Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Amine organocatalysts for highly *ortho*-selective chlorination of anilines with sulfuryl chloride

Xinzhe Wang, Zhihuang Chen, Qingqing Liu, Wenqing Lin, Xiaodong Xiong*

School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China E-mail: xiongxd@ncu.edu.cn

Table of contents

S2-S30	Experimental procedures and physical data
S31-S50	NMR spectra and GC/MS of crude samples
S51-S59	Mechanistic study
S60	References
S61-S151	¹ H and ¹³ C NMR Spectra

(A) General information

Commercially available reagents were used directly without further purification. For others, we prepared them in suitable reaction conditions. NMR spectra were recorded on a Brucker ADVANCE III 400MHz spectrometer (¹H NMR: 400 MHz, ¹³C NMR: 100 MHz). Chemical shifts (δ) were reported in ppm relative to CDCl₃ (δ 7.26) for the ¹H NMR and to CDCl₃ (δ 77.16) for the ¹³C NMR measurements. Mass spectra were recorded on Therno Finnigan MAT 95 XL spectrometer and Bruker solariX 9.4 Tesla FTICR spectrometer. GC/MS analysis was conducted on a Shimadzu GCMSQP2010 instrument equipped with a Restec-5HT column (30 m × 0.25 mm, Hewlett-Packard). IR spectra were recorded on a PerkinElmer FT-IR spectrophotometer and reported in terms of wavenumber of absorption (cm⁻¹). Flash column chromatography was performed on 300-400 mesh silica gel from Qingdao Haiyang Chemical Co., Ltd. Reactions were monitored by thin-layer chromatography (TLC) using 254 nm UV light to visualize the progress of the reactions.

(B) Substrate preparation

General Procedure for the preparation of N-Cbz aniline 2

To a solution of aniline (5.0 mmol, 1.0 eq) and K_2CO_3 (828 mg, 6.0 mmol, 1.2 eq) in dry THF (30 mL) was added dropwise CbzCl (937.7 mg, 5.5 mmol, 1.1 eq) over 10 min at 0°C and the reaction mixture was stirred overnight at 25 °C under N₂. The reaction mixture was quenched with H₂O (20 mL), then extracted with CH₂Cl₂ (10 mL × 3). The combined organic layers were dried over sodium sulfate, filtered, and concentrated to dryness *in vacuo*. The residue was purified over silica gel chromatography eluted with *n*-hexane/ethyl acetate (5:1-1:1) to yield *N*-Cbz aniline **2**.

General Procedure for the preparation of N-carbonyl aniline 2

Step-1

To a solution of carboxylic acid (5.0 mmol, 1.0 eq) and catalytic amount of DMF in dry CH_2Cl_2 (20 mL) was added dropwise oxalyl chloride (6.5 mmol, 1.3 eq) over 10 min at 0°C, and the resulting reaction mixture was stirred for 4 h at 25 °C under N₂. The resulting mixture was concentrated under reduced pressure to afford acid chloride quantitatively which was used directly without further purification for the next step.

Step-2

To a solution of aniline (4.2 mmol, 1.0 eq) and Et₃N (6.3 mmol, 1.5 eq) in dry CH₂Cl₂ (20 mL) was added dropwise acid chloride (5.0 mmol, 1.2 eq) over 15 min at 0°C and the resulting reaction mixture was stirred for 12 h at 25 °C under N₂. Then the reaction was quenched with H₂O (20 mL), then extracted with CH₂Cl₂ (10 mL \times 3). The combined organic layers were washed with saturated aqueous NaHCO₃ (20 mL) followed by H₂O (20 mL). After that, the organic layer was dried over sodium sulfate, filtered, and concentrated to dryness *in vacuo*. The residue was purified over silica gel chromatography eluted with *n*-hexane/ethyl acetate (5:1-1:1) to yield aniline **2**.

General Procedure for the preparation of aniline 2

To a stirred solution of aniline (5.0 mmol, 1.0 eq) in CH₃CN (15 mL) were added carbonyldiimidazole (CDI) (20.0 mmol, 4.0 eq) and DMAP (1.0 mmol, 0.2 eq). The reaction mixture was heated at reflux for 5 h. After this time, the appropriate ROH (75.0 mmol, 15 eq) was then added and reflux continued for a further 24 h under the same conditions. The reaction mixture was then cooled to room temperature, concentrated *in vacuo* and the resulting crude product purified by flash column chromatography eluted with *n*-hexane/ethyl acetate (5:1-1:1) to yield aniline **2**.

NHCbz

benzyl phenylcarbamate (2a)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 5.21 (s, 2H), 6.70 (s, 1H), 7.07 (t, *J* = 8.0 Hz, 1H), 7.28-7.33 (m, 2H), 7.34-7.43 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 153.6, 137.9, 136.1, 129.0, 128.5, 128.3, 128.2, 123.4, 118.8, 66.9. The analytical data are in accordance with those reported in the literature.¹

NHBoc

tert-butyl phenylcarbamate (2b)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 1.44 (s, 9H), 6.50 (s, 1H), 6.95 (t, *J* = 8.0 Hz, 1H), 7.20 (t, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 152.9, 138.4, 129.1, 123.1, 118.6, 80.6, 28.5.

The analytical data are in accordance with those reported in the literature.²

N-phenylacetamide (2c)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 2.15 (s, 3H), 7.09 (t, J = 8.0 Hz, 1H), 7.30 (t, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 7.84 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 138.1, 129.0, 124.4, 120.1, 24.6.

The analytical data are in accordance with those reported in the literature.²

NHCOPh

N-phenylbenzamide (2d)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.16 (t, J = 8.0 Hz, 1H), 7.39 (t, J = 8.0

Hz, 2H), 7.50 (t, J = 8.0 Hz, 2H), 7.55-7.58 (m, 1H), 7.65 (d, J = 8.0 Hz, 2H), 7.80 (s, 1H), 7.88 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 138.1, 135.1, 132.0, 129.2, 128.9, 127.2, 124.7, 120.4.

The analytical data are in accordance with those reported in the literature.²

O-acetyl-N-phenylhydroxylamine (2e)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 2.15 (s, 3H), 7.09 (t, *J* = 8.0 Hz, 1H), 7.30 (t, *J* = 8.0 Hz, 2H), 7.51 (t, *J* = 8.0 Hz, 2H), 7.82 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 138.1, 129.0, 124.4, 120.1, 24.6.

methyl phenylcarbamate (2f)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 3.78 (s, 3H), 6.59 (s, 1H), 7.07 (t, *J* = 8.0 Hz, 1H), 7.31 (t, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.2, 138.0, 129.2, 123.6, 118.8, 52.5.

The analytical data are in accordance with those reported in the literature.³

NHMs

N-phenylmethanesulfonamide (2g)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 3.01 (s, 3H), 7.16-7.20 (m, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 7.34 (t, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 136.9, 129.8, 125.5, 120.9, 39.3.

The analytical data are in accordance with those reported in the literature.²

4-methyl-N-phenylbenzenesulfonamide (2h)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 3.36 (s, 3H), 7.07-7.11 (m, 3H), 7.20-7.26 (m, 4H), 7.30 (s, 3H), 7.70 (t, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 136.7, 136.1, 129.8, 129.4, 127.4, 125.3, 121.5, 21.7.

The analytical data are in accordance with those reported in the literature.²

NHNs

4-nitro-N-phenylbenzenesulfonamide (2i)

Pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 6.62 (s, 1H), 7.08 (d, J = 8.0 Hz, 2H), 7.20 (t, J = 8.0 Hz, 1H), 7.29 (t, J = 8.0 Hz, 2H), 7.92 (d, J = 8.0 Hz, 2H), 8.28 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 144.7, 135.4, 129.8, 128.7, 126.7, 124.4, 122.6.

The analytical data are in accordance with those reported in the literature.²

NHCbz

benzyl (4-methoxyphenyl)carbamate (2j)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 3.78 (s, 3H), 5.19 (s, 2H), 6.67 (s, 1H), 6.85 (d, J = 8.0 Hz, 2H), 7.29-7.42 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 156.1, 153.8, 136.3, 130.9, 128.7, 128.4, 120.8, 114.3, 67.0, 55.6.

The analytical data are in accordance with those reported in the literature.¹

benzyl p-tolylcarbamate (2k)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 2.22 (s, 3H), 5.10 (s, 2H), 6.87 (s, 1H), 7.01 (d, J = 8.0 Hz, 2H), 7.20-7.31 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 153.6, 136.2, 135.3, 133.0, 129.5, 128.6, 128.3, 118.9, 66.9, 20.8.

The analytical data are in accordance with those reported in the literature.¹

O-acetyl-N-(p-tolyl)hydroxylamine (2l)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 2.16 (s, 3H), 2.31 (s, 3H), 7.11 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 135.5, 134.0, 129.5, 120.3, 24.5, 21.0. HRMS(ESI) calcd for C₉H₁₁NO₂Na *m*/*z* [M+Na]⁺: 188.0682, found: 188.0682.

benzyl [1,1'-biphenyl]-4-ylcarbamate (2m)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 5.23 (s, 2H), 6.74 (s, 1H), 7.31-7.48 (m, 10H), 7.54-7.58 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 140.6, 137.2, 136.6, 136.1, 128.9, 128.8, 128.6, 128.5, 127.9, 127.2, 126.9, 119.1, 67.3. The analytical data are in accordance with those reported in the literature.⁴

NHCbz

benzyl (4-fluorophenyl)carbamate (2n)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 5.20 (s, 2H), 6.72 (s, 1H), 7.00 (t, *J* = 8.0 Hz, 2H), 7.32-7.41 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 160.4, 157.9, 153.6, 136.1, 133.8, 128.8, 128.6, 128.5, 120.6, 115.9, 115.7, 67.2.

