Cut Level : 46.56 % S73786 220]</pre>		- 202
	J Univ. Prof. Kim Date : 14-Feb-2022 12:42 J Univ. Prof. Kim Ion Mode : EI+ set Ion IMF-Linear] set Scan# : 92 in Scan# : 92 I.0240 Int. : 24.23 range : 222.8385 to 221.3755 Cut Level : 46.56 %	[Mass Spec Data : HR - Sample: SKX Note : SMLa Inlet : Din Spectrum Ty RT : 3.04 m BP : m/z 22 Output m/z 573786 220]

[Elemental Composition]	Date • 21-Aug-2022 09-51	Page: 1
Sample: SKKU Univ. prof. Kim	Date . 21 Aug 2022 09.01	1c
Inlet : Direct RT : 1.20 min Elements : C 13/0, H 10/0, O 2/0, Mass Tolerance : 1000ppm, 3r	Ion Mode : EI+ Scan#: 37 , N 1/0, F 3/0 mmu if m/z < 3, 5mmu if m/z > 5	
Unsaturation (U.S.) : -0.5 - 70.0	0 ul U.S. Composition	
255.0509 100.0 +0.6 / +0	0.2 8.0 C 12 H 8 O 2 N F 3	

[Elemental Composition]	Data . 02 Aug-2022 18:01	Page: 1
Data : 6-MS225-P-003 Sample: SKKU Univ. prof. Kim	Date : 03-Aug-2022 10.01	1d
Note : SMLab Mass analysis Inlet : Direct	Ion Mode : EI+	
RT : 1.64 min Elements : C 12/0, H 10/0, O 2/0, N	Scan#: 50 1/0	
Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	if m/z < 3, 5mmu 11 m/z > 5	
Observed m/z Int% Err[ppm / mmu] 187.0634 100.0 +0.5 / +0.1	U.S. Composition 8.0 C 11 H 9 O 2 N	

[Elemental Composition]	Date · 24-Feb-2022 21.07	Page: 1
Sample: SKKU Univ. Prof. Kim	Duce . 24 reb 2022 21.07	1f
Note : SMLab Mass analysis		
Inlet : Direct	Ion Mode : EI+	
RT : 1.14 min	Scan#: 35+36	
Elements : C 12/0, H 12/0, O 3/0, N	2/0, Cl 1/0	
Mass Tolerance : 1000ppm, 3mmu	if $m/z < 3$. Smmu if $m/z > 5$	
Unsaturation (U.S.) : -0.5 - 70.0	11 N/ 0 1 0/ 0000 11 N/ 0 1 0	
Observed m/z Int% Err[ppm / mmu] 221.0240 100.0 -1.5 / -0.3	U.S. Composition 8.0 C 11 H 8 O 2 N Cl	

[Elemental Composition]	Date . 24-Eab-2022 20.59	Page: 1
Sample: SKKU Univ. Prof. Kim	Date : 24-reb-2022 20:59	
Note : SMLab Mass analysis		1g
Inlet : Direct	Ion Mode : EI+	
RT : 0.67 min	Scan#: (20,22)+26	
Elements : C 12/0, H 12/0, O 2/0, N	2/0, Br 1/0	
Mass Tolerance : 1000ppm, 3mmu	if $m/z < 3$, 5mmu if $m/z > 5$	
Unsaturation (U.S.) : -0.5 - 70.0		
Observed m/z Int% Err[ppm / mmu]	U.S. Composition	
264.9735 93.2 -1.4 / -0.4	8.0 C 11 H 8 O 2 N Br	

[Elemental Composition] Data : 4-CE24-P-006	Date : 11-Mar-2022 17:44	Page: 1
Sample: SKKU Univ. Prof. Kim		
Note : SMLab Mass analysis		1n
Inlet : Direct	Ion Mode : EI+	
RT : 0.72 min	Scan#: (21,24)	
Elements : C 13/0, H 12/0, O 3/0, N	1/0	
Mass Tolerance : 1000ppm, 3mmu	if $m/z < 3$. Sommu if $m/z > 5$	
Unsaturation (U.S.) : -0.5 - 70.0		
Observed m/z Int% Err[ppm / mmu]	U.S. Composition	
201.0790 100.0 -0.1 / +0.0	8.0 C 12 H 11 O 2 N	

[Elemental Co Data : 3-MS24 Sample: SKKU U Note : SMLab M Inlet : Direct RT : 1.00 min Elements : C : Mass Tolerance Unsaturation Observed m/z : 205.0538	Omposition] 43-P-003 Univ. Prof. Ki Mass analysis t 12/0, H 10/0, e : 1000p (U.S.) : -0.5 Int% Err[ppr 81.8 -0.7	im 03/0,N1 opm, 3mmu i - 70.0 n / mmu] 7 / -0.1	Date : 26-Mar-202 Ion Mode : EI+ Scan#: (30,32) /0, F 1/0 f m/z < 3, 5mmu : U.S. Compositio 8.0 C 11 H 8 (22 08:24 if m/z > 5 Dn D 2 N F	Page: 1
Ø 204.8 204.9 205.0 205.1 205.2 205.3 m√z	50	100 - - -		RT : 1.00 min 5can# : (30,32) BP : m/z 168.9866 Int. : 33.19 Output m/z range : 204.7483 to 205.3954 Cut Level : 67.65 % 1802654	[Mass Spectrum] Data : 3-MS243-P-0003 Date : 26-Mar-2022 08:24 Sample: SKKU Univ. Prof. Kim Note : SMLab Mass analysis Inlet : Direct Ion Mode : EI+

