Supporting Information

Selectfluor®-Enabled Photochemical Selective C(sp³)-H (Sulfonyl)amidation

Yuehua Chen, a Boxuan Yang, a Qian-Yu Li, a Yu-Mei Lin, a and Lei Gong* a,b

^{*a*} Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

^b Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.

E-mail: gongl@xmu.edu.cn

Table of Contents

1. General Information	S2
2. Synthesis of the Substrates	S3
3. Set-up of the Photochemical Reactions	S7
4. Photochemical C(sp ³)-H Sulfonylamidation Reaction	S 8
4.1 Optimization of Conditions for the C(sp ³)-H Sulfonylamidation Reaction	S 8
4.2 Substrate Scope of the C(sp ³)-H Sulfonylamidation Reaction	S9
4.3 Unsuccessful Substrates	S48
4.4 Determination of pH Value after the Reaction	S48
5. Synthetic Utility	S49
5.1 A Scale-up Reaction	S49
5.2 Scope of Other N-containing Reagents	S49
5.3 Optimization of Conditions for the C(sp ³)-H Amidation Reaction with Nitriles	S52
5.4 Substrate Scope of the C(sp ³)-H Amidation Reaction with Nitriles	S54
5.5 Synthesis of Rasagiline	S73
6. Mechanistic Investigations	S75
6.1 Radical Trapping Experiments	S75
6.2 Probing of Carbon Cations	S78
6.3 An Isotope Labeling Experiment	S79
6.4 Light on/off Experiments	S80
7. ¹ H and ¹³ C NMR Spectrum	S82
8. References	S178

1. General Information

Solvents were distilled under argon from calcium hydride (CH₂Cl₂) and ClCH₂CH₂Cl were purchased from SCR[®] and used without additional purification. Solvents for flash column chromatography (*n*-pentane, petroleum ether, EtOAc, CH₂Cl₂) were purchased from Titan and used without additional purification. All other reagents were purchased from commercial suppliers (TCI, Sigma-Aldrich, Alfa Aesar, Macklin, Bide Pharmatech, Adamas-beta[®], *J&K* Scientific, etc.) and used without further purification. Photochemical reactions were performed in 10 mL Schlenk tubes under an atmosphere of argon and upon irradiation with a 50 W LEDs ($\lambda_{max} = 395$ nm or $\lambda_{max} = 365$ nm; commercial supplier: Hong Chang Lighting Co. Ltd., website: http://hongchang-led.taobao.com). Flash column chromatography was performed with silica gel (300–400 mesh, pH = 6.7–7.0). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AM (500 MHz) or Bruker AM (600 MHz) spectrometer at ambient temperature. NMR standards were used as follows: CDCl₃ = 7.26 ppm (¹H NMR), 77.0 ppm (¹³C NMR). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), and integration. IR spectra were recorded on a Nicolet Avatar 330 FT-IR spectrophotometer. High-resolution mass spectra were recorded on an Agilent 1290-G6545XT QTOF instrument using ESI technique.

2. Synthesis of the Substrates

Ethylbenzene derivatives 11, 1m and 1zc were prepared by published procedures.¹ 1a–1k, 1o–1zb, 1ze and 1zg–1zi were purchased from TCI, Sigma-Aldrich, Alfa, Macklin, Bide Pharmatech, Adamasbeta[®], J&K, etc.) and used without further purification.

Preparation of substrates 1n, 1zd, 1zf and 1zj.

4-ethyl-4'-phenoxy-1,1'-biphenyl (1n)

To a solution of phenol (**S1**, 470.1 mg, 5.00 mmol) in dry *N*-methylpyrrolidone (NMP, 30 mL) was added copper(I) chloride (247.5 mg, 2.50 mmol), potassium carbonate (1382.0 mg, 10.0 mmol) and 4-chloro-4'-ethyl-1,1'-biphenyl (**S2**, 1191.9 mg, 5.50 mmol) at room temperature. The reaction mixture was stirred at 130 °C under argon for 12 h, then quenched with H_2O (20 mL) and extracted with CH_2Cl_2 (30 mL x 3). The combined organic layers were dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was subjected to silica gel chromatography [petroleum ether (PE): ethyl acetate (EA) = 20:1] to afford the pure **1n** as a white solid (891.7 mg, 3.30 mmol, 65% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.57 – 7.52 (m, 2H), 7.52 – 7.48 (m, 2H), 7.39 – 7.33 (m, 2H), 7.29 – 7.26 (m, 2H), 7.15 – 7.10 (m, 1H), 7.09 – 7.04 (m, 4H), 2.70 (q, *J* = 7.6 Hz, 2H), 1.29 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 157.3, 156.6, 143.2, 138.0, 136.3, 129.8, 128.3, 128.2, 126.8, 123.3, 119.0, 119.0, 28.5, 15.6.