The analytical data are in accordance with those reported in the literature.¹

benzyl (4-chlorophenyl)carbamate (20)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 5.20 (s, 2H), 6.70 (s, 1H), 7.25-7.27 (m, 2H), 7.33-7.42 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 136.5, 135.9, 129.2, 128.8, 128.6, 128.5, 120.0, 67.3.

The analytical data are in accordance with those reported in the literature.¹

```
NHCbz
```

benzyl (4-bromophenyl)carbamate (2p)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 5.20 (s, 2H), 6.69 (s, 1H), 7.26-7.29 (m, 2H), 7.34-7.42 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 137.0, 135.9, 132.1, 128.8, 128.6, 128.5, 120.3, 116.2, 67.4.

The analytical data are in accordance with those reported in the literature.¹

methyl 4-(((benzyloxy)carbonyl)amino)benzoate (2q)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 3.89 (s, 3H), 5.22 (s, 2H), 6.82 (s, 1H), 7.35-7.42 (m, 5H), 7.46 (d, J = 8.0 Hz, 2H), 7.99 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 153.1, 142.4, 135.8, 131.0, 128.7, 128.5, 128.4, 124.8, 117.7, 67.3, 52.1.

The analytical data are in accordance with those reported in the literature.⁵

benzyl m-tolylcarbamate (2r)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 2.31 (s, 3H), 5.20 (s, 2H), 6.65 (s, 1H), 7.11 (d, J = 8.0 Hz, 2H), 7.26-7.42 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 153.6, 136.2, 135.3, 133.2, 129.7, 128.7, 128.5, 128.4, 118.9, 67.1, 20.9. The analytical data are in accordance with those reported in the literature.⁵

benzyl (3-methoxyphenyl)carbamate (2s)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 3.80 (s, 3H), 5.20 (s, 2H), 6.63 (dd, J = 4.0, 8.0 Hz, 1H), 6.78 (s, 1H), 6.88 (d, J = 8.0 Hz, 1H), 7.14 (s, 1H), 7.19 (t, J = 8.0 Hz, 1H), 7.33-7.42 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 160.4, 153.4, 139.2, 136.1, 129.9, 128.8, 128.5, 128.4, 111.0, 109.4, 104.5, 67.2, 53.4.

The analytical data are in accordance with those reported in the literature.¹

N-(3-methoxyphenyl)-4-nitrobenzenesulfonamide (2t)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 3.76 (s, 3H), 6.61 (d, J = 8.0 Hz, 1H), 6.70-6.72 (m, 2H), 6.89 (s, 1H), 7.16 (t, J = 8.0 Hz, 1H), 7.96 (d, J = 8.0 Hz, 2H), 8.29 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 160.6, 150.4, 144.6, 136.7, 130.5, 128.7, 124.5, 113.9, 111.6, 108.0, 55.5.

The analytical data are in accordance with those reported in the literature.²

benzyl (3-fluorophenyl)carbamate (2u)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 5.21 (s, 2H), 6.71 (s, 1H), 6.76 (t, *J* = 8.0 Hz, 1H), 7.01 (d, *J* = 8.0 Hz, 1H), 7.21-7.25 (m, 1H), 7.33-7.43 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 162.0, 153.3, 139.6, 139.4, 135.9, 130.3, 130.2, 128.7, 128.5, 128.4, 114.0, 110.3, 110.1, 106.3, 106.0, 67.3.

The analytical data are in accordance with those reported in the literature.⁶

benzyl (3-chlorophenyl)carbamate (2v)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 5.20 (s, 2H), 6.77 (s, 1H), 7.03-7.05 (m, 1H), 7.19-7.22 (m, 2H), 7.33-7.40 (m, 5H), 7.52 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 139.1, 135.9, 134.9, 130.2, 128.8, 128.6, 128.5, 123.7, 118.8, 116.7, 67.4. The analytical data are in accordance with those reported in the literature.⁷

NHCbz Br

benzyl (3-bromophenyl)carbamate (2w)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 5.20 (s, 2H), 6.70 (s, 1H), 6.13-6.20 (m, 2H), 7.26-7.28 (m, 1H), 7.34-7.40 (m, 5H), 7.66 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 139.2, 135.9, 130.5, 128.8, 128.6, 128.5, 126.6, 122.9, 121.6, 117.2, 67.4. The analytical data are in accordance with those reported in the literature.⁷

benzyl (3-iodophenyl)carbamate (2x)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 5.20 (s, 2H), 6.61 (s, 1H), 7.02 (t, *J* = 8.0 Hz, 1H), 7.31-7.40 (m, 7H), 7.82 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 139.1, 135.9, 132.7, 130.6, 128.8, 128.6, 128.5, 127.4, 117.9, 94.4, 67.4. The analytical data are in accordance with those reported in the literature.⁸

N-(3,5-dimethylphenyl)-4-nitrobenzenesulfonamide (2y)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 2.24 (s, 6H), 6.42 (s, 1H), 6.68 (s, 2H), 6.82 (s, 1H), 7.93 (d, J = 8.0 Hz, 2H), 8.29 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 144.8, 139.7, 135.3, 128.6, 128.2, 124.4, 119.8, 21.4. The analytical data are in accordance with those reported in the literature.²

dibenzyl 1,3-phenylenedicarbamate (2z)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 5.19 (s, 4H), 6.68 (s, 2H), 7.08 (d, J = 8.0 Hz, 2H), 7.22 (t, J = 8.0 Hz, 1H), 7.33-7.42 (m, 10H), 7.57 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.5, 138.6, 136.0, 129.6, 128.6, 128.3(2), 113.6, 109.0, 67.0. The analytical data are in accordance with those reported in the literature.⁹

benzyl naphthalen-2-ylcarbamate (2aa)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 5.25 (s, 2H), 6.84 (s, 1H), 7.34-7.48 (m, 8H), 7.78 (dd, J = 4.0, 8.0 Hz, 3H), 8.01 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 136.1, 135.3, 134.1, 130.4, 129.1, 128.8, 128.6, 128.5, 127.7, 127.6, 126.7, 124.9, 119.2, 115.0, 67.3.

The analytical data are in accordance with those reported in the literature.⁷

benzyl thiophen-3-ylcarbamate (2ab)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 5.21 (s, 2H), 6.88 (s, 1H), 6.93 (d, *J* = 4.0 Hz, 1H), 7.21-7.26 (m, 2H), 7.32-7.42 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 153.6, 136.0, 135.7, 128.6, 128.4, 128.2, 124.8, 120.8, 108.1, 67.1.

The analytical data are in accordance with those reported in the literature.¹⁰

N-(4-chlorophenyl)-3-(piperidin-1-yl)butanamide (2a')

White solid. $R_f = 0.30$ (PE:EtOAc = 2:1); ¹H NMR (400 MHz, CDCl₃) δ 1.02 (d, J = 6.4 Hz, 3H), 1.54-1.60 (m, 2H), 1.63-1.76 (m, 4H), 2.21 (dd, J = 2.8, 8.6 Hz, 1H), 2.44-2.49 (m, 2H), 2.55-2.63 (m, 1H), 2.72-2.78 (m, 2H), 3.04-3.09 (m, 1H), 7.26 (d, J = 2.8, 8.6 Hz, 1H), 7.26 (d, J = 2.8, 8.6 Hz

J = 8.0 Hz, 2H), 7.52 (d, J = 8.0 Hz, 2H), 11.79 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 137.8, 129.1, 128.3, 120.8, 56.9, 48.6, 39.5, 26.8, 24.7, 13.3. The analytical data are in accordance with those reported in the literature.¹⁵

3,5-dichloro-N-(2-methylbenzo[d]thiazol-5-yl)benzamide (2b')

White solid. $R_f = 0.30$ (PE:EtOAc = 2:1); ¹H NMR (400 MHz, CDCl₃) δ 2.84 (s, 3H), 7.54 (s, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.77 (s, 2H), 7.80 (d, J = 8.0 Hz, 1H), 7.93 (s, 1H), 8.15 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 163.4, 154.0, 137.8, 135.9, 135.8, 132.3, 131.9, 125.9, 121.9, 118.4, 114.2, 20.4.

The analytical data are in accordance with those reported in the literature.¹¹

6-(3-((3s)-adamantan-1-yl)-4-methoxyphenyl)-N-phenyl-2-naphthamide (2c')

White solid. $R_f = 0.35$ (PE:EtOAc = 4:1); ¹H NMR (400 MHz, DMSO-*d6*) δ 1.76 (s, 6H), 2.07 (s, 3H), 2.14 (s, 6H), 3.86 (s, 3H), 7.12 (d, J = 8.0 Hz, 2H), 7.38 (t, J = 8.0 Hz, 2H), 7.59 (s, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.85 (d, J = 8.0 Hz, 2H), 7.91 (d, J = 8.0 Hz, 1H), 8.02-8.05 (m, 1H), 8.13 (dd, J = 4.0, 8.0 Hz, 2H), 8.24 (s, 1H), 8.59 (s, 1H), 10.44 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 159.1, 141.2, 139.2, 138.2, 135.5, 132.6, 131.8, 131.5, 129.5, 129.3, 129.0, 127.5, 127.0, 126.1, 125.9, 124.9, 124.7, 124.0, 120.4, 112.3, 55.3, 40.8, 37.4, 37.3, 29.2. HRMS(ESI) calcd for C₃₄H₃₄NO₂ m/z [M+H]⁺: 488.2584, found: 488.2584.

5-(2,5-dimethylphenoxy)-2,2-dimethyl-N-phenylpentanamide (2d')

White solid. $R_f = 0.35$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 1.35 (s, 6H), 1.82-1.83 (m, 4H), 2.18 (s, 3H), 2.30 (s, 3H), 3.95 (t, J = 4.0 Hz, 2H), 6.61 (s, 1H), 6.67 (d, J = 8.0 Hz, 1H), 7.01 (d, J = 4.0 Hz, 1H), 7.11 (t, J = 8.0 Hz, 1H), 7.32 (t, J = 8.0 Hz, 2H), 7.38 (s, 1H), 7.52 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 156.9, 137.9, 136.7, 130.4, 129.1, 124.4, 123.6, 120.9, 120.2, 112.2, 67.9, 42.9,

37.8, 25.8, 25.3, 21.5, 15.9. HRMS(ESI) calcd for $C_{21}H_{27}NO_2Na \ m/z \ [M+ Na]^+$: 348.1934, found: 213.9865.