[Elemental Composition]		Page: 1
Data : 6-MS276-P-008	Date : 08-Apr-2022 20:33	1:
Note : SMLab Mass analysis		IJ
Inlet : Direct	Ion Mode : EI+	
RT : 1.47 min	Scan#: 45	
Elements : C 16/0, H 12/0, O 3/0, N	2/0	
Mass Tolerance : 1000ppm, 3mmu	if $m/z < 3$, 5mmu if $m/z > 5$	
Unsaturation (U.S.) : -0.5 - 70.0		
16 C. 27 Di C. 27 Di C.	1000 N	
Observed m/z Int% Err[ppm / mmu]	U.S. Composition	
237.0785 100.0 -1.9 / -0.4	11.0 C 15 H 11 O 2 N	

[Elemental Composition]	Date : 13-May-2022 13:40	Page: 1
Sample: SKKU Univ. Prof. Kim		1k
Inlet : Direct	Ion Mode : EI+	
RT : 1.60 min Elements : C 22/0, H 15/0, O 2/0, N	1/0	
Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	11 m/z < 3, 5mmu 11 m/z > 5	
Observed m/z Int% Err[ppm / mmu]	U.S. Composition	

m/z					
	311.5	311.4	311.2 311.3	311.0 311.1	8
					10 -
					- 82
					- 86
					40 -
					50-
				,311.0941 	60 -
					- 22
					- 08
					- 26
		3.82 %	Cut Level : 3	n	RF : 1.60 ml BP : m/z 292 Output m/z r 1344237
			n Mode : EI+	Mass analysis ict Ion [MF-Linear] ie : Normal Ion [MF-Linear]	Note : SMLab Inlet : Dire Spectrum Typ
		:48	te : 13-May-2022 13	rum] R-CE38-P Dat J Univ. Prof. Kim	[Mass Spect Data : 18-H Sample: SKKU

[Elemental Composition] Data : 15-MS268-P2-016 Sample: SKKU Univ. Prof. Kim Note : SMLab Mass analysis	Date : 30-Mar-2022 14:28	Page: 1
Inlet : Direct RT : 0.47 min Elements : C 14/0, H 10/0, O 5/0, N Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	Ion Mode : EI+ Scan#: 15 1/0 if m/z < 3, 5mmu if m/z > 5	
Observed m/z Int% Err[ppm / mmu] 231.0530 100.0 -0.5 / -0.1	U.S. Composition 9.0 C 12 H 9 O 4 N	

[Elemental Composition]	Date : 26-Mar-2022 13:03	Page: 1
Sample: SKKU Univ. Prof. Kim Note · SMLab Mass analysis		1n
Inlet : Direct	Ion Mode : EI+ Scan#: 61	
Elements : C 10/0, H 10/0, O 3/0, N Mass Tolerance : 1000ppm, 3mmu	3/0 if m/z < 3, 5mmu if m/z > 5	
Unsaturation (U.S.) : -0.5 - 70.0		
Observed m/z Int% Err[ppm / mmu] 177.0426 100.0 +0.1 / +0.0	U.S. Composition 7.0 C 9 H 7 O 3 N	

[Elemental Composition]		Page: 1
Sample: SKKU. Univ. Prof. Kim	Date : 08-Oct-2022 14:14	
Note : SMLab Mass analysis Inlet : Direct	Ion Mode : EI+	10
Elements : C 10/0, H 10/0, O 2/0, N	Scan#: 30 1/0, S 1/0	
Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	if $m/z < 3$, 10mmu if $m/z > 10$	
Observed m/z Int% Err[ppm / mmu] 193.0198 86.6 +0.4 / +0.1	U.S. Composition 8.0 C9H7O2NS	

[Elemental Composition] Data : 8-MS266-P-007 Sample: SKMI Univ. Drof. Kim	Date : 31-Oct-2022 16:59	Page:	1
Note : SMLab Mass analysis Inlet : Direct	Ion Mode : EI+	1p	
RT : 0.60 min Elements : C 12/0, H 10/0, O 3/0, N Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	Scan#: 19 3/0 if m/z < 3, 10mmu if m/z > 10		I
Observed m/z Int% Err[ppm / mmu] 188.0585 100.0 -0.2 / +0.0	U.S. Composition 8.0 C 10 H 8 O 2 N 2		

[Elemental Composition] Data : 6-YV701-P-006 Sample: SKKU. Univ. Prof. Kim Note : SMLab Mass analysis Inlet : Direct RT : 1.80 min Elements : C 12/0, H 14/0, O 3/0, N Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	Page: Date : 31-Oct-2022 16:55 Ion Mode : EI+ Scan#: 55+54 1/0 if m/z < 3, 10mmu if m/z > 10	1
Observed m/z Int% Err[ppm / mmu] 191.0945 31.0 -0.7 / -0.1	U.S. Composition 6.0 C 11 H 13 O 2 N	
<pre>is Spectrum] is 6-vv781-P-026 is 6-vv781-P-026 is 5KKU. Uhiv. Prof. Kim is 5KKU. Uhiv. Pro</pre>		Z/W
[Ma: Data Samp Inlet Spect A: Outpu A:		