IR (film): v (cm⁻¹) 3726, 3628, 3602, 3055, 2965, 2930, 1897, 1734, 1685, 1654, 1589, 1523, 1489, 1455, 1400, 1265, 1240, 1167, 1138, 1111, 1071, 1023, 1005, 898, 871, 825, 775, 746, 692.

1-ethyl-4-(4-isobutylphenoxy)benzene (1zd)

1zd

To a solution of 4-ethylphenol (**S3**, 610.8 mg, 5.00 mmol) in dry *N*-methylpyrrolidone (NMP, 30 mL) was added copper(I) chloride (247.5 mg, 2.50 mmol), potassium carbonate (1382.1 mg, 10.0 mmol) and 1-bromo-4-isobutylbenzene (**S4**, 1172.1 mg, 5.50 mmol) at room temperature. The reaction mixture was stirred at 130 °C under argon for 12 h, then quenched with H₂O (30 mL) and extracted with CH₂Cl₂ (30 mL x 3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was subjected to silica gel chromatography (PE: EA = 20:1) to afford the pure **1zd** as a yellow oil (674.1 mg, 2.70 mmol, 53% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.18 – 7.13 (m, 2H), 7.12 – 7.06 (m, 2H), 6.92 (t, *J* = 8.2 Hz, 4H), 2.64 (q, *J* = 7.6 Hz, 2H), 2.45 (d, *J* = 7.2 Hz, 2H), 1.86 (m, *J* = 13.5, 6.8 Hz, 1H), 1.24 (t, *J* = 7.6 Hz, 3H), 0.92 (d, *J* = 6.7 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 155.5, 155.4, 138.9, 136.3, 130.2, 128.9, 118.7, 118.4, 44.7, 30.3, 28.1, 22.3, 15.7.

IR (film): v (cm⁻¹) 3727, 2960, 1735, 1685, 1654, 1602, 1560, 1501, 1466, 1239, 1168, 874, 833.

3-phenylpropyl 4'-ethyl-[1,1'-biphenyl]-4-carboxylate (1zf)

1zf

To a solution of 4'-ethyl-(1,1'-biphenyl)-4-carboxylic acid (S5, 1131.4 mg, 5.00 mmol) and 3phenylpropan-1-ol (S6, 1021.5 mg, 7.50 mmol) in ClCH₂CH₂Cl (30 mL) were added concentrated sulfuric acid (1.0 mL, 18.4 M). The reaction mixture was stirred at 85 °C and neutralize with aqueous Na₂CO₃. The whole mixture was then extracted with CH₂Cl₂ (30 mL x 3) and washed with water. CH₂Cl₂ layer was dried over Na₂SO₄ and evaporated under reduced pressure. The residue was subjected to silica gel chromatography (PE: EA = 20:1) to afford the pure **1zf** as a yellow oil (1636.1 mg, 4.80 mmol, 95% yield).

¹H NMR (500 MHz, CDCl₃) δ 8.13 – 8.01 (m, 2H), 7.65 – 7.60 (m, 2H), 7.55 – 7.51 (m, 2H), 7.31 – 7.25 (m, 4H), 7.23 – 7.16 (m, 3H), 4.34 (t, *J* = 6.5 Hz, 2H), 2.78 (t, *J* = 7.6 Hz, 2H), 2.68 (q, *J* = 7.6 Hz, 2H), 2.15 – 2.05 (m, 2H), 1.26 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 166.6, 145.6, 144.5, 141.2, 137.4, 130.1, 128.9, 128.5, 128.5, 127.2, 126.8, 126.1, 64.4, 32.4, 30.4, 28.6, 15.5.