(S)-2-(6-methoxynaphthalen-2-yl)-N-phenylpropanamide (2e')

White solid. $R_f = 0.55$ (PE:EtOAc = 2:1); ¹H NMR (400 MHz, CDCl₃) δ 1.62 (d, J = 4.0 Hz, 3H), 3.81 (q, J = 8.0 Hz, 1H), 3.88 (s, 3H), 7.01 (t, J = 8.0 Hz, 1H), 7.10 (s, 1H), 7.14 (dd, J = 4.0, 8.0 Hz, 1H), 7.21 (t, J = 8.0 Hz, 2H), 7.38 (d, J = 8.0 Hz, 3H), 7.67-7.72 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 157.9, 137.9, 136.1, 133.9, 129.4, 129.1, 128.9, 127.9, 126.4, 126.3, 124.3, 119.8, 119.4, 105.8, 55.4, 48.1, 18.7. HRMS(ESI) calcd for C₂₀H₂₀NO₂ m/z [M+H]⁺: 306.1489, found: 306.1490.

2-(4-isobutylphenyl)-N-phenylpropanamide (2f')

White solid. $R_f = 0.41$ (PE:EtOAc = 3:1); ¹H NMR (400 MHz, CDCl₃) δ 0.94 (d, J = 4.0 Hz, 6H), 1.62 (d, J = 8.0 Hz, 3H), 1.86-1.92 (m, 1H), 2.50 (d, J = 8.0 Hz, 2H), 3.73 (q, J = 8.0 Hz, 1H), 7.08 (d, J = 8.0 Hz, 1H), 7.17 (d, J = 8.0 Hz, 2H), 7.26-7.30 (m, 5H), 7.45 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 141.2, 138.2, 138.0, 130.0, 129.0, 127.6, 124.3, 119.7, 47.9, 45.1, 30.3, 22.5, 18.6. HRMS(ESI) calcd for C₁₉H₂₃NONa *m*/*z* [M+Na]⁺: 304.1672, found: 304.1672.

2-(diethylamino)ethyl 4-acetamidobenzoate (2g')

White solid. $R_f = 0.37$ (DCM:MeOH = 3:1); ¹H NMR (400 MHz, CDCl₃) δ 1.06 (t, J = 8.0 Hz, 6H), 2.18 (s, 3H), 2.64 (q, J = 8.0 Hz, 4H), 2.86 (t, J = 6.0 Hz, 2H), 4.37 (t, J = 6.0 Hz, 2H), 7.59 (d, J = 8.0 Hz, 2H), 7.96 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 166.3, 142.4, 130.9, 125.6, 118.9, 63.2, 51.0, 47.8, 24.8, 11.9. HRMS(ESI) calcd for C₁₅H₂₃N₂O₃ m/z [M+H]⁺: 279.1703, found: 279.1703.

2-(phenylcarbamoyl)phenyl acetate (2h') White solid. $R_f = 0.45$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 2.31 (s, 3H),

7.15 (t, J = 8.0 Hz, 2H), 7.30-7.37 (m, 3H), 7.49 (t, J = 8.0 Hz, 1H), 7.60 (d, J = 8.0 Hz, 2H), 7.81 (d, J = 8.0 Hz, 1H), 8.14 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 163.8, 147.9, 137.9, 132.2, 129.9, 129.2, 128.9, 126.6, 124.8, 123.4, 120.0, 21.1. The analytical data are in accordance with those reported in the literature.¹²

(*R*)-4-((3*R*,5*R*,8*R*,9*R*,10*S*,13*R*,14*R*,17*R*)-3-methoxy-8,10,13-trimethylhexadecahyd ro-1H-cyclopenta[a]phenanthren-17-yl)-N-phenylpentanamide (2i')

White solid. $R_f = 0.35$ (PE:EtOAc = 2:1); ¹H NMR (400 MHz, CDCl₃) δ 0.64 (s, 3H), 0.83-0.96 (m, 10H), 1.03-1.15 (m, 6H), 1.33-1.43 (m, 9H), 1.64-1.97 (m, 9H), 2.21-2.29 (m, 1H), 2.38-2.46 (m, 1H), 3.13-3.20 (m, 1H), 3.35 (s, 3H), 7.08 (d, J = 8.0 Hz, 1H), 7.11 (s, 1H), 7.32 (t, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 138.2, 129.1, 124.3, 119.9, 80.6, 56.6, 56.2, 55.7, 42.9, 42.2, 40.4, 36.0, 35.6, 35.5, 35.1, 34.8, 32.9, 31.8, 29.8, 28.4, 27.5, 27.0, 26.5, 24.4, 23.6, 21.0, 18.6, 12.2. HRMS(ESI) calcd for C₃₂H₄₉NO₂Na m/z [M+Na]⁺: 502.3656, found: 502.3656.

4-(N,N-dipropylsulfamoyl)-N-phenylbenzamide (2j')

White solid. $R_f = 0.55$ (PE:EtOAc = 3:1); ¹H NMR (400 MHz, CDCl₃) δ 0.83 (t, J = 8.0 Hz, 6H), 1.45-1.54 (m, 4H), 3.02 (t, J = 8.0 Hz, 4H), 7.12 (t, J = 8.0 Hz, 1H), 7.30 (t, J = 8.0 Hz, 2H), 7.62 (d, J = 8.0 Hz, 2H), 7.70 (d, J = 8.0 Hz, 2H), 7.88 (d, J = 8.0 Hz, 2H), 8.98 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 142.2, 138.8, 138.0, 128.9, 128.2, 127.0, 124.8, 120.5, 49.9, 21.9, 11.1. HRMS(ESI) calcd for C_{19H25}N₂O₃S *m*/z [M+H]⁺: 361.1580, found: 361.1580.

2-(4-(2,2-dichlorocyclopropyl)phenoxy)-2-methyl-N-phenylpropanamide (2k')

White solid. $R_f = 0.40$ (PE:EtOAc = 3:1); ¹H NMR (400 MHz, CDCl₃) δ 1.60 (s, 6H), 1.81 (t, J = 8.0 Hz, 1H), 1.95-2.00 (m, 1H), 2.87 (t, J = 8.0 Hz, 1H), 6.99 (t, J = 8.0 Hz, 2H), 7.14 (t, J = 8.0 Hz, 1H), 7.19 (d, J = 8.0 Hz, 2H), 7.35 (t, J = 8.0 Hz, 2H), 7.59 (dd, J = 4.0, 8.0 Hz, 2H), 8.56 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 153.4, 137.6, 130.2, 130.0, 129.2, 124.6, 121.7, 119.9, 82.2, 60.8, 34.9, 26.0, 25.1, 25.0. HRMS(ESI) calcd for C₁₉H₁₉NO₂Cl₂Na m/z [M+Na]⁺: 386.0685, found: 386.0685.

2-(4-(4-chlorobenzoyl)phenoxy)-2-methyl-N-phenylpropanamide (2l')

White solid. $R_f = 0.35$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 1.68 (s, 6H), 7.05 (t, J = 8.0 Hz, 2H), 7.14 (t, J = 8.0 Hz, 1H), 7.34 (t, J = 8.0 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.67-7.78 (m, 4H), 8.30 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 194.4, 172.4, 158.3, 138.8, 137.3, 136.1, 132.1, 131.3, 129.2, 128.7(2), 124.9, 120.1(2), 82.4, 25.2. HRMS(ESI) calcd for C₂₃H₂₁NClO₃ m/z [M+H]⁺: 394.1205, found: 394.1204.

2-(3-benzoylphenyl)-N-phenylpropanamide (2m')

White solid. $R_f = 0.40$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 1.55 (d, J = 8.0 Hz, 3H), 3.79 (d, J = 8.0 Hz, 1H), 7.05 (t, J = 8.0 Hz, 1H), 7.22-7.25 (m, 2H), 7.41-7.49 (m, 5H), 7.58 (t, J = 8.0 Hz, 1H), 7.65 (dd, J = 4.0, 8.0 Hz, 2H), 7.76 (d, J = 8.0 Hz, 2H), 7.83 (s, 1H), 8.04 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 197.0, 172.1, 141.8, 138.0(2), 137.3, 132.8, 131.6, 130.2, 129.4, 129.3, 128.9(2), 128.4, 124.4, 120.0, 47.7, 18.9. HRMS(ESI) calcd for C₂₂H₁₉NO₂Na *m/z* [M+Na]⁺: 352.1308, found: 352.1308.

(3R)-3-isopropyl-5-methylcyclohexyl phenylcarbamate (2n')

White solid. $R_f = 0.55$ (PE:EtOAc = 2:1); ¹H NMR (400 MHz, CDCl₃) δ 0.81 (d, J = 8.0 Hz, 3H), 0.92 (dd, J = 4.0, 8.0 Hz, 6H), 0.97-1.13 (m, 2H), 1.33-1.41 (m, 1H),

1.48-1.55 (m, 1H), 1.66-1.72 (m, 2H), 1.94-1.99 (m, 1H), 2.09-2.14 (m, 1H), 4.67 (dt, J = 4.0, 8.0 Hz, 1H), 6.54 (s, 1H), 7.05 (t, J = 8.0 Hz, 1H), 7.30 (t, J = 8.0 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 138.3, 129.2, 123.3, 118.5, 75.2, 47.5, 41.5, 34.4, 31.5, 26.4, 23.6, 22.2, 20.9, 16.6. HRMS(ESI) calcd for C_{17H25}NO₂Na *m*/*z* [M+Na]⁺: 298.1778, found: 298.1778.