[Elemental Composition] Data : 14-MS247-P-015 Sample: SKKU Univ. Prof. Kim Note : SMLab Mass analysis	Date : 30-Mar-2022 14:25	Page: 1 1s
Inlet : Direct RT : 1.20 min Elements : C 15/0, H 15/0, O 2/0, N Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	Ion Mode : EI+ Scan#: (36,38)+32+32+31+31 /1/0 . if m/z < 3, 5mmu if m/z > 5	
Observed m/z Int% Err[ppm / mmu] 217.1103 17.3 +0.1 / +0.0	U.S. Composition 7.0 C 13 H 15 O 2 N	

[Elemental Composition] Data : 12-MS208-P-013	Date : 30-Mar-2022 14:20	Page: 1
Sample: SKKU Univ. Prof. Kim		1t
Note : SMLab Mass analysis		1 1
Inlet : Direct	Ion Mode : EI+	
RT : 0.97 min	Scan#: (29,31)	
Elements : C 12/0, H 12/0, O 2/0, N	1/0	
Mass Tolerance : 1000ppm, 3mmu	if $m/z < 3$. Smmu if $m/z > 5$	
Unsaturation (U.S.) : -0.5 - 70.0		
Observed m/z Int% Err[pom / mmu]	U.S. Composition	
189.0787 100.0 -1.4 / -0.3	7.0 C 11 H 11 O 2 N	

[Elemental Composition]		Page: 1
Data : FAB-SG-93-P-003	Date : 25-Mar-2022 16:08	-
Sample: SKKU Univ. Prof. Kim	r	
Note : SM Lab Research Center		3a
Inlet : Reserv.	Ion Mode : FAB+	
RT : 3.38 min	Scan#: (101,104)+100+104+104	
Elements : C 25/0, H 25/0, O 5/0, N	1/0, F 3/0, Ir 1/0	
Mass Tolerance : 1000ppm, 3mmu	if $m/z < 3$, 10mmu if $m/z > 10$	
Unsaturation (U.S.) : -0.5 - 80.0		
Observed m/z Int% Err[ppm / mmu]	U.S. Composition	
641.1362 100.0 -0.4 / -0.3	12.0 C 24 H 25 O 4 N F 3 Ir	

[Elemental Composition] Data : 8-SG73-P-010 Sample: SKKU Univ. Prof. Kim	Date : 11-Mar-2022 17:57	Page: 1
Note : SMLab Mass analysis		
Inlet : Direct	Ion Mode : EI+	
RT : 1.14 min	Scan#: 35	
Elements : C 18/0, H 15/0, O 3/0.	N 3/0 Cl 1/0	
Mass Tolerance : 1000ppm, 3m	mu if $m/z < 3$, 5mmu if $m/z > 5$	
Unsaturation (U.S.) : -0.5 - 70.0		
Observed m/z Int% Err[ppm / mmu]] U.S. Composition	
340.0615 100.0 +0.1 / +0	.0 13.0 C 18 H 13 O 3 N 2 Cl	

[Elemental Composition] Data : 9-SG74-P-011	Date : 11-Mar-2022 18:00	Page: 1
Sample: SKKU Univ. Prof. Kim Note · SMLab Mass analysis		3c
Inlet : Direct RT : 0.87 min Elements : C 20/0, H 15/0, O 3/0, N Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	Ion Mode : EI+ Scan#: 27 3/0, F 3/0 if m/z < 3, 5mmu if m/z > 5	
Observed m/z Int% Err[ppm / mmu] 374.0879 100.0 +0.3 / +0.1	U.S. Composition 13.0 C 19 H 13 O 3 N 2 F 3	

374.3 m/z	374.2	374.1	374.0	373.9	373.8	1
						ت ا ا
		,374.0879				188-
						t
		: 75.74 %	Cut Level	n# : 27 . : 99.94 2 to 374.3337	Scar 2879 Int nge : 373.7110	RT : Ø.87 min BP : m/z 374.0 Output m/z ran 1548534
			Mode : EI+	[MF~Linear]	Mass analysis t : Normal Ion	Note : SMLab N Inlet : Direc: Spectrum Type
		00:81	e : 11-Mar-202	1 m	um] 4-P-0]] Univ. Prof. K	[Mass Spectru Data : 9-SG74 Sample: SKKU L

[Elemental Composition]	Date · 14-Feb-2022 11·38	Page: 1
Sample: SKKU Univ. Prof. Kim Note : SMLab Mass analysis	Date . 14-reb-2022 11.50	3d
Inlet : Direct RT : 1.50 min Elements : C 20/0, H 15/0, O 4/0, N Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	Ion Mode : EI+ Scan#: (45,47) 2/0 if m/z < 3, 5mmu if m/z > 5	
Observed m/z Int% Err[ppm / mmu] 306.1002 100.0 -0.7 / -0.2	U.S. Composition 13.0 C 18 H 14 O 3 N 2	

[Elemental Composition] Data : 17-SG-80-P-024 Sample: SKKU Univ. Prof. Kim Note : SMLab Mass analysis	Date : 25-May-2022 14:03	Page: 1
Inlet : Direct RT : 1.92 min Elements : C 20/0, H 15/0, O 3/0, N Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	Ion Mode : EI+ Scan#: (54,63) 2/0, Cl 1/0 if m/z < 3, 5mmu if m/z > 5	
Observed m/z Int% Err[ppm / mmu] 340.0612 100.0 -0.8 / -0.3	U.S. Composition 13.0 C 18 H 13 O 3 N 2 Cl	

