1	Supplementary Information
2	A functional RNA/DNA circuit for one-pot detection of
3	SARS-CoV-2 RNA
4	Dayong Li ^a , Wenting Cheng ^a , Zhiqiang Hou ^a , Chengjie Duan ^a , Yanheng Yao ^a , Yan
5	Chen ^a , Gang Yang ^{b, *} , Zhouxiang Cheng ^{c, *} , Yang Xiang ^{a, d, *}
6	
7	^a State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences,
8	Nanjing University, Nanjing 210023, People's Republic of China
9	^b Pulmonary and Critical Care Department, Wuhu Hospital of East China Normal
10	University, Wuhu 241000, People's Republic of China
11	° Center for Disease Control and Prevention, Wuhu 241000, People's Republic of China
12	^d State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing
13	100191, People's Republic of China
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	*Corresponding authors: xiangy@nju.edu.cn (Y. Xiang); 13855306767@163.com (G
26	Yang); czx6404@126.com (Z. Cheng)

27 Materials and Reagents.

All DNA sequences used in this work including FQ fluorescent reporters were 28 synthesized by Sangon Biotech. Co. Ltd. (Shanghai, China). The RNA nucleotides were 29 obtained from Genscript. Bio Tech (Nanjing China). Refer to Table S1 for the detailed 30 sequence. The target RNA used in this research is a synthetic gene according to the 31 ORF1ab fragment of the SARS-CoV-2 RNA (GenBank, NC 045512). EnGen® Lba 32 Cas12a (M0653T) and 10 × NEBuffer r2.1 reaction buffer (500 mM NaCl, 100 mM 33 Tris-HCl, 100 mM MgCl2, 1000 µg/ml Recombinant Albumin, pH 7.9@25°C) were 34 obtained from New England Biolabs (Beijing China). RNase inhibitor was bought from 35 Takara Bio. (Dalian China). DEPC-H2O was obtained from Sangon Biotech. Co. Ltd. 36 (Shanghai, China), and all reagents and solutions were prepared in an RNase-free 37 environment with DEPC-treated deionized water. The Millipore purification system 38 39 was used to prepare the ultrapure water required for the experiments. Human serum samples and the total RNA clinical specimens were provided by the Center for Disease 40 Control and Prevention of Wuhu, China. The research was ratified by the scientific 41 ethical committee of the Wuhu Hospital of East China Normal University (the project 42 number is 2020dx2-1), and informed consent was procured in all cases. 43

44

45 Apparatus.

Fluorescent analysis was operated on a TECAN Infinite 200Pro sunrise microplate
reader. Native polyacrylamide gel electrophoresis was operated on a Tanon EPS300
electrophoresis machine. The gel imaging was operated on a CLNX GenoSens 2100
imaging system.

50

51 Native polyacrylamide gel electrophoresis.

The proposed gRNA-based HCR was validated by using 12% native gel electrophoresis. The 20 μ L reaction system contains 100nM DNA activator (DH), 100nM gRNA (RH), 10nM target RNA and 1×NEBuffer r2.1 reaction buffer. After mixing all the components, react at 37°C for 150min. After the reaction, 10 μ l of the reaction solution was incubated with nucleic acid dye for 3min, and then injected into 57 12% PAGE. Finally, PAGE was run at 120V for 1 hour in the electrophoresis machine
58 (Tanon EPS300), and the result was visualized by an imaging system (CLNX GenoSens
59 2100).