(5*S*,8*R*,10*S*,13*S*,14*S*)-10,13-dimethyl-17-oxohexadecahydro-1H-cyclopenta[a]phe nanthren-3-yl phenylcarbamate (20')

White solid. $R_f = 0.35$ (PE:EtOAc = 2:1); ¹H NMR (400 MHz, CDCl₃) δ 0.71 (dd, J = 4.0, 8.0 Hz, 1H), 0.84 (s, 3H), 0.85 (s, 3H), 0.92-1.08 (m, 2H), 1.17-1.43 (m, 7H), 1.45-1.58 (m, 3H), 1.62-1.83 (m, 5H), 1.88-1.95 (m, 2H), 2.02-2.11 (m, 1H), 2.39-2.46 (m, 1H), 4.63-4.72 (m, 1H), 6.74 (s, 1H), 7.03 (t, J = 8.0 Hz, 1H), 7.26-7.30 (m, 2H), 7.38 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 138.2, 129.1, 123.3, 118.6, 74.5, 54.3, 51.4, 47.9, 44.7, 36.8, 35.9, 35.7, 35.1, 34.3, 31.6, 30.9, 28.3, 27.8, 21.8, 20.5, 13.9, 12.3. HRMS(ESI) calcd for C₂₆H₃₆NO₃ m/z [M+H]⁺: 410.2690, found: 410.2690.

NHCbz

benzyl o-tolylcarbamate (6)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 2.15 (s, 3H), 5.14 (s, 2H), 6.52 (s, 1H), 6.97 (t, J = 8.0 Hz, 1H), 7.08 (d, J = 8.0 Hz, 1H), 7.14 (t, J = 8.0 Hz, 1H), 7.26-7.36 (m, 5H), 7.75 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.8, 136.1, 135.8, 130.4, 128.7, 128.6, 128.3(2), 126.8, 124.2, 121.3, 67.0, 17.6.

The analytical data are in accordance with those reported in the literature.⁹

benzyl methyl(phenyl)carbamate (8)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 3.23 (s, 3H), 5.17 (s, 1H), 7.22-7.37 (m, 10H); ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 143.3, 136.8, 129.0, 128.5, 128.0, 127.8, 126.3, 125.9, 67.4, 37.9.

The analytical data are in accordance with those reported in the literature.¹³

benzyl (4-cyclopropylphenyl)carbamate (13)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 0.62-0.66 (m, 2H), 0.90-0.95 (m, 2H), 1.83-1.89 (m, 1H), 5.19 (s, 1H), 6.61 (s, 1H), 7.02 (t, *J* = 8.0 Hz, 2H), 7.33-7.42 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 139.3, 136.2, 135.3, 128.7, 128.4(2), 126.4, 118.9, 67.1, 15.0, 9.0. HRMS(ESI) calcd for C₁₇H₁₈NO₂ *m/z* [M+H]⁺: 268.1332, found: 268.1333.

(C) General procedure for the ortho-chlorination of aniline catalyzed by 1f

To a solution of secondary amine **1f** (0.02 mmol) and aniline **2** (0.2 mmol) in toluene (2 mL) in the dark was added SO₂Cl₂ (0.4 mmol). The resulting mixture was stirred at room temperature and monitored by TLC. Upon completion, the reaction was quenched with saturated Na₂SO₃ (3 mL). The organic layer was extracted with dichloromethane (3×10 mL), the combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under vacuum. The residue was purified by silica gel column chromatography (hexane/EA = 5:1 to 1:1) to yield the corresponding chlorinated product **3**.

benzyl (2-chlorophenyl)carbamate (3a)

White solid. $R_f = 0.45$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 5.24 (s, 2H), 7.01 (dt, J = 4.0, 8.0 Hz, 1H), 7.24 (s, 1H), 7.28 (t, J = 8.0 Hz, 1H), 7.34-7.45 (m, 6H), 8.21 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 137.1, 134.7, 129.2, 128.8, 128.6, 128.5, 127.9, 123.9, 122.1, 119.9, 67.4.

The analytical data are in accordance with those reported in the literature.¹⁴

tert-butyl (2-chlorophenyl)carbamate (3b)

White solid. $R_f = 0.46$ (PE:EtOAc = 20:1); ¹H NMR (400 MHz, CDCl₃) δ 1.53 (s, 9H),

6.96 (t, *J* = 8.0 Hz, 1H), 7.01 (s, 1H), 7.24 (t, *J* = 8.0 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.5, 135.3, 129.1, 127.8, 123.4, 121.9, 119.9, 81.2, 28.4.

The analytical data are in accordance with those reported in the literature.²

N-(2-chlorophenyl)acetamide (3c)

White solid. $R_f = 0.42$ (PE:EtOAc = 2:1); ¹H NMR (400 MHz, CDCl₃) δ 2.24 (s, 3H), 7.03 (t, J = 8.0 Hz, 1H), 7.27 (t, J = 8.0 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.63 (s, 1H), 8.35 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 134.7, 129.1, 127.9, 124.7, 122.6, 121.7, 25.0.

The analytical data are in accordance with those reported in the literature.²

N-(2-chlorophenyl)benzamide (3d)

White solid. $R_f = 0.50$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.09 (t, J = 8.0 Hz, 1H), 7.34 (t, J = 8.0 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.51-7.55 (m, 2H), 7.59 (t, J = 8.0 Hz, 1H), 7.92-7.95 (m, 2H), 8.46 (s, 1H), 8.58 (dd, J = 4.0, 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 134.9, 134.7, 132.4, 129.2, 129.1, 128.0, 127.2, 124.9, 123.1, 121.6, 81.2, 28.4.

The analytical data are in accordance with those reported in the literature.²

O-acetyl-N-(2-chlorophenyl)hydroxylamine (3e)

White solid. $R_f = 0.45$ (PE:EtOAc = 2:1); ¹H NMR (400 MHz, CDCl₃) δ 2.23 (s, 3H), 7.03 (t, J = 8.0 Hz, 1H), 7.26 (t, J = 8.0 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.64 (s, 1H), 8.35 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 134.7, 129.1, 127.8, 124.7, 122.7, 121.8, 24.9. HRMS (ESI) calcd for C₈H₈NO₂ClNa m/z [M+Na]⁺: 208.0136, found: 208.0136.

methyl (2-chlorophenyl)carbamate (3f)

White solid. $R_f = 0.55$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 3.81 (s, 3H), 7.00 (dt, J = 4.0, 8.0 Hz, 1H), 7.15 (s, 1H), 7.27 (t, J = 8.0 Hz, 1H), 7.35 (dd, J = 4.0, 8.0 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.8, 134.8, 129.2, 127.9, 123.9, 122.2, 119.9, 52.7. HRMS (EI) calcd for C₁₅H₁₄NO₂Cl m/z [M]⁺: 275.0708, found: 241.0095.

N-(2-chlorophenyl)methanesulfonamide (3g)

White solid. $R_f = 0.45$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 3.02 (s, 3H), 6.80 (s, 1H), 7.15 (t, J = 8.0 Hz, 1H), 7.32 (t, J = 8.0 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 133.7, 129.9, 128.5, 126.4, 125.1, 122.5, 40.0.

The analytical data are in accordance with those reported in the literature.²

N-(2-chlorophenyl)-4-methylbenzenesulfonamide (3h)

White solid. $R_f = 0.35$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 2.38 (s, 3H), 6.99 (s, 1H), 7.04 (t, *J* =8.0 Hz, 1H), 7.21-7.27 (t, 4H), 7.65-7.67 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 135.9, 133.6, 129.8, 129.5, 128.0, 127.4, 125.9, 125.1, 122.4, 21.7.

The analytical data are in accordance with those reported in the literature.²

N-(2-chlorophenyl)-4-nitrobenzenesulfonamide (3i)

White solid. $R_f = 0.45$ (PE:EtOAc = 3:1); ¹H NMR (400 MHz, CDCl₃) δ 7.07 (s, 1H), 7.13 (t, J = 6.0 Hz, 1H), 7.26-7.32 (m, 2H), 7.69 (t, J = 8.0 Hz, 1H), 7.92 (d, J = 8.0 Hz, 2H), 8.27 (t, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.5, 144.6, 132.4, 129.8, 128.7, 128.4, 127.4, 126.4, 124.4, 124.1.

The analytical data are in accordance with those reported in the literature.²

benzyl (2-chloro-4-methoxyphenyl)carbamate (3j)

Yellow solid. $R_f = 0.50$ (PE:EtOAc = 8:1); ¹H NMR (400 MHz, CDCl₃) δ 3.78 (s, 3H), 5.21 (s, 2H), 6.83 (dd, J = 4.0, 8.0 Hz, 1H), 6.92 (d, J = 4.0 Hz, 1H), 6.96 (s, 1H), 7.35-7.44 (m, 5H), 8.01 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 153.5, 136.0, 128.8, 128.7, 128.5, 128.0, 123.6, 121.7, 114.6, 113.5, 67.4, 55.8. HRMS (ESI) calcd for C₁₅H₁₅ClNO₃ m/z [M+H]⁺: 292.0741, found: 292.0742.

benzyl (2-chloro-4-methylphenyl)carbamate (3k)

White solid. $R_f = 0.45$ (PE:EtOAc = 8:1); ¹H NMR (400 MHz, CDCl₃) δ 2.99 (s, 3H), 5.23 (s, 2H), 7.08 (dd, J = 8.0 Hz, 1H), 7.13 (s, 1H), 7.17 (s, 1H), 7.37-7.42 (m, 5H), 8.05 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 136.0, 133.9, 132.1, 129.5, 128.8, 128.6, 128.5, 128.4, 122.1, 120.0, 67.3, 20.6. HRMS (ESI) calcd for C₁₅H₁₄NO₂ClNa *m/z* [M+Na]⁺: 298.0605, found: 298.0605.