S156

[Elemental Composition] Data : 7-SG83-P-008 Sample: SKKU Univ. Prof. Kim	Date : 26-Mar-2022 08:42	Page: 1 3g
Inlet : Direct	Ion Mode : EI+	
RT : 1.24 min Flements : C 20/0 H 16/0 O 3/0 N	Scan#: 38 3/0 Br 1/0	
Mass Tolerance : 1000ppm, 3mmu	if $m/z < 3$, 5mmu if $m/z > 5$	
Onsaturation (0.5.) : -0.5 - 70.0		
Observed m/z Int% Err[ppm / mmu] 384.0108 100.0 -0.4 / -0.2	U.S. Composition 13.0 C 18 H 13 O 3 N 2 Br	

[Elemental Composition]	Date . 26-Mar-2022 08.37	Page: 1
Sample: SKKU Univ. Prof. Kim	Date : 20-Mai-2022 00.57	3h
Note : SMLab Mass analysis		
Inlet : Direct	Ion Mode : EI+	
RT : 2.97 min	Scan#: 90	
Elementa : C 20/0, H 16/0, O 3/0, N	3/0	
Mass Tolerance : 1000ppm, 3mmu	if $m/z < 3$, $5mmu$ if $m/z > 5$	
Unsaturation (U.S.) : -0.5 - 70.0		
Observed m/z Int% Err[ppm / mmu]	U.S. Composition	
320.1161 100.0 +0.2 / +0.1	13.0 C 19 H 16 O 3 N 2	

[Elemental O Data : 9-SG Sample: SKKU Note : SMLab Inlet : Direc RT : 0.97 min Elements : C Mass Tolerand Unsaturation Observed m/z 324.0906	Composition] 35-P-009 Univ. Prof. Kim Mass analysis ct 20/0, H 16/0, O ce : 1000ppr (U.S.) : -0.5 - Int% Err[ppm, 100.0 -1.3,	Date : Ion Mc Scan#: 3/0, N 3/0, F n, 3mmu if m/z 70.0 / mmu] U.S. / -0.4 13.0	26-Mar-2022 ode : EI+ (26,34) 1/0 < 3, 5mmu if Composition C 18 H 13 O	08:44 m/z > 5 3 N 2 F	Page: 1 3i
B 324.0 324.1 32 ² .2 324.3 324.4 m/z	58	102-		Spectrum Type : Normal Ion [MF-Linear] RT : 0.97 min Scan# : (26,34) BP : m/z 324.0906 Int. : 31.73 Output m/z range : 323.3226 to 324.4978 Cut Level : 62.57 % 5106250	[Mass Spectrum] Data : 9-5G85-P-2029 Sample: SKKU Univ. Prof. Kim Note : SMLab Mass analysis Inlet : Direct Ion Mode : E]+

[Elemental Composition]	Data 12 Mars 2022 12:47	Page: 1
Data : 21-HR-SG108-P Sample: SKKU Univ. Prof. Kim	Date : 13-May-2022 13:47	3i
Note : SMLab Mass analysis	Ion Mode · EI+	
Inlet : Direct RT · 1 14 min	Scan#: 35	
Elements : C 25/0, H 18/0, O 3/0, N Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	2/0 if $m/z < 3$, 5mmu if $m/z > 5$	
Observed m/z Int% Err[ppm / mmu] 356.1157 68.9 -1.2 / -0.4	U.S. Composition 16.0 C 22 H 16 O 3 N 2	

8	S		188	150 -	Spectrum T RT : 1.14 BP : m/z 3 Output m/z 1787370 1	Note : SML Inlet : Di	[Mass Spe Data : 21 Cample: SK
					rpe : Normal Ion [M Scan# 22.0963 Int. range : 355.7811 t	ect	HR-SG108-P U Univ. Prof. Kim
356.0					Linears : 35 : 99,96 : 356,4011 Cut	Ion Mode :	Date : 13-M
356.1 3		,356.1157			Level : 53.68 %	EI+	lay-2022 13:47
56.2 356.3							

[Elemental Composition] Data : 19-HE-CE39-P Sample: SKKU Univ. Prof. Kim	Date : 13-May-2022 13:42	Page: 1 3k
Note : SMLab Mass analysis		
Inlet : Direct	Ion Mode : EI+	
RT : 1.07 min	Scan#: 33	
Elements : C 30/0, H 20/0, O 3/0, N	3/0	
Mass Tolerance : 1000ppm, 3mmu	if $m/z < 3$, $5mmu$ if $m/z > 5$	
Unsaturation (U.S.) : -0.5 - 70.0		
	U.S. Composition	
Observed m/z Int Err [ppm / mmu]		
430.1314 57.2 -0.8 / -0.4	21.0 C 28 H 18 O 5 N 2	

[Elemental Composition] Data : 15-SG-101-P-022 Sample: SKKU Univ. Prof. Kim	Date : 25-May-2022 13:57	Page: 1
Note : SMLab Mass analysis Inlet : Direct RT : 2.40 min Elements : C 20/0, H 15/0, O 5/0, N Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	Ion Mode : EI+ Scan#: (63,83) 2/0 if m/z < 3, 5mmu if m/z > 5	
Observed m/z Int% Err[ppm / mmu] 350.0901 100.0 -0.4 / -0.2	U.S. Composition 14.0 C 19 H 14 O 5 N 2	