IR (film): v (cm⁻¹) 3436, 1640, 1496, 1273, 1112.

HRMS (ESI-TOF, m/z) calcd for C₂₄H₂₄NaO₂⁺ (M+Na)⁺: 367.1669, found: 367.1681.

4-ethylphenyl 2-(4-isobutylphenyl)propanoate (1zj)

To a solution of 2-(4-isobutylphenyl)propanoic acid (S7, 2062.9 mg, 10.0 mmol) and 4-ethylphenol (S3, 1221.7 mg, 10.0 mmol) in CH₂Cl₂ (20 mL) were added 1-(3-dimethylaminopropyl)-3-ehtylcarbodiimide hydrochloride (EDCl, 2108.7 mg, 11.0 mmol) and 4-dimethylaminopyridine (DMAP, 305.4 mg, 2.50 mmol). The reaction mixture was stirred at room temperature for 12 h, then concentrated under reduced pressure. The residue was subjected to silica gel chromatography (PE: EA = 10:1) to afford the pure **1zj** as a yellow oil (2700.8 mg, 8.70 mmol, 87% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.31 (d, *J* = 8.3, 2.6 Hz, 2H), 7.18 – 7.13 (m, 4H), 6.92 (d, *J* = 9.0, 2.7 Hz, 2H), 3.94 (q, *J* = 7.2, 2.6 Hz, 1H), 2.63 (q, *J* = 7.6 Hz, 2H), 2.49 (d, *J* = 7.2, 2.7 Hz, 2H), 1.92 – 1.82 (m, 1H), 1.61 (d, *J* = 7.1, 2.6 Hz, 3H), 1.22 (t, *J* = 7.6, 2.4 Hz, 3H), 0.93 (d, *J* = 6.7, 2.6 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 173.4, 148.8, 141.6, 140.8, 137.4, 129.5, 128.6, 127.2, 121.1, 45.3, 45.1, 30.1, 28.3, 22.4, 18.6, 15.6.

IR (film): v (cm⁻¹) 3726, 3491, 3026, 2962, 2932, 2869, 1897, 1756, 1654, 1605, 1560, 1508, 1456, 1420, 1377, 1366, 1332, 1200, 1166, 1140, 1073, 1043, 1019, 992, 939, 895, 846.

3. Set-up of the Photochemical Reactions

Figure S1. Set-up of the photochemical reactions (Left: $\lambda_{max} = 395$ nm, Right: $\lambda_{max} = 365$ nm).

4. Photochemical C(sp³)-H Sulfonylamidation Reaction

4.1 Optimization of Conditions for the C(sp³)-H Sulfonylamidation Reaction

General procedure. A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 36.5 mg, 0.20 mmol), *p*-methylbenzenesulfonamide (**2a**, 68.5 mg, 0.40 mmol), Selectfluor[®] (1.0 – 3.0 equiv.) and the indicated solvent (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a direct current DC fan cooling. The reaction was stirred at 40 °C for 48 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE: EA = 5:1) to afford the pure product (**3**) as a white solid.

entry	Selectfluor [®] (equiv.)	additive	solvent	time (h)	yield $(\%)^b$
1	3.0	none	ClCH ₂ CH ₂ Cl	48	66
2	3.0	none	CH_2Cl_2	48	74
3	3.0	none	CHCl ₃	48	52
4	3.0	none	acetone	48	n.a.
5	3.0	none	PhCl	48	74
6	3.0	none	HFIP	48	n.a.
7	3.0	none	THF	48	n.a.
8	3.0	none	MeCN	48	n.a.
9	3.0	none	ethyl acetate	48	15
10	3.0	none	DMF	48	n.a.
11	3.0	none	DMSO	48	n.a.
12	1.0	$MnO_2(0.5 \text{ equiv.})$	CH_2Cl_2	48	n.a.
13	1.0	$(NH_4)_2S_2O_8 (0.5 \text{ equiv.})$	CH_2Cl_2	48	52
14	1.0	<i>m</i> -CPBA (0.5 equiv.)	CH_2Cl_2	48	63
15	1.0	Pyridine N-oxide	CH_2Cl_2	48	11
		(0.5 equiv.)			
16	1.0	Trimethylamine <i>N</i> -oxide	CH_2Cl_2	48	20
17	1.0	C_{10} (0.5 equiv.)	CH_2Cl_2	48	29
18	1.0	$CuCl_2$ (0.5 equiv.)	CH_2Cl_2	48	43