60

61 Specific protocol for detection of SARS-CoV-2 RNA.

First, different concentrations of target RNA were added to a reaction system with a 62 total volume of 50µL, which contained 4µl of 1µM DH, 2µL of 1µM RH, 40nM, 3µL 63 of 1µM LbCas12a(cpf1), 300nM of fluorescent probe FQ Reporter, and 1×NEBuffer 64 r2.1 reaction buffer (50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl2, 100 µg/ml 65 Recombinant Albumin, pH 7.9@25°C). Next, the reaction was carried out at 37°C for 66 60 minutes. After the reaction, the fluorescence intensity at 525 nm (Excitation 485nm) 67 was measured by using a microplate reader (TECAN Infinite 200Pro). In addition, it is 68 69 worth noting that when detecting target RNA in human serum and saliva samples, it is necessary to add RNase inhibitor for treatment to avoid RNA degradation. Other than 70 that, the operation steps are the same as those described above. All solutions involved 71 in the experiments were prepared with DEPC-H2O, and all nucleotides were diluted 72 with DEPC-treated PBS. 73

74

75 Extraction and RT-qPCR of SARS-COV-2 RNA from clinical samples.

Total RNA was extracted from each nasopharyngeal swab sample using a nucleic acid extraction kit according to the manufacturer's instructions (Tianlong Technologies, Xian, China) and stored in nuclease-free environment at -80°C for next use. The RT-q-PCR verification of clinical samples is carried out with the 2019-nCoV nucleic acid detection kit (Daangene, Guangzhou China).

- 81
- 82
- 83
- 84
- 85
- 86

Name	Sequence (5' to 3')			
DH (stem 13bp)	ACTGAAGCATGGGTTCGCGGAGTTGCAAACTTGA			
	GCAACTCCGCGAA			
DH (stem 14bp)	ACTGAAGCATGGGTTCGCGGAGTTGCAAACTTGA			
	GCAACTCCGCGAAC			
DH (stem 15bp)	ACTGAAGCATGGGTTCGCGGAGTTGCAAACTTGA			
	GCAACTCCGCGAACC			
DH (stem 16bp)	ACTGAAGCATGGGTTCGCGGAGTTGCAAACTTGA			
	GCAACTCCGCGAACCC			
RH (stem 12bp)	UAAUUUCUACUAAGUGUAGAUCAACUCCGCGAA			
	CCCAUGCUUCUUCGCGGAGUUGCUCAAGUUUG			
RH (stem 13bp)	UAAUUUCUACUAAGUGUAGAUCAACUCCGCGAA			
	CCCAUGCUUCGUUCGCGGAGUUGCUCAAGUUUG			
RH (stem 14bp)	UAAUUUCUACUAAGUGUAGAUCAACUCCGCGAA			
	CCCAUGCUUCGGUUCGCGGAGUUGCUCAAGUUU			
	G			
RH (stem 15bp)	UAAUUUCUACUAAGUGUAGAUCAACUCCGCGAA			
	CCCAUGCUUCGGGGUUCGCGGAGUUGCUCAAGUU			
	UG			
Target virus RNA	CAACUCCGCGAACCCAUGCUUCAGU			
Single-base	CAAGUCCGCGAACCCAUGCUUCAGU			
mismatched RNA				
(M1)				
Two-base	CAAGUCCGCGAACACAUGCUUCAGU			
mismatched RNA				
(M2)				
Three-base	CAAGUCCGCGAACACAUGCCUCAGU			
mismatched RNA				
(M3)				
miR-21	UAGCUUAUCAGACUGAUGUUGA			
Fluorescence	FAM-TTATT-BHQ1			
reporter (FQ)				

87 Table S1. DNA and RNA sequences used in this study.

90 Figure S1. Influence of the concentration of DH and RH (A) and the ratio of DH and

- 91 RH (B) on the performance of the method. Error bars: SD, n = 3.

- 0.4

104 Figure S2. Optimization of LbCas12a protein concentration (A), FQ reporter
105 concentration (B), and reaction time (C). The concentration of target RNA is 1nM.
106 Error bars: SD, n = 3.