[Elemental Composition] Data : 16-SG-91-P-023 Sample: SKKU Univ. Prof. Kim Note : SMLab Mass analysis	Date : 25-May-2022 14:00	Page: 1 3m
Inlet : Direct RT : 1.77 min Elements : C 23/0, H 20/0, O 3/0, N Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	Ion Mode : EI+ Scan#: 54+48+38+42 3/0 if m/z < 3, 5mmu if m/z > 5	
Observed m/z Int% Err[ppm / mmu] 359.1270 100.0 +0.1 / +0.0	U.S. Composition 15.0 C 21 H 17 O 3 N 3	

[Elemental Composition] Data : 18-SG-97-re-P2-025 Sample: SKKU Univ. Prof. Kim Note : SMLab Mass analysis	Date : 25-May-2022 14:06	Page: 1 3n
Inlet : Direct RT : 1.47 min Elements : C 18/0, H 15/0, O 4/0, N Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	Ion Mode : EI+ Scan#: 45+60+61+65+61 2/0 if m/z < 3, 5mmu if m/z > 5	
Observed m/z Int% Err[ppm / mmu] 296.0796 35.9 -0.4 / -0.1	U.S. Composition 12.0 C 16 H 12 O 4 N 2	

[Elemental Composition] Data : 20-SG87-P-020 Sample: SKKU Univ. Prof. Kim	Date : 30-Mar-2022 14:45	Page: 1 3s
Note : SMLad Mass analysis Inlet : Direct	Ion Mode : EI+	
RT : 1.40 min	Scan#: (37,49)	
Elements : C 22/0, H 22/0, O 3/0, N	2/0	
Unsaturation (U.S.) : -0.5 - 70.0	11 m/z < 3, 5mmu 11 m/z > 5	
Observed m/z Int% Err[ppm / mmu]	U.S. Composition	

[Elemental Composition]		Page: 1
Data : 26-MS-274-7-P1-033	Date : 25-May-2022 14:30	
Note : SMLab Mass analysis		3t
Inlet : Direct	Ion Mode : EI+	
RT : 1.62 min	Scan#: (47,52)	
Elements : C 20/0, H 20/0, O 3/0, N	1 2/0	
Mass Tolerance : 1000ppm, 3mmu	1 if m/z < 3, $5 mmu if m/z > 5$	
Unsaturation (U.S.) : -0.5 - 70.0		
Observed m/z Int% Err[ppm / mmu]	U.S. Composition	
308,1160 54.9 -0.4 / -0.1	12 0 C 18 H 16 O 3 N 2	

S169

[Elemental Composition]	Data . 12-May-2022 13.35	Page: 1
Sample: SKKU Univ. Prof. Kim	Date . 15-May-2022 15.55	4b
Note : SMLab Mass analysis		
Inlet : Direct	Ion Mode : EI+	
RT : 0.97 min	Scan#: (27,33)	
Elements : C 20/0, H 20/0, O 3/0, N	3/0	
Mass Tolerance : 1000ppm, 3mmu	if $m/z < 3$. Smmu if $m/z > 5$	
Ingaturation (ILC) 0.5 . 70.0	TE NY D C DY DIANG IE NY E P D	
0115aturation (0.5.) : -0.5 - 70.0		
Observed m/z Int% Err[ppm / mmu]	U.S. Composition	
334.1318 100.0 +0.2 / +0.1	13.0 C 20 H 18 O 3 N 2	

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	8-1
	- 20
	40 -
	60 -
	80 -
334.1318	100 -
	- 021
	140 -
	160 -
	- 281
	E-002
Cut Level : 68.38 %	RT : Ø.97 min Scan# : (27,33) BP : m/z 334.1318 Int. : 39.01 Output m/z range : 333.8597 to 334.5558
Made : EI+	Inlet : Direct Ion [MF-Linear]
: 13-May-2022 13:35	Data : 16-HR-MS286-P Data : SKKU Univ. Prof. Kim Note : SMLab Mass analysis
	[Mass Spectrum]

[Elemental Composition]	Date · 11_Mar_2022 17.50	Page: 1
Sample: SKKU Univ. Prof. Kim	Date . 11-Mai-2022 17.30	4c
Inlet : Direct RT : 2.00 min Elements : C 22/0, H 20/0, O 4/0, N Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	Ion Mode : EI+ Scan#: 61+64+66 3/0 if m/z < 3, 5mmu if m/z > 5	
Observed m/z Int% Err[ppm / mmu] 350.1268 100.0 +0.4 / +0.1	U.S. Composition 13.0 C 20 H 18 O 4 N 2	

[Elemental Composition] Data : 18-SG63-P-018 Sample: SKKU Univ. Prof. Kim Note : SMLab Mass analysis	Date : 30-Mar-2022 14:35	Page: 1 4d
Inlet : Direct RT : 1.87 min Elements : C 21/0, H 16/0, O 3/0, N Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	Ion Mode : EI+ Scan#: (55,59)+51 2/0, F 3/0 if m/z < 3, 5mmu if m/z > 5	
Observed m/z Int% Err[ppm / mmu] 388.1032 100.0 -0.8 / -0.3	U.S. Composition 13.0 C 20 H 15 O 3 N 2 F 3	