Table S1. Optimization for the Photochemical C(sp³)-H Sulfonylamidation Reaction ^a

19	1.0	FeCl ₃ (0.5 equiv.)	CH_2Cl_2	48	30
20	1.0	$CoCl_2(0.5 \text{ equiv.})$	CH_2Cl_2	48	55
21 ^c	3.0	none	CH_2Cl_2	48	72
22^d	3.0	none	CH_2Cl_2	48	44
23 ^e	3.0	none	CH_2Cl_2	48	81
24 ^{<i>f</i>}	3.0	none	CH_2Cl_2	48	n.a.
25 ^g	3.0	none	CH_2Cl_2	48	n.a.
26^{h}	3.0	none	CH_2Cl_2	48	trace
27	3.0	TEMPO	CH_2Cl_2	48	n.a.
		(4.0 equiv.)			
28 ^{<i>i</i>}	3.0	none	CH_2Cl_2	48	76

^{*a*} Reaction conditions: **1a** (0.20 mmol, 1.0 equiv.), **2a** (0.40 mmol, 2.0 equiv.), CH₂Cl₂ (1.0 mL), 40 °C, 50 W LEDs ($\lambda_{max} = 395$ nm), under argon. ^{*b*} Isolated yield. ^{*c*} Reaction under air. ^{*d*} Irradiation with a 50 W LEDs ($\lambda_{max} = 427$ nm). ^{*e*} Irradiation with a 50 W LEDs ($\lambda_{max} = 365$ nm). ^{*f*} Reaction in the dark. ^{*g*} Reaction in the dark and in 60 °C. ^{*h*} Reaction in the dark and in 120 °C. ^{*i*} **1a** (0.30 mmol), **2a** (0.20 mmol), CH₂Cl₂ (1.0 mL), 40 °C, 50 W LEDs ($\lambda_{max} = 395$ nm), under argon. n.a. = not applicable. HFIP = 1,1,1,3,3,3-hexafluoro-2-propanol. THF = tetrahydrofuran. DMF = N,N-dimethylformamide. DMSO = dimethyl sulfoxide.

4.2 Substrate Scope of the C(sp³)-H Sulfonylamidation Reaction

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-4-methylbenzenesulfonamide (3)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 54.7 mg, 0.30 mmol), *p*-toluenesulfonamide (**2a**, 34.2 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan

cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **3** as a white solid (56.9 mg, 0.162 mmol, 81% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.76 – 7.66 (m, 2H), 7.62 – 7.57 (m, 2H), 7.55 – 7.46 (m, 4H), 7.46 – 7.38 (m, 1H), 7.26 – 7.24 (m, 4H), 5.12 – 4.95 (m, 1H), 4.65 – 4.57 (m, 1H), 2.43 (s, 3H), 1.55 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 143.1, 141.0, 140.6, 140.5, 137.7, 129.4, 128.8, 127.4, 127.2, 127.2, 127.0, 126.6, 53.4, 23.5, 21.4.

Spectral data for this compound was previously reported and matched with the current data.^[2]

N-(1-([1,1'-biphenyl]-4-yl)ethyl)benzenesulfonamide (4)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 54.7 mg, 0.30 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **4** as a white solid (63.4 mg, 0.188 mmol, 94% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.76 – 7.72 (m, 2H), 7.53 – 7.49 (m, 2H), 7.49 – 7.45 (m, 1H), 7.45 – 7.41 (m, 2H), 7.41 – 7.32 (m, 5H), 7.15 (d, *J* = 1.9 Hz, 2H), 5.15 (d, *J* = 7.1 Hz, 1H), 4.60 – 4.52 (m, 1H), 1.47 (d, *J* = 10.0 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 140.9, 140.7, 140.6, 140.5, 132.3, 128.8, 128.8, 127.4, 127.2, 127.1, 127.0, 126.6, 53.5, 23.5.

IR (film): v (cm⁻¹) 3292, 2844, 2118, 1652, 1448, 1407, 1157, 1016.