O-acetyl-N-(2-chloro-4-methylphenyl)hydroxylamine (3l)

White solid. $R_f = 0.45$ (PE:EtOAc = 3:1); ¹H NMR (400 MHz, CDCl₃) δ 2.22 (s, 3H), 2.29 (s, 3H), 7.06 (d, J = 8.4 Hz, 2H), 7.17 (s, 1H), 7.53 (s, 1H), 8.19 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 134.9, 132.1, 129.4, 128.5, 122.6, 121.7, 24.9, 20.8. HRMS (ESI) calcd for C₉H₁₁ClNO₂ m/z [M+H]⁺: 200.0478, found: 200.0473.

benzyl (3-chloro-[1,1'-biphenyl]-4-yl)carbamate (3m)

White solid. $R_f = 0.49$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 5.21 (s, 2H), 7.21 (d, J = 8.0 Hz, 1H), 7.29-7.55 (m, 12H), 8.23 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 139.3, 137.1, 135.8, 133.8, 129.0, 128.8, 128.7, 128.6, 127.7, 127.6, 126.8, 126.5m 122.5, 67.5. HRMS (ESI) calcd for C₂₀H₁₆NO₂ClNa *m/z* [M+Na]⁺: 360.0762, found: 360.0762.

benzyl (2-chloro-4-fluorophenyl)carbamate (3n)

White solid. $R_f = 0.41$ (PE:EtOAc = 30:1); ¹H NMR (400 MHz, CDCl₃) δ 5.22 (s, 2H), 7.01 (dt, J = 4.0, 8.0 Hz, 1H), 7.07 (s, 1H), 7.12 (dd, J = 4.0, 8.0 Hz, 1H), 7.34-7.44 (m, 5H), 8.14 (t, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 156.9, 153.3, 135.8, 131.2(2), 128.8, 128.7, 128.6, 122.9, 121.3, 116.6, 116.3, 114.9, 114.7, 67.6. HRMS (ESI) calcd for C₁₄H₁₁ClFNO₂Na m/z [M+Na]⁺: 302.0355, found: 302.0355.

benzyl (2,4-dichlorophenyl)carbamate (30)

White solid. $R_f = 0.40$ (PE:EtOAc = 30:1); ¹H NMR (400 MHz, CDCl₃) δ 5.22 (s, 2H), 7.16 (s, 1H), 7.25 (dd, J = 4.0, 8.0 Hz, 1H), 7.35-7.44 (m, 6H), 8.16 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.9, 135.7, 133.6, 128.9, 128.8, 128.7, 128.6, 128.4, 128.1, 122.7, 120.8, 67.7.

The analytical data are in accordance with those reported in the literature.¹⁵

benzyl (4-bromo-2-chlorophenyl)carbamate (3p)

White solid. $R_f = 0.42$ (PE:EtOAc = 30:1); ¹H NMR (400 MHz, CDCl₃) δ 5.22 (s, 2H), 7.16 (s, 1H), 7.36-7.43 (m, 6H), 7.49 (d, J = 4.0 Hz, 1H), 8.11 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.9, 135.7, 134.1, 131.6, 130.9, 128.9, 128.8, 128.6, 122.8, 121.1, 115.4, 67.7. HRMS (ESI) calcd for C₁₄H₁₁BrClNO₂Na *m/z* [M+Na]⁺: 361.9554, found: 361.9556.

methyl 4-(((benzyloxy)carbonyl)amino)-3-chlorobenzoate (3q)

White solid. $R_f = 0.40$ (PE:EtOAc = 8:1); ¹H NMR (400 MHz, CDCl₃) δ 3.89 (s, 3H), 5.24 (s, 2H), 7.36-7.42 (m, 6H), 7.94 (d, J = 8.4 Hz, 1H), 8.03 (s, 1H), 8.33 (d, J = 8.4

Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 152.8, 138.9, 135.6, 130.7, 129.6, 128.9, 128.8, 128.7, 125.5, 121.6, 118.8, 67.9, 52.4. HRMS (ESI) calcd for C₁₆H₁₄ClNO₄Na *m/z* [M+Na]⁺: 342.0504, found: 342.0509.

benzyl (2-chloro-5-methylphenyl)carbamate (3r)

White solid. $R_f = 0.46$ (PE:EtOAc = 8:1); ¹H NMR (400 MHz, CDCl₃) δ 2.29 (s, 3H), 5.21 (s, 2H), 7.06 (d, J = 8.8 Hz, 1H), 7.11 (s, 1H), 7.16 (s, 1H), 7.35-7.43 (m, 5H), 8.03 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 135.9, 133.9, 132.1, 129.5, 128.8, 128.6(2), 128.5, 122.1, 120.1, 67.4, 20.7. HRMS (ESI) calcd for C₁₅H₁₄ClNO₂Na *m/z* [M+Na]⁺: 298.0605, found: 298.0603.

benzyl (2-chloro-5-methoxyphenyl)carbamate (3s)

White solid. $R_f = 0.45$ (PE:EtOAc = 8:1); ¹H NMR (400 MHz, CDCl₃) δ 3.80 (s, 3H), 5.23 (s, 2H), 6.57 (dd, J = 4.0, 8.0 Hz, 1H), 7.20-7.22 (m, 2H), 7.36-7.45 (m, 5H), 7.87 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 153.0, 135.8, 135.4, 129.4, 128.8, 128.7, 128.6, 113.3, 110.4, 104.9, 67.5, 55.7. HRMS (ESI) calcd for C₁₅H₁₄ClNO₃Na m/z [M+Na]⁺: 314.0554, found: 314.0554.

N-(2-chloro-5-methoxyphenyl)-4-nitrobenzenesulfonamide (3t)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 3.75 (s, 3H), 6.60 (dd, J = 4.0, 8.0 Hz, 2H), 6.96 (s, 1H), 7.08 (d, J = 12.0 Hz, 1H), 7.18 (d, J = 4.0 Hz, 1H), 7.87 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 150.5, 144.5, 133.0, 130.1, 128.7, 124.4, 117.2, 113.2, 109.3, 55.9.

The analytical data are in accordance with those reported in the literature.²

benzyl (2-chloro-5-fluorophenyl)carbamate (3u)

White solid. $R_f = 0.40$ (PE:EtOAc = 30:1); ¹H NMR (400 MHz, CDCl₃) δ 5.22 (s, 2H), 6.71 (dt, J = 4.0, 8.0 Hz, 1H), 7.24 (s, 1H), 7.28 (dd, J = 4.0, 8.0 Hz, 1H), 7.35-7.44

(m, 5H), 8.04 (dd, J = 4.0, 12.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 160.6, 152.8, 136.0, 135.9, 135.6, 129.9, 129.8, 128.9, 1228.8, 128.7, 128.6, 116.7, 116.6, 110.8, 110.5, 107.5, 107.2, 67.7. HRMS (ESI) calcd for C₁₄H₁₁ClFNO₂Na *m/z* [M+Na]⁺: 302.0355, found: 302.0355.

benzyl (2,5-dichlorophenyl)carbamate (3v)

White solid. $R_f = 0.40$ (PE:EtOAc = 30:1); ¹H NMR (400 MHz, CDCl₃) δ 5.23 (s, 2H), 6.98 (dd, J = 4.0, 8.0 Hz, 1H), 7.21 (s, 1H), 7.26 (d, J = 8.0 Hz, 1H), 7.37-7.45 (m, 5H), 8.30 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 135.6(2), 133.8, 129.8, 128.8(2), 128.7, 123.8, 120.0, 119.8, 67.7. HRMS (ESI) calcd for C₁₄H₁₂Cl₂NO₂ m/z [M+H]⁺: 296.0240, found: 296.0240.

benzyl (5-bromo-2-chlorophenyl)carbamate (3w)

White solid. $R_f = 0.40$ (PE:EtOAc = 30:1); ¹H NMR (400 MHz, CDCl₃) δ 5.23 (s, 2H), 7.12 (d, J = 8.0 Hz, 1H), 7.19-7.21 (m, 2H), 7.36-7.45 (m, 5H), 8.44 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 135.8, 135.6, 130.2, 128.9, 128.8, 128.6, 126.7, 122.6, 121.5, 120.8, 67.7. HRMS (ESI) calcd for C₁₄H₁₁ClBrNO₂Na *m*/*z* [M+Na]⁺: 361.9554, found: 361.9556.

benzyl (2-chloro-5-iodophenyl)carbamate (3x)

White solid. $R_f = 0.40$ (PE:EtOAc = 30:1); ¹H NMR (400 MHz, CDCl₃) δ 5.22 (s, 2H), 7.05 (d, J = 8.0 Hz, 1H), 7.16 (s, 1H), 7.26 (d, J = 8.0 Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 7.37-7.44 (m, 5H), 8.58 (d, J = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 135.8, 135.6, 132.8, 130.5, 128.8, 128.7, 128.6, 128.4, 121.9, 92.4, 67.7. HRMS (ESI) calcd for C₁₄H₁₁ClINO₂Na m/z [M+Na]⁺: 409.9415, found: 409.9415.

N-(2-chloro-3,5-dimethylphenyl)-4-nitrobenzenesulfonamide (3y)

White solid. $R_f = 0.40$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 2.22 (s, 3H),

2.30 (s, 3H), 6.87 (s, 1H), 7.03 (s, 1H), 7.35 (s, 1H), 7.92 (d, J = 8.0 Hz, 2H), 8.27 (d, J = 12.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.5, 144.8, 137.6, 136.9, 132.0, 129.5, 128.7, 124.3, 123.3, 121.8, 21.2, 20.6.