[Elemental Composition] Data : 17-HR-MS287-P Sample: SKKU Univ. Prof. Kim	Date : 13-May-2022 13:37	Page: 1 4e
Note : SMLab Mass analysis		
Inlet : Direct	Ion Mode : EI+	
RT : 1.37 min	Scan#: (39,45)	
Flementa . C 20/0 H 20/0 0 3/0 N	3/0	
Brementes : C 20/0, H 20/0, O 5/0, H		
Mass Tolerance : 1000ppm, 3mmu	11 m/z < 3, $5 mmu 11 m/z > 5$	
Unsaturation (U.S.) : -0.5 - 70.0		
Observed m/z Int% Err[ppm / mmu]	U.S. Composition	
334.1318 43.2 +0.1 / +0.0	13.0 C 20 H 18 O 3 N 2	

						[Mass Data Samplt Samplt Inlet Specth RT : BP : r Outpu: 137
33	10	1	30	40 -	50 	 s Spec : 17- : SML: : SML: : SML: : Dir : Dir : Dir : Dir : 1.37 m 1.37 m 1.37 m 1.37 m
33.9						range
-] 287-P 287-2 287-2 297-2 297-2 297-2 297-2 297-2 297-2 297-2 297-2 207-
						ysis ysis Scan Int.
						# :: 33
334.1						D Inear 19,45) 34,567
					,334.	ate : on Moc
334.					1318	13-May le : E Cut I
2						-evel
33						: 18.9
-ω						% IE
ω.						
34.4						
-						
334.5						
z/w						

[Elemental Composition]	Data - 11 Mar 2022 17-54	Page: 1
Sample: SKKU Univ. Prof. Kim Note : SMLab Mass analysis	Date : 11-Mar-2022 17:54	4f
Inlet : Direct RT : 1.44 min Elements : C 22/0, H 22/0, O 6/0, N Mass Tolerance : 1000ppm, 3mmu	Ion Mode : EI+ Scan#: 44 3/0 if m/z < 3, 5mmu if m/z > 5	
Unsaturation (U.S.) : -0.5 - 70.0		
Observed m/z Int% Err[ppm / mmu] 380.1368 96.9 -1.1 / -0.4	U.S. Composition 13.0 C 21 H 20 O 5 N 2	

											[Ma Data Data Spect Spect RT : BP : 9
2	- 85	40 -	62 -	- 28	100 -	128 -	148 -	160 -	- 081	200-	S4665
-											SGB SKKU L SKKU SKKU SKKU SKKU SKKU SKKU SKU SKU SK
38											nge :
0.0											Prof Prof analy rmal
											r. Ki /sis Jon Scan Int. Jot.
388.											
					-`ω						.1nea 14 12.37
ω					82.13						Date Ion 258
80.2					836						
-											: El
285											202 +
ω :											: 82
-											5.4
380.											~
1											
32											
30.5											
-											
1 1 1											
1.6											

[Elemental Composition Data : 5-CE-110-P-005 Sample: SKKU. Univ. Prof Note : SMLab Mass analys Inlet : Direct RT : 1.89 min Elements : C 20/0, H 21/ Mass Tolerance : 10 Unsaturation (U.S.) : -0] . Kim is 0, 0 3/0, N 00ppm, 3mmu .5 - 70.0	Date : Ion Mo Scan#: 3/0, F if m/z	31-Oct-2022 1 de : EI+ (56,59) 1/0 < 3, 10mmu if n	5:52 n/z > 10	Page: 1 4g
338.1065 100.0 -	ppm / mmu] 0.4 / -0.1	0.S. 13.0	Composition C 19 H 15 O 3	N 2 F	
<pre>[Mass Spectrum] Data : 5-CE-118-P-025 Data : 5-CE-118-P-025 Sample: SKKU. Univ. Prof. Kim Note : SMLab Mass analysis Inlet : Direct Spectrum Type : Normal Ion [MF-Linear] RT : 1.89 min</pre>	182 -	148 - 128 -	128 - 1265 88 - 62	28 - 28	a37.9 338.0 338.1 338.2 338.2 338.2 m [/] z

[Elemental Composition] Data : 5-SG59-IP-007 Sample: SKKU Univ. Prof. Kim	Date : 11-Mar-2022 17:47	Page: 1 4h
Note : SMLab Mass analysis Inlet : Direct RT : 1.74 min Elements : C 23/0, H 20/0, O 3/0, N Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	Ion Mode : EI+ Scan#: 53+51 3/0 if m/z < 3, 5mmu if m/z > 5	
Observed m/z Int% Err[ppm / mmu] 370.1314 97.4 -0.9 / -0.3	U.S. Composition 16.0 C 23 H 18 O 3 N 2	