HRMS (ESI-TOF, m/z) calcd for C₂₀H₁₉NNaO₂S⁺ (M+Na)⁺: 360.1029, found: 360.1024.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-4-methoxybenzenesulfonamide (5)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 54.7 mg, 0.30 mmol), *p*-methoxybenzenesulfonamide (**2c**, 37.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **5** as a white solid (58.1 mg, 0.158 mmol, 79% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.66 – 7.62 (m, 2H), 7.54 – 7.49 (m, 2H), 7.46 – 7.37 (m, 4H), 7.37 – 7.31 (m, 1H), 7.20 – 7.13 (m, 2H), 6.85 – 6.77 (m, 2H), 4.79 – 4.69 (m, 1H), 4.56 – 4.48 (m, 1H), 3.77 (s, 3H), 1.48 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 162.7, 140.9, 140.6, 140.5, 132.2, 129.2, 128.8, 127.4, 127.2, 127.0, 126.7, 113.9, 55.5, 53.4, 23.5.

IR (film): v (cm⁻¹) 3696, 3680, 3371, 2949, 2843, 1654, 1560, 1454, 1331, 1054, 1033, 1018, 429. Spectral data for this compound was previously reported and matched with the current data.^[2]

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-4-(trifluoromethoxy)benzenesulfonamide (6)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 54.7 mg, 0.30 mmol), *p*-(trifluoromethoxy)benzenesulfonamide (**2d**, 48.2 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA

= 5:1) to afford **6** as a white solid (71.6 mg, 0.170 mmol, 85% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.76 – 7.72 (m, 2H), 7.52 – 7.47 (m, 2H), 7.45 – 7.41 (m, 2H), 7.41 – 7.37 (m, 2H), 7.37 – 7.33 (m, 1H), 7.17 – 7.12 (m, 4H), 5.42 (d, *J* = 7.1 Hz, 1H), 4.62 – 4.55 (m, 1H), 1.49 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 151.8, 140.8, 140.4, 140.4, 139.1, 129.2, 128.8, 127.5, 127.2, 127.0, 126.6, 120.6, 120,2 (q, *J* = 2.1 Hz), 53.7, 23.6.

IR (film): v (cm⁻¹) 3439, 1654, 1489, 1427, 1328, 1298, 1259 1216, 1161, 1091, 1016, 963, 808, 766, 665.

HRMS (ESI-TOF, m/z) calcd for C₂₁H₁₈F₃KNO₃S⁺ (M+K)⁺: 460.0591, found: 460.0588.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-4-fluorobenzenesulfonamide (7)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 54.7 mg, 0.30 mmol), *p*-fluorobenzenesulfonamide (**2e**, 35.0 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford 7 as a white solid (67.5 mg, 0.190 mmol, 95% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.72 – 7.67 (m, 2H), 7.53 – 7.48 (m, 2H), 7.46 – 7.38 (m, 4H), 7.38 – 7.30 (m, 1H), 7.16 – 7.11 (m, 2H), 7.05 – 6.98 (m, 2H), 4.89 (d, *J* = 6.8 Hz, 1H), 4.60 – 4.53 (m, 1H), 1.49 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 140.8, 140.5(d, *J* = 5.0 Hz), 129.8, 129.8, 129.7, 128.8, 127.5, 127.3, 127.0, 126.6, 116.0, 115.8, 53.6, 23.6.

Spectral data for this compound was previously reported and matched with the current data.^[2]

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-4-chlorobenzenesulfonamide (8)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 54.7 mg, 0.30 mmol), *p*-chlorobenzenesulfonamide (**2f**, 38.3 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **8** as a white solid (65.5 mg, 0.176 mmol, 88% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.63 – 7.59 (m, 2H), 7.54 – 7.49 (m, 2H), 7.43 (dd, *J* = 8.5, 6.8 Hz, 2H), 7.41 – 7.38 (m, 2H), 7.38 – 7.33 (m, 1H), 7.32 – 7.28 (m, 2H), 7.15 – 7.11 (m, 2H), 5.07 (d, *J* = 7.0 Hz, 1H), 4.60 – 4.53 (m, 1H), 1.49 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 140.8, 140.5, 140.4, 139.3, 138.8, 129.0, 128.8, 128.5, 127.5, 127.3, 127.1, 126.6, 53.7, 23.5.