The analytical data are in accordance with those reported in the literature.²

dibenzyl (4,6-dichloro-1,3-phenylene)dicarbamate (3z)

White solid. $R_f = 0.45$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 5.25 (s, 4H), 7.13 (s, 2H), 7.33 (s, 1H), 7.36-7.45 (m, 10H), 9.22 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 135.8, 134.4, 128.8(2), 128.7, 115.9, 110.9, 67.7. HRMS (ESI) calcd for C₂₂H₁₈Cl₂N₂O₄Na *m*/*z* [M+Na]⁺: 467.0536, found: 467.0536.

benzyl (1-chloronaphthalen-2-yl)carbamate (3aa)

White solid. $R_f = 0.45$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 5.27 (s, 2H), 7.37-7.42 (m, 7H), 7.46 (t, J = 7.8 Hz, 1H), 7.80 (t, J = 10.0 Hz, 2H), 8.16 (d, J = 8.0 Hz, 1H), 8.41 (d, J = 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 135.9, 132.8, 130.9, 130.8, 128.8, 128.7, 128.6, 128.2, 127.9, 127.7, 125.4, 123.8, 119.2, 117.3, 67.6. HRMS (ESI) calcd for C₁₈H₁₅ClNO₂ m/z [M+H]⁺: 312.0786, found: 312.0789.

NHCbz

benzyl (2-chlorothiophen-3-yl)carbamate (3ab)

White solid. $R_f = 0.50$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 5.21 (s, 2H), 6.79 (s, 1H), 7.08 (d, J = 8.0 Hz, 1H), 7.34-7.43 (m, 5H), 7.60 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.9, 135.8, 132.9, 128.8, 128.7, 128.6, 122.0, 121.3 67.7. HRMS (ESI) calcd for C₁₂H₁₁ClNO₂S m/z [M+H]⁺: 268.0194, found: 268.0194.

N-(2,4-dichlorophenyl)-3-(piperidin-1-yl)butanamide (4a)

Pale yellow solid. $R_f = 0.35$ (PE:EtOAc = 2:1); ¹H NMR (400 MHz, CDCl₃) δ 1.05 (d, J = 4.0 Hz, 3H), 1.44-1.50 (m, 2H), 1.57-1.65 (m, 2H), 1.67-1.74 (m, 2H), 2.34 (dd, J = 4.0, 16.0 Hz, 1H), 2.42-2.48 (m, 2H), 2.63-2.72 (m, 3H), 3.04-3.09 (m, 1H), 7.21

(dd, *J* = 4.0, 8.0 Hz, 1H), 7.36 (d, *J* = 4.0 Hz, 1H), 8.15 (d, *J* = 8.0 Hz, 1H), 11.08 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 134.4, 129.2, 129.0, 127.5, 124.9(2), 56.8, 49.0, 40.1, 26.0, 24.6, 13.3.

The analytical data are in accordance with those reported in the literature.¹⁵

3,5-dichloro-N-(6-chloro-2-methylbenzo[d]thiazol-5-yl)benzamide (4b)

White solid. $R_f = 0.50$ (PE:EtOAc = 2:1); ¹H NMR (400 MHz, CDCl₃) δ 2.90 (s, 3H), 7.58 (d, J = 4.0 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.81 (s, 2H), 8.42 (s, 1H), 8.50 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 163.0, 150.5, 137.5, 136.1, 132.6, 132.5, 132.3, 125.9, 120.2, 118.9, 116.3, 20.6. HRMS (ESI) calcd for C₁₅H₁₀Cl₃N₂OS m/z [M+H]⁺: 370.9574, found: 370.9574.

6-(3-((3s)-adamantan-1-yl)-4-methoxyphenyl)-N-(2-chlorophenyl)-2-naphthamid e (4c)

White solid. $R_f = 0.32$ (PE:EtOAc = 30:1); ¹H NMR (400 MHz, DMSO-*d6*) δ 1.79 (s, 6H), 2.08 (s, 3H), 2.16 (s, 6H), 3.92 (s, 3H), 7.00 (d, J = 8.0 Hz, 2H), 7.13 (dd, J = 4.0, 8.0 Hz, 1H), 7.39 (dt, J = 4.0, 8.0 Hz, 2H), 7.45 (t, J = 8.0 Hz, 2H), 7.60 (d, J = 12.0 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 8.09 (d, J = 4.0, 8.0 Hz, 1H), 8.47 (d, J = 4.0 Hz, 1H), 8.54 (d, J = 8.0 Hz, 1H), 8.62-8.64 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 158.7, 140.6, 138.3, 134.8, 133.3, 132.8, 132.2, 131.6, 130.4, 129.6, 129.2, 128.7, 128.2, 128.1, 127.9, 126.4, 125.1, 124.7, 123.3, 121.7, 111.3, 55.19, 40.7, 37.3(2), 29.2. HRMS(ESI) calcd for C₃₄H₃₂ClNO₂Na *m/z* [M+Na]⁺: 544.2014, found: 544.2014.

N-(2-chlorophenyl)-5-(2,5-dimethylphenoxy)-2,2-dimethylpentanamide (4d)

White solid. $R_f = 0.50$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 1.34 (s, 6H), 1.79-1.83 (m, 4H), 2.14 (s, 3H), 2.29 (s, 3H), 3.92 (t, J = 8.0 Hz, 2H), 6.61 (s, 1H),

7.07 (s, 1H), 7.11 (t, J = 8.0 Hz, 1H), 7.30-7.34 (m, 3H), 7.51 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 155.6, 137.9, 133.9, 130.7, 129.1(2), 125.9, 125.0, 124.5, 121.4, 120.2, 113.7, 68.4, 42.9, 37.8, 25.8, 25.2, 20.2, 15.8. HRMS (ESI) calcd for C₂₁H₂₆ClNO₂Na *m/z* [M+Na]⁺: 382.1544, found: 382.1544.

(S)-N-(2-chlorophenyl)-2-(6-methoxynaphthalen-2-yl)propenamide (4e)

White solid. $R_f = 0.55$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 1.72 (d, J = 8.0 Hz, 3H), 3.95 (q, J = 8.0 Hz, 1H), 4.04 (s, 3H), 6.98 (dt, J = 4.0, 8.0 Hz, 1H), 7.22-7.26 (m, 2H), 7.32-7.35 (m, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.68 (s, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.81 (s, 1H), 8.25 (d, J = 8.0 Hz, 1H), 8.37 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 152.9, 136.4, 134.6, 131.4, 129.7, 129.0, 127.9, 127.8, 127.5, 126.8, 124.9, 124.7, 122.8, 121.4, 116.9, 114.3, 57.1, 48.3, 18.3. HRMS (ESI) calcd for C₂₀H₁₈ClNO₂K m/z [M+K]⁺: 378.0658, found: 378.0658.

N-(2-chlorophenyl)-2-(4-isobutylphenyl)propanamide (4f)

White solid. $R_f = 0.32$ (PE:EtOAc = 8:1); ¹H NMR (400 MHz, CDCl₃) δ 0.89 (d, J = 8.0 Hz, 6H), 1.65 (s, 3H), 1.84-1.88 (m, 1H), 2.48 (d, J = 8.0 Hz, 2H), 3.77 (q, J = 8.0 Hz, 1H), 6.97 (dt, J = 4.0, 8.0 Hz, 1H), 7.17-7.30 (m, 6H), 7.63 (s, 1H), 8.38 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 141.5, 137.5, 134.8, 130.1, 128.9, 127.8(2), 124.4, 122.7, 121.1, 48.2, 45.1, 30.4, 22.4, 18.0. HRMS (ESI) calcd for C₁₉H₂₂ClNONa *m*/*z* [M+Na]⁺: 338.1282, found: 338.1288.

2-(diethylamino)ethyl 4-acetamido-3-chlorobenzoate (4g)

White solid. $R_f = 0.45$ (DCM:MeOH = 8:1); ¹H NMR (400 MHz, CDCl₃) δ 1.06 (t, J = 8.0 Hz, 6H), 2.27 (s, 3H), 2.63 (q, J = 8.0 Hz, 4H), 2.85 (d, J = 8.4 Hz, 2H), 4.37 (d, J = 8.0 Hz, 2H), 7.81 (s, 1H), 7.92 (d, J = 8.4 Hz, 1H), 8.04 (s, 1H), 8.52 (d, J = 12.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 165.2, 138.6, 130.5, 129.5, 126.2, 121.9, 120.3, 63.6, 51.0, 47.9, 25.2, 12.0. HRMS (ESI) calcd for C₁₅H₂₂ClN₂O₃ m/z [M+H]⁺: 313.1314, found: 313.1313.

2-((2-chlorophenyl)carbamoyl)phenyl acetate (4h)

White solid. $R_f = 0.50$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 2.38 (s, 3H), 7.09 (t, J = 8.0 Hz, 1H), 7.19 (d, J = 8.0 Hz, 1H), 7.31-7.42 (m, 3H), 7.36 (t, J = 8.0 Hz, 2H), 7.98 (d, J = 8.0 Hz, 1H), 8.58 (t, J = 8.0 Hz, 1H), 8.74 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 163.4, 148.1, 134.9, 132.8, 130.7, 129.2, 128.1, 127.9, 126.7, 125.0, 123.7, 122.8, 121.9, 21.5. HRMS (ESI) calcd for C₁₅H₁₂ClNO₃Na *m*/*z* [M+Na]⁺: 312.0398, found: 312.0398.

(*R*)-*N*-(2-chlorophenyl)-4-((3*R*,5*R*,8*R*,9*R*,10*S*,13*R*,14*R*,17*R*)-3-methoxy-8,10,13-tri methylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanamide (4i)

White solid. $R_f = 0.42$ (PE:EtOAc = 8:1); ¹H NMR (400 MHz, CDCl₃) δ 0.65 (s, 3H), 0.93 (s, 3H), 0.97 (d, J = 8.0 Hz, 3H), 1.02-1.17 (m, 6H), 1.20-1.51 (m, 13H), 1.54-.162 (m, 2H), 1.64-1.75 (m, 1H), 1.74-1.98 (m, 6H), 2.29-2.36 (m, 1H), 2.45-2.53 (m, 1H), 3.12-3.20 (m, 1H), 3.35 (s, 3H), 7.03 (t, J = 8.0 Hz, 1H), 7.24-7.27 (m, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.62 (s, 1H), 8.38 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 134.8, 129.1, 127.9, 124.6, 122.6, 121.7, 80.5, 56.6, 56.1, 55.7, 42.9, 42.2, 40.5, 40.3, 35.9, 35.5, 35.4, 35.0, 32.9, 31.7, 28.4, 27.5, 26.9, 26.5, 24.4, 23.6, 20.9, 18.5, 12.2. HRMS(ESI) calcd for C₃₂H₄₈ClNO₂Na *m*/*z* [M+Na]⁺: 536.3266, found: 356.3266.