[Elemental Composi Data : HR-SG61-P-0 Sample: SKKU Univ. : Note : SMLab Mass an Inlet : Direct RT : 0.94 min Elements : C 22/0, H Mass Tolerance Unsaturation (U.S.) Observed m/z Int% 346.1316 96.7	tion] 09 Prof. Kim nalysis H 20/0, O 4/0, N : 1000ppm, 3mmu : -0.5 - 70.0 Err[ppm / mmu] -0.5 / -0.2	Date : Ion Mod Scan#: 2/0 if m/z < U.S. 14.0	14-Feb-2022 : de : EI+ 29 3, 5mmu if n Composition C 21 H 18 O 3	Page: 1 4i n/z > 5
Z 345.9 346.0 346.1 346.2 346.3 346.4 346.5 m/z	50	102		[Mass Spectrum] Data : HR-SG6[-P-B09 Date : [4-Feb-2022 11:33 Sample: SKKU Univ. Prof. Kim Note : SMLab Mass analysis Inlet : Direct Spectrum Type : Normal Ion [MF-Linear] RT : 0.94 min Scan# : 29 BP : m/z 330.9752 Int. : 22.39 Output m/z range : 345.8849 to 346.5885 Out Level : 75.24 %

[Elemental Composition] Data : HR-SG60-P-010	Date : 14-Feb-2022 11:35	Page: 1
Sample: SKKU Univ. Prof. Kim		4j
Note : SMLab Mass analysis		
Inlet : Direct	Ion Mode : EI+	
RT : 1.09 min	Scan#: (33,34)+43	
Elements : C 18/0, H 15/0, O 4/0, N	2/0. S 1/0	
Mass Tolerance : 1000ppm, 3mmu	if $m/z < 3$, 5mmu if $m/z > 5$	
Unsaturation (U.S.) : -0.5 - 70.0		
22		
Observed m/z Int% Err[ppm / mmu]	U.S. Composition	
326.0726 22.8 +0.2 / +0.1	13.0 C 17 H 14 O 3 N 2 S	

[Elemental Composition] Data : 2-CE43-P-004 Sample: SKKU Univ. prof. Kim	Date : 17-Jun-2022 14:20	Page: 1 4k
Note : SMLab Mass analysis Inlet : Direct RT : 1.32 min Elements : C 20/0, H 23/0, O 3/0, N Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	Ion Mode : EI+ Scan#: (40,41) 3/0 if m/z < 3, 5mmu if m/z > 5	
Observed m/z Int% Err[ppm / mmu] 314.1632 100.0 +0.4 / +0.1	U.S. Composition 9.0 C 18 H 22 O 3 N 2	

[Elemental Composition] Data : 8-MS256-P1-014	Date : 03-Aug-2022 18:57	Page:	1
Sample: SKKU Univ. prof. Kim		5a	
Inlet : Direct	Ion Mode : EI+		
RT : 1.00 min	Scan#: 31+34		
Elements : C 16/0, H 15/0, O 4/0, N Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	1/0 if m/z < 3, 5mmu if m/z > 5		
	U.C. Composition		
245.0687 53.5 -0.3 / -0.1	9.0 C 13 H 11 O 4 N		

[Elemental Composition]	Date • 13-May-2022 13•32	Page: 1
Sample: SKKU Univ. Prof. Kim Note : SMLab Mass analysis	Date . 15 May 2022 19:52	5b
Inlet : Direct RT : 2.04 min Elements : C 25/0, H 28/0, O 3/0, N Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	Ion Mode : EI+ Scan#: (59,65) I 1/0 L if m/z < 3, 5mmu if m/z > 5	
Observed m/z Int% Err[ppm / mmu] 363.1834 100.0 -0.1 / +0.0	U.S. Composition 12.0 C 23 H 25 O 3 N	

[Elemental Composition]	Date · 30-Mar-2022 14.22	Page: 1
Sample: SKKU Univ. Prof. Kim Note : SMLab Mass analysis	bace . 50-Mai -2022 14.52	5c
Inlet : Direct RT : 1.00 min Florents : C.20/0 H.25/0 0.2/0 N	Ion Mode : EI+ Scan#: 31	
Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	1/0 if m/z < 3, 5mmu if m/z > 5	
Observed m/z Int% Err[ppm / mmu] 413.2351 41.6 -0.8 / -0.3	U.S. Composition 14.0 C 28 H 31 O 2 N	

[Elemental Composition]	Data - 04 Mar 2002 11 40	Page: 1
Sample: SKKU Univ. Prof. KIM	Date : 04-May-2022 11:49	5d
Inlet : Direct RT : 2.44 min Elements : C 40/0, H 35/0, O 2/0, N	Ion Mode : EI+ Scan#: (73,75)+74 6/0	
Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	if $m/z < 3$, 5mmu if $m/z > 5$	
Observed m/z Int% Err[ppm / mmu] 579.2629 100.0 -0.9 / -0.5	U.S. Composition 24.0 C 37 H 33 O 2 N 5	

[Elemental Composition]	Data - 20 Mar 2022 12.25	Page: 1
Sample: SKKU Univ. Prof. Kim	Date : 30-Mar-2022 12:25	50
Note : SM Lab Research Center		Je
Inlet : Reserv.	Ion Mode : FAB+	
RT : 2.65 min	Scan#: (79,82)	
Elements : C 32/0, H 40/0, O 5/0, 1	N 3/0	
Mass Tolerance : 1000ppm, 3mm	u if $m/z < 3$, 10mmu if $m/z > 10$	
Unsaturation (U.S.) : -0.5 - 80.0		
Observed m/z Int% Err[ppm / mmu] 518.3019 100.0 +0.0 / +0.	U.S. Composition 0 13.5 C 31 H 40 O 4 N 3	