IR (film): v (cm⁻¹) 3394, 2949, 2843, 1654, 1560, 1413, 1053, 1033, 1017.

HRMS (ESI-TOF, m/z) calcd for C₂₀H₁₈ClNNaO₂S⁺ (M+Na)⁺: 394.0639, found: 394.0647.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-4-(trifluoromethyl)benzenesulfonamide (9)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 54.7 mg, 0.30 mmol), *p*-(trifluoromethyl)benzenesulfonamide (**2g**, 45.0 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for for 72 h, then concentrated to dryness under reduced

pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **9** as a white solid (77.8 mg, 0.192 mmol, 96% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.82 – 7.77 (m, 2H), 7.73 (d, *J* = 8.1 Hz, 2H), 7.65 (d, *J* = 8.2 Hz, 2H), 7.56 – 7.51 (m, 1H), 7.48 – 7.39 (m, 4H), 7.28 – 7.23 (m, 2H), 5.03 (d, *J* = 6.9 Hz, 1H), 4.65 – 4.58 (m, 1H), 1.52 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃)) δ 144.2, 140.8, 140.2, 140.1, 133.9 (q, *J* = 32.5 Hz), 128.8, 127.5, 127.5, 127.2, 126.9, 126.6, 125.8 (q, *J* = 3.8 Hz), 123.2 (q, *J* = 273.3 Hz), 53.8, 23.5.

Spectral data for this compound was previously reported and matched with the current data.^[2]

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-3-fluorobenzenesulfonamide (10)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 54.7 mg, 0.30 mmol), *m*-fluorobenzenesulfonamide (**2h**, 35.0 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **10** as a white solid (67.5 mg, 0.190 mmol, 95% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.49 – 7.52 (m, 3H), 7.47 – 7.33 (m, 6H), 7.33 – 7.28 (m, 1H), 7.19 – 7.10 (m, 3H), 5.44 (d, *J* = 7.3 Hz, 1H), 4.64 – 4.56 (m, 1H), 1.50 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 163.2, 161.2, 140.7, 140.6, 140.5, 130.6 (d, *J* = 8.8 Hz), 128.8, 127.4, 127.3, 127.0, 126.6, 122.8 (d, *J* = 3.8 Hz), 119.4 (d, *J* = 21.4 Hz), 114.5 (d, *J* = 25.2 Hz), 53.8, 23.5.

IR (film): v (cm⁻¹) 3285, 1735, 1654, 1597, 1477, 1437, 1328, 1304, 1271, 1225, 1156, 1085, 1017, 964, 839, 789, 766, 734, 695, 679, 584.

HRMS (ESI-TOF, m/z) calcd for C₂₀H₁₈FNNaO₂S⁺ (M+Na)⁺: 378.0934, found: 378.0940.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-2-methylbenzenesulfonamide (11)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 54.7 mg, 0.30 mmol), *o*methylbenzenesulfonamide (**2i**, 34.2 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **11** as a white solid (44.9 mg, 0.128 mmol, 64% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.85 (7.84 – 7.86, 1H), 7.53 – 7.48 (m, 2H), 7.46 – 7.40 (m, 2H), 7.40 – 7.30 (m, 4H), 7.19 – 7.16 (m, 2H), 7.16 – 7.10 (m, 2H), 5.02 (d, *J* = 6.8 Hz, 1H), 4.54 – 4.47 (m, 1H), 2.57 (s, 3H), 1.49 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 140.7, 140.6, 140.5, 138.4, 136.9, 132.5, 132.3, 129.6, 128.8, 127.4, 127.2, 127.0, 126.6, 126.0, 53.4, 23.3, 20.3.

IR (film): v (cm⁻¹) 3727, 3583, 3284, 1735, 1685, 1654, 1560, 1321, 1158, 1065, 763.