N-(2-chlorophenyl)-4-(N,N-dipropylsulfamoyl)benzamide (4j)

White solid. $R_f = 0.50$ (PE:EtOAc = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 8.0 Hz, 6H), 1.54-1.61 (m, 4H), 3.12(t, J = 8.0 Hz, 4H), 7.13 (t, J = 8.0 Hz, 1H), 7.36 (t, J = 8.0 Hz, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.95 (d, J = 8.0 Hz, 2H), 8.03 (d, J = 8.0 Hz, 2H), 8.44 (s, 1H), 8.52 (J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 143.8, 138.0, 134.4, 129.3, 128.1, 127.9, 127.8, 125.5, 123.4, 121.8, 50.1, 22.1, 11.3.

N-(2-chlorophenyl)-2-(4-(2,2-dichlorocyclopropyl)phenoxy)-2-methylpropanami de (4k)

White solid. $R_f = 0.45$ (PE:EtOAc = 6:1); ¹H NMR (400 MHz, CDCl₃) δ 1.62 (s, 6H), 1.81 (t, J = 8.0 Hz, 1H), 1.95-2.00 (s, 1H), 2.85 (t, J = 8.0 Hz, 1H), 7.01 (d, J = 8.0 Hz, 2H), 7.07 (dt, J = 4.0, 8.0 Hz, 1H), 7.19 (d, J = 8.0 Hz, 2H), 7.31 (t, J = 8.0 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 8.45 (d, J = 8.0 Hz, 1H), 9.28 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 153.6, 134.4, 130.3, 130.0, 129.3, 127.8, 124.9, 123.6, 121.7, 121.4, 82.4, 60.8, 35.0, 26.0, 25.2 (2). HRMS (ESI) calcd for C₁₉H₁₈Cl₃NO₂Na m/z [M+Na]⁺: 420.0295, found: 420.0295.

N-(2-chlorophenyl)-2-methyl-2-(4-(4-methylbenzoyl)phenoxy)propenamide (41)

White solid. $R_f = 0.50$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 1.71 (s, 6H), 7.05-7.09 (m, 3H), 7.31 (t, J = 8.0 Hz, 1H), 7.37 (dd, J = 4.0, 8.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.0 Hz, 2H), 7.77 (d, J = 8.0 Hz, 2H), 8.41 (d, J = 8.0 Hz, 1H), 9.02 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 194.4, 172.5, 158.4, 138.8, 136.2, 134.2, 132.2, 132.1, 131.4, 129.3, 128.8, 127.9, 125.2, 123.5, 121.5, 120.1, 82.7, 25.3. HRMS (ESI) calcd for C₂₃H₂₀Cl₂NO₃ m/z [M+H]⁺: 428.0815, found: 428.0815.

2-(3-benzoylphenyl)-N-(2-chlorophenyl)propenamide (4m)

White solid. $R_f = 0.45$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 1.67 (d, J = 8.0 Hz, 3H), 3.87 (q, J = 8.0 Hz, 1H), 7.02 (dt, J = 4.0, 8.0 Hz, 1H), 7.23-7.27 (m, 1H), 7.30 (d, J = 8.0 Hz, 1H), 7.45-7.50 (m, 2H), 7.53 (d, J = 8.0 Hz, 1H), 7.58-7.67 (m, 3H), 7.73 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 8.0 Hz, 2H), 7.84 (s, 1H), 8.36 (dd, J = 4.0, 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 196.5, 171.8, 141.0, 138.5, 137.5, 134.5, 132.8, 131.8, 130.2, 129.7, 129.4, 129.3, 129.1, 128.5, 127.9, 124.9, 122.9, 121.4, 48.4, 18.4. HRMS (ESI) calcd for C₂₂H₁₉ClNO₂ m/z [M+H]⁺: 364.1099, found: 364.1099.

(1R,3R,5R)-3-isopropyl-5-methylcyclohexyl (2-chlorophenyl)carbamate (5n)

White solid. $R_f = 0.45$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 0.82 (d, J = 8.0 Hz, 3H), 0.87-0.97 (m, 1H), 0.93 (d, J = 4.0 Hz, 6H), 1.01-1.14 (m, 2H), 1.37-1.45 (m, 1H), 1.48-1.57 (m, 1H), 1.67-1.73 (m, 2H), 1.94-2.00 (m, 1H), 2.08-2.14 (m, 1H), 4.69 (dt, J = 4.0, 8.0 Hz, 1H), 6.98 (dt, J = 4.0, 8.0 Hz, 1H), 7.10 (s, 1H), 7.26 (t, J = 8.0 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 8.20 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 135.1, 129.1, 127.9, 123.6, 121.9, 119.9, 75.7, 47.3, 41.4, 34.4, 31.6, 26.4, 23.6, 22.2, 20.9, 16.5. HRMS (ESI) calcd for C₁₇H₂₅ClNO₂ m/z [M+H]⁺: 310.1568, found: 310.1568.

(5*S*,8*R*,10*S*,13*S*,14*S*)-10,13-dimethyl-17-oxohexadecahydro-1H-cyclopenta[a]phe nanthren-3-yl (2-chlorophenyl)carbamate (50)

White solid. $R_f = 0.40$ (PE:EtOAc = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 0.74 (dt, J = 4.0, 8.0 Hz, 1H), 0.86 (s, 3H), 0.87 (s, 3H), 0.94-1.11 (m, 2H), 1.20-1.41 (m, 6H), 1.43-1.62 (m, 4H), 1.64-1.82 (m, 5H), 1.90-1.97 (m, 2H), 2.03-2.12 (m, 1H), 2.40-2.47 (m, 1H), 4.67-4.75 (m, 1H), 6.98 (dt, J = 4.0, 8.0 Hz, 1H), 7.09 (s, 1H), 7.26 (t, J = 8.0 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 8.15 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.9, 135.0, 129.7, 127.9, 123.6, 122.0, 119.9, 75.0, 54.4, 51.5, 47.9, 44.8, 36.9, 36.0, 35.8, 35.2, 34.3, 31.7, 31.0, 28.4, 27.9, 21.9, 20.6, 14.0, 12.4. HRMS (ESI) calcd for C₂₆H₃₅CINO₃ m/z [M+H]⁺: 444.2300, found: 444.2300.

benzyl (4-chloro-2-methylphenyl)carbamate (7)

White solid. $R_f = 0.45$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 2.38 (s, 3H), 5.20 (s, 2H), 6.41 (s, 1H), 7.17 (dt, J = 4.0, 8.0 Hz, 2H), 7.34-7.43 (m, 5H), 7.79 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.6, 135.9, 134.5, 130.3, 128.8, 128.6(2),

126.9, 67.4, 17.7. HRMS (ESI) calcd for C₁₅H₁₄ClNO₂Na *m/z* [M+Na]⁺: 298.0605, found: 298.0607.

Me_NCbz

benzyl (4-chlorophenyl)(methyl)carbamate (9)

White solid. $R_f = 0.50$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 3.31 (s, 3H), 5.18 (s, 2H), 7.20 (d, J = 8.0 Hz, 2H), 7.30-7.35 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 141.9, 136.5, 131.6, 129.0, 128.6, 128.1, 127.9, 127.0, 67.6, 37.7. HRMS (ESI) calcd for C₁₅H₁₄ClNO₂Na *m/z* [M+Na]⁺: 298.0605, found: 298.0605.

N,N-bis(2,3-dichloropropyl)-4-methylbenzenesulfonamide (11)

White solid. $R_f = 0.32$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 2.46 (s, 3H), 3.12-3.18 (m, 1H), 3.34-3.40 (m, 1H), 3.75-3.82 (m, 3H), 3.84-3.90 (m, 3H), 4.48-4.56 (m, 2H), 7.38 (dd, J = 4.0, 8.0 Hz, 2H), 7.73 (dd, J = 4.0, 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 144.9, 144.8, 134.6, 134.1, 130.3(2), 127.8(2), 58.6, 58.4, 54.8(2), 46.5, 46.4, 21.8.

The analytical data are in accordance with those reported in the literature.¹⁵

benzyl (2-chloro-4-cyclopropylphenyl)carbamate (14)

White solid. $R_f = 0.50$ (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 0.62-0.66 (m, 2H), 0.92-0.97 (m, 2H), 3.34-3.40 (m, 1H), 1.80-1.87 (m, 1H), 5.21 (s, 2H), 6.98 (dd, J = 4.0, 8.0 Hz, 2H), 7.05 (s, 1H), 7.09 (s, 1H), 7.35-7.44 (s, 5H), 8.02 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 140.3, 136.0, 132.1, 128.8, 128.6(2), 126.4, 125.3, 122.3, 120.2, 67.4, 14.8, 9.1. HRMS (ESI) calcd for C₁₇H₁₇ClNO₂ m/z [M+H]⁺: 302.0942, found: 302.0942.

(D) Scale-Up of the Chlorination and Deprotection

Furthermore, this catalytic protocol could be easily scaled up without selectivity deterioration and the catalyst loading could also be further decreased. The *ortho*-chlorination of **2a**, **2u** and **2ab** on a 10 mmol scale were completed in 24 h with only 5 mol% secondary amine **1f** to furnish the corresponding products **3a**, **3u** and **3ab** in excellent yield. The benzyloxycarbonyl group of the *ortho*-chlorinated product **3u** can be efficiently removed using NaBH₄ in the presence of Pd/C in methanol to give aniline **5** in 98% yield. The advantages of practical and environmental benign features make this chlorination methodology more attractive in the industrial synthesis.

(E) Representative procedure for the large scale preparation of 3a

To a solution of catalyst **1f** (50.5 mg, 0.5 mmol) and substrate **2a** (2.27 g, 10.0 mmol) in toluene (80 mL) was added dropwise SO₂Cl₂ (2.7 g, 20.0 mmol) over 30 min in the absence of light at 0 °C. Then the resulting mixture was stirred at 25 °C for 24 h. Upon completion, the reaction was quenched with saturated aqueous Na₂SO₃ (30 mL). The organic layer was separated, and the aqueous layer was extracted with dichloromethane (3×15 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/EtOAc = 20:1) to yield **3a** as white solid (97%, 2.53 g).

(F) General procedure for *N*-Cbz deprotection

To a stirred solution of substrate **3u** (0.28 g, 1 mmol) and 10 % Pd/C (20 mg, 10 wt%) in MeOH (20 mL) was added NaBH₄ (56.8 mg, 1.5 mmol) portion wise using solid addition funnel. A septum with an empty balloon was placed to avoid the loss of generated hydrogen and overpressure in the flask. After completion of reaction (10 min), reaction mixture was filtered through celite and filtrate was evaporated to dryness to afford crude amine which upon purification using flash chromatography (hexane/EtOAc = 30:1) afforded pure amine **5** (136.3 mg, 94%). R_f = 0.50 (PE:EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 4.14 (s, 2H), 6.40 (t, *J* = 4.0, 8.0 Hz, 1H), 6.47 (d, *J* = 8.0 Hz, 1H), 7.15-7.19 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 161.1, 144.3, 144.2, 130.4, 130.3, 114.3(2), 106.0, 105.8, 102.8, 102.5. The analytical data are in accordance with those reported in the literature.¹⁶

(G) X-ray diffraction data of 3u (CCDC 2158109)

(H) Examples of crude NMR and GC/MS spectra for determination of the regioselectivity of the *ortho*-chlorination

CI

S41

5, 0

ppm

4.0

3, 5

3, 0

2.5

210

B 425 B 425 B 450 B

Mechanistic study:

(I) Preparation for species E

A solution of dry diisopropylamine (2.9 mL, 20 mmol) in dry Et₂O (10 mL) was added dropwise to a stirred solution of sulfuryl chloride (0.81 mL, 10 mmol) and Et₃N (2.5 mL, 20 mmol) in Et₂O (20 mL) at -10 °C under N₂. After 2 h, the reaction mixture was diluted with Et₂O (10 mL) and vacuum-filtered through Celite. The filtrate was evaporated to give **E** as a yellow oil (0.59 g, 30%). ¹H NMR (400 MHz, CDCl₃) δ 1.39 (d, *J* = 8.0 Hz, 12H), 3.96-4.06 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 51.8, 20.6.

S52

(J) Species E as halogen source and catalyst for ortho-chlorination

Notes: The ortho-chlorination of 2a was carried out using species E as chlorinating reagent at room temperature, ortho-chlorinated product 3a was not detected. However, the ortho-chlorination of 2a worked in the presence of species E and sulfuryl chloride, providing the desired product 3a in 60% yield.

(K) Mioskowski reagent as halogen source for ortho-chlorination

Notes: The ortho-chlorination of 2a was carried out using Mioskowski reagent as chlorinating reagent at room temperature in the presence of 1f and 1h, providing the desired product 3a in 3% yield and 2% yield, respectively. These results indicated that the larger tetraethylammonium cation could provide stable environment for allowing the anion Cl_3 to approach in lowest energy form, whereas the smaller cations offer the unstable conditions.

See (a) Evans, J. C.; Lo, Y.-S. Vibrational Spectra of the Cl₃⁻ Ion and Evidence for the Existence of Cl₅⁻. *J. Chem. Phys.* **1966**, 44, 3638–3639. (b) Daniel, F.; Hoyle, G. Perhalides of Quaternary Ammonium Salts. *J. Chem. Soc. Trans.* **1923**, *123*, 654–662.

Notes: The chlorination of cyclopropane 13 provides the corresponding ortho-chlorinated compound 14 in 80% yield, and the product with cyclopropane opened was not observed. This result further suggests the involvement of radical pathway was impossible.

(L) Determine the species A

Notes: The UV-vis experiment was conducted using 1f(0.1 eq.) and $SO_2Cl_2(1.0 \text{ eq.})$ in CH₂Cl₂ at 25 °C. The new signal could be attributed to the strong intense absorption of the species A at 232 nm.

Figure S1. UV-vis experiment studies

See (a) Brown, D. M.; Dainton, F. S. Matrix Isolation of Unstable Halogen Radical Ions. *Nature* **1966**, *209*, 195–196. (b) Andrews, L. Optical Spectra of the Difluoride, Dichloride, and Trichloride Ions in the Matrix-Isolated M⁺F₂⁻, M⁺Cl₂⁻, and M⁺Cl₃⁻ Species. *J. Am. Chem. Soc.* **1976**, *98*, 2147–2152.

Notes: **1f** (0.1 eq.) and SO₂Cl₂ (1.0 eq.) were solved in CH₂Cl₂ at 25 °C, then the solvent was removed to afford white solid, which was used to conduct the IR experiment. The new signal could be attributed to the sharp band of the species A at 254 cm⁻¹.

Figure S2. IR experiment studies

See (a) Evans, J, C.; Lo, G. Y-S. Vibrational Spectra of the Cl₃⁻ Ion and Evidence for the Existence of Cl₅⁻. *J. Chem. Phys.* **1966**, *44*, 3638–3639. (b) Redeker, F. A.; Riedel, S. Matrix-isolation and comparative far-IR investigation of free linear [Cl₃]⁻ and a series of alkali trichlorides. *Chem. Commun.* **2017**, *53*, 12958–12961.

ppm 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6

Notes: The NMR experiment was conducted using 1f(0.1 eq.) and $SO_2Cl_2(1.0 \text{ eq.})$ in CDCl₃ at 25 °C. The signal of the methine proton of 1g(3.4 ppm) and a new signal (4.1 ppm) appeared concurrently. The new signal could be attributed to the methine proton of the species A.

Figure S3. ¹H NMR experiment on a mixture of 1f and SO₂Cl₂ in CDCl₃

Notes: The NMR experiments were conducted using 1f(0.1 eq.) and SO_2Cl_2 (1.0 eq.), 1h(0.1 eq.) and DCH (1.0 eq.) in CDCl₃ at 25 °C. These results suggested that the species A(4.1 ppm) and the active cationic species (3.6 ppm) were stable at 25 °C.

Figure S4. ¹H NMR experiment on a mixture of 1f and SO₂Cl₂, 1h and DCH in CDCl₃ at 25 $^{\circ}$ C

Notes: The NMR experiments were conducted using species A and the active cationic species with substrate 2i in CDCl₃ at 25 °C, respectively. These results suggested that the species A (4.1 ppm) and the active cationic species (3.6 ppm) were not interchangeable with substrate at 25 °C.

(M) References

1. S. Li.; R. Khan.; X. Zhang.; Y. Yang.; Z. Wang.; Y. Zhan.; Y. Dai.; Y.-E. Liu.; B. Fan. Org. Biomol. Chem. 2019, 17, 5891–5896.

2. X. Xiong.; Y.-Y. Yeung, Angew. Chem. Int. Ed. 2016, 55, 16101–16105.

3. K. Seth.; M. Nautiyal.; P. Purohit.; N. Parikh.; A. K. Chakraborti. *Chem. Commun.* 2015, *51*, 191–194.

4. X.-B. Bu.; Z. Wang.; Y.-H. Wang.; T. Jiang.; L. Zhang.; Y.-L. Zhao. *Eur. J. Org. Chem.* **2017**, 1132–1138.

5. L. R. Reddy.; S. Kotturi.; Y. Waman.; V. R. Reddy.; C. Patel.; A. Kobarne.; S. Kuttappan. J. Org. Chem. 2018, 83, 13854–13860.

6. W. B. Im.; S. H. Choi.; J.-Y. Park.; S. H. Choi.; J. Finn.; S.-H. Yoon. *Eur. J. Med. Chem.* **2011**, *46*, 1027–1039.

7. H. Lebel.; O. Leogane. Org. Lett. 2006, 8, 5717-5720.

8. H. R. Khatri.; J. Zhu. Chem. Eur. J. 2012, 18, 12232-12236.

9. P. R. Sultane.; T. B. Mete.; R. G.; Bhat. Tetrahedron Lett. 2015, 56, 2067-2070.

10. S.-Y. Moon.; U. B. Kim.; D.-B. Sung.; W.-S.; Kim. J. Org. Chem. 2015, 80, 1856–1865.

11. S.-P. Wang.; C. W. Cheung.; J.-A. Ma. J. Org. Chem. 2019, 84, 13922–13934.

12. Y. Chen.; H. Feng. Asian. J. Chem. 2013. 25, 9066–9068.

13. M. S. McCammant.; S. Thompson.; A. F. Brooks.; S. W. Krska.; P. J. H. Scott.; M. S. Sanford. *Org. Lett.* **2017**, *19*, 3939–3942.

14. Q. Dai.; P. Li.; N. Ma.; C. Hu. Org. Lett. 2016, 18, 5560-5563.

15. F. Liu.; N. Wu.; X. Cheng. Org. Lett. 2021, 23, 3015–3020.

16. A. N. Dinh.; S. M. Maddox.; S. D. Vaidya.; M. A. Saputra.; C. J. Nalbandian.; J. L. Gustafson. *J. Org. Chem.* **2020**, *85*, 13895–13905.

(N)¹H and ¹³C Spectra

S63

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

S71

S75

S81

____11.789

0 ppm

S111

0 ppm

170 160 150 140 110 100 0 ppm

180 170 80 70 50 40 0 ppm

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

S147

S148

S149