[Elemental Composition]	Data . 12 Mar 2022 12.44	Page: 1
Sample: SKKU Univ. Prof. Kim Note : SMLab Mass analysis	Date : 13-May-2022 13:44	6a
Inlet : Direct RT : 0.99 min Elements : C 20/0, H 18/0, O 5/0, M Mass Tolerance : 1000ppm, 3mm Unsaturation (U.S.) : -0.5 - 70.0	Ion Mode : EI+ Scan#: (29,32) N 2/0 u if m/z < 3, 5mmu if m/z > 5	
Observed m/z Int% Err[ppm / mmu] 364.1058 44.8 -0.3 / -0.1	U.S. Composition 1 14.0 C 20 H 16 O 5 N 2	

[Elemental Composition] Data : 19-MS-291-P4-026 Sample: SKKU Univ. Prof. Kim Note : SMLab Mass analysis	Date : 25-May-2022 14:10	Page: 1 6b
Inlet : Direct RT : 2.19 min Elements : C 30/0, H 33/0, O 4/0, N Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	Ion Mode : EI+ Scan#: (57,76) 2/0 if m/z < 3, 5mmu if m/z > 5	
Observed m/z Int% Err[ppm / mmu] 482.2204 100.0 -0.3 / -0.2	U.S. Composition 17.0 C 30 H 30 O 4 N 2	

[Elemental Composition] Data : 9-SG102-P-011 Sample: SKKU Univ. Prof. Kim	Date : 08-Apr-2022 20:40	Page: 1 6c
Note : SMLab Mass analysis Inlet : Direct RT : 1.50 min Elements : C 37/0, H 37/0, O 3/0, N Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	Ion Mode : EI+ Scan#: (44,48)+43 2/0 if m/z < 3, 5mmu if m/z > 5	
Observed m/z Int% Err[ppm / mmu] 532.2728 100.0 +0.3 / +0.2	U.S. Composition 19.0 C 35 H 36 O 3 N 2	

[Elemental Composition]	Date 07 New 0000 10 17	Page: 1
Sample: SKKU Univ. Prof. Kim Note : SM Lab Research Center	Date : 27-May-2022 10:17	6d
Inlet : Reserv. RT : 3.07 min Elements : C 45/0, H 40/0, O 3/0, N Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 80.0	Ion Mode : FAB+ Scan#: 93 6/0 if m/z < 3, 10mmu if m/z > 10	
Observed m/z Int% Err[ppm / mmu] 699.3080 100.0 -0.5 / -0.4	U.S. Composition 28.5 C 44 H 39 O 3 N 6	

[Elemental Composition]	Data . 00 300 2022 20.42	Page: 1
Data : 10-SG106-P2-012 Sample: SKKU Univ. Prof. Kim Note : SMLab Mass analysis	Date : 08-Apr-2022 20:43	6e
Inlet : Direct RT : 1.44 min Elements : C 40/0, H 45/0, O 5/0 Mass Tolerance : 1000ppm, 3 Unsaturation (U.S.) : -0.5 - 70.	Ion Mode : EI+ Scan#: (43,45)), N 5/0 Bmmu if m/z < 3, 5mmu if m/z > 5 .0	
Observed m/z Int% Err[ppm / mn 636.3311 95.1 -0.2 / -	nu] U.S. Composition -0.1 19.0 C 38 H 44 O 5 N 4	

[Elemental Composition]	Date . 25 Mar 2022 14.22	Page: 1
Sample: SKKU Univ. Prof. Kim Note : SMLab Mass analysis	Date : 25-May-2022 14:22	9a
Inlet : Direct RT : 1.82 min Elements : C 25/0, H 30/0, O 4/0, N Mass Tolerance : 1000ppm, 3mmu	Ion Mode : EI+ Scan#: (48,63) 2/0 if m/z < 3, 5mmu if m/z > 5	
Unsaturation (U.S.) : -0.5 - 70.0		
Observed m/z Int% Err[ppm / mmu]	U.S. Composition 12.0 C 23 H 26 O 4 N 2	

[Elemental Composition] Data : 25-MS-294-P-032 Sample: SKKU Univ. Prof. Kim Note : SMLab Mass analysis	Date : 25-May-2022 14:27	Page: 1 9b
Inlet : Direct RT : 1.77 min Elements : C 23/0, H 25/0, O 4/0, N Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 70.0	Ion Mode : EI+ Scan#: (50,58) 2/0 if m/z < 3, 5mmu if m/z > 5	
Observed m/z Int% Err[ppm / mmu] 366.1577 100.0 -0.8 / -0.3	U.S. Composition 12.0 C 21 H 22 O 4 N 2	

[Elemental Composition]	D	Page: 1
Sample: SKKU Univ. Prof. Kim Note : SM Lab Research Center	Date : 25-Mar-2022 16:08	Iridacycle-1a
Inlet : Reserv. RT : 3.38 min Elements : C 25/0, H 25/0, O 5/0, N Mass Tolerance : 1000ppm, 3mmu Unsaturation (U.S.) : -0.5 - 80.0	Ion Mode : FAB+ Scan#: (101,104)+100+104+10 1/0, F 3/0, Ir 1/0 if m/z < 3, 10mmu if m/z > 1	4 0
Observed m/z Int% Err[ppm / mmu] 641.1362 100.0 -0.4 / -0.3	U.S. Composition 12.0 C 24 H 25 O 4 N F 3	Ir