HRMS (ESI-TOF, m/z) calcd for C₂₁H₂₁NNaO₂S⁺ (M+Na)⁺: 374.1185, found: 374.1179.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-2-chlorobenzenesulfonamide (12)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 54.7 mg, 0.30 mmol), *o*-chlorobenzenesulfonamide (**2j**, 38.3 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **12** as a white solid (66.9 mg, 0.180 mmol, 90% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.88 (dd, J = 7.8, 1.5 Hz, 1H), 7.51 – 7.40 (m, 4H), 7.39 – 7.28 (m, 5H), 7.24 – 7.21 (m, 1H), 7.17 – 7.08 (m, 2H), 5.44 (d, J = 7.7 Hz, 1H), 4.58 – 4.51 (m, 1H), 1.52 (d, J = 7.0 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 140.6, 140.6, 140.1, 138.0, 133.2, 131.3, 131.2, 131.1, 128.8, 127.4, 127.1, 127.0, 126.9, 126.5, 54.0, 22.9.

IR (film): v (cm⁻¹) 3301, 3060, 3029, 2977, 2931, 1654, 1617, 1600, 1578, 1487, 1454, 1432, 1377, 1330, 1255, 1166, 1127, 1101, 1077, 1045, 1008, 961, 867, 839, 796, 765, 750, 735, 699, 665, 613, 585, 563, 422.

HRMS (ESI-TOF, m/z) calcd for C₂₀H₁₈ClNNaO₂S⁺ (M+Na)⁺: 394.0639, found: 394.0646.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-2-bromobenzenesulfonamide (13)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 54.7 mg, 0.30 mmol), *o*bromobenzenesulfonamide (**2k**, 47.2 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **13** as a white solid (61.6 mg, 0.148 mmol, 74% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.86 – 7.81 (m, 1H), 7.48 – 7.46 (m, 1H), 7.41 – 7.37 (m, 2H), 7.36 – 7.31 (m, 2H), 7.28 – 7.24 (m, 3H), 7.22 – 7.14 (m, 2H), 7.10 – 7.05 (m, 2H), 5.41 (d, *J* = 7.6 Hz, 1H), 4.49 – 4.40 (m, 1H), 1.43 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 140.6, 140.6, 140.0, 139.6, 134.7, 133.1, 131.4, 128.8, 127.5, 127.4, 127.1, 127.0, 126.6, 119.8, 54.1, 22.9.

IR (film): v (cm⁻¹) 3727, 3314, 1735, 1654, 1560, 1420, 1331, 1165, 763, 735.

HRMS (ESI-TOF, m/z) calcd for C₂₀H₁₈BrNNaO₂S⁺ (M+Na)⁺: 438.0134, found: 438.0149.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-2-(trifluoromethyl)benzenesulfonamide (14)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 54.7 mg, 0.30 mmol), *o*-(trifluoromethyl)benzenesulfonamide (**2l**, 45.0 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **14** as a white solid (60.0 mg, 0.148 mmol, 74% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 7.9 Hz, 1H), 7.75 (d, *J* = 7.8 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 1H), 7.50 – 7.46 (m, 2H), 7.46 – 7.39 (m, 3H), 7.38 – 7.31 (m, 3H), 7.15 – 7.10 (m, 2H), 5.12 (d, *J* = 7.5 Hz, 1H), 4.68 – 4.60 (m, 1H), 1.49 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 140.5, 140.4, 140.3, 139.2, 132.1, 132.0, 131.6, 128.8, 128.0 (q, J = 3.5 Hz), 127.4, 127.1, 126.9, 126.7 (q, J = 32.7 Hz), 126.5, 123.0 (q, J = 273.8 Hz), 54.0, 23.3.
IR (film): v (cm⁻¹) 3727, 3629, 3317, 3031, 2979, 1735, 1685, 1654, 1597, 1560, 1487, 1438, 1420, 1346, 1308, 1269, 1167, 1117, 1095, 1077, 1037, 965, 839, 767, 734, 713, 699, 646, 613, 586.
HRMS (ESI-TOF, m/z) calcd for C₂₁H₁₈F₃NNaO₂S⁺ (M+Na)⁺: 428.0903, found: 428.0905.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-2,5-dimethylbenzenesulfonamide (15)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 54.7 mg, 0.30 mmol), 2,5dimethylbenzenesulfonamide (**2m**, 37.0 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **15** as a white solid (42.4 mg, 0.116 mmol, 58% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, *J* = 1.8 Hz, 1H), 7.52 – 7.47 (m, 2H), 7.45 – 7.42 (m, 2H), 7.39 – 7.32 (m, 3H), 7.17 – 7.11 (m, 3H), 7.07 (d, *