	Sample	Samples	Added(nM)	Found(nM)	Recovery	RSD (%)
	number				(%)	
=	1	10% Serum	0.1	0.111	111	3.6
	2	10% Serum	1	0.999	99.9	3.4
	3	10% Saliva	0.1	0.105	105	4.4
	4	10% Saliva	1	1.01	101	6.1
	5	Buffer	0.1	0.107	107	6.1
	6	Buffer	1	0.994	99.4	5.1
27						
28 29						
30						
31						
32						
33						
94 25						
55 86						
57						
8						
9						
0						
1						
2						
3						
4						
-5						
6						
0						
8 0						
6 60						
51						
52						
53						
54						

125 Table S2. The performance of the method in 1xNEbuffer r2.1 reaction buffer, 10%126 human serum and 10% saliva samples.

Positive	Ct value (RT-qPCR) Normal Ct va		Ct value (RT-qPCR)
sample		sample	
1	25.83	1	undetected
2	24.61	2	undetected
3	22.95	3	undetected
4	17.09	4	undetected
5	24.35	5	undetected
6	28.96	6	undetected
7	27.94	7	undetected
8	28.15	8	undetected
9	27.90	9	undetected
10	27.78	10	undetected
11	16.82	11	undetected
12	27.65	12	undetected
13	14.3	13	undetected
14	30.62	14	undetected
15	31.57	15	undetected
16	23.89	16	undetected
17	17.53	17	undetected
18	21.14	18	undetected
19	28.05	19	undetected
20	28.27	20	undetected
21	33.63	21	undetected
22	28.52	22	undetected
23	28.82	23	undetected
24	24.15	24	undetected
25	23.89	25	undetected
26	23.12	26	undetected

Table S3. The results of RT-qPCR for clinical samples

undetected	27	31.47	27
undetected	28	21.55	28
undetected	29	23.55	29
undetected	30	24.71	30
undetected	31	25.79	31
undetected	32	36.39	32
undetected	33	24.97	33
undetected	34	26.15	34
undetected	35	20.15	35
undetected	36	18.25	36
undetected	37	22.63	37
undetected	38	22.08	38
undetected	39	19.77	39
undetected	40	24.22	40

156	Ct value ≤ 40 : positive; Ct value = undetected: negative
157	
158	
159	
160	
161	
162	
163	
164	
165	
166	
167	
168	
169	
170	
171	
172	
173	
174	

	Method	One-pot	Enzymes	Time	LOD	Reference
		detection	involved			S
	Colorimetry	No	5	50min	50 copies	1
	Fluorescence	No	2	40min	1.3 pM	2
	Fluorescence	No	5	50min	2 copies	3
	Colorimetry	No	4	141min	30.3 fM	4
	Electrochemistry	No	1	185min	26 fM	5
	Fluorescence	Yes	1	60min	544fM	This work
180						
181						
182						
183						
184						
185						
186						
187						
188						
189						
190						
191						
192						
193						
194						
195						
196						

Table S4. Comparison with some reported detection strategies for SARS-CoV-2 RNA.

198 References

- 199 1. Y. Jiang, M. Hu, A. A. Liu, Y. Lin, L. Liu, B. Yu, X. Zhou and D. W. Pang, ACS Sens., 2021, 6, 200 1086-1093. 201 2. D. Li, C. Duan, W. Cheng, Y. Gong, Y. Yao, X. Wang, Z. Wang and Y. Xiang, Chem. Commun. 202 , 2022, 58, 4484-4487. 203 3. Y. Zhang, M. Chen, C. Liu, J. Chen, X. Luo, Y. Xue, Q. Liang, L. Zhou, Y. Tao, M. Li, D. Wang, 204 J. Zhou and J. Wang, Sens. Actuators B Chem., 2021, 345, 130411. 205 4. R. Liu, Y. Hu, Y. He, T. Lan and J. Zhang, Chem. Sci., 2021, 12, 9022-9030. 206 5. Y. Peng, Y. Pan, Z. Sun, J. Li, Y. Yi, J. Yang and G. Li, Biosens. Bioelectron., 2021, 186,
- 206
 5.
 Y. Peng, Y. Pan, Z. Sun, J. Li, Y. Yi, J. Yang and G. Li, *Biosens. Bioelectron.*, 2021, 186, 113309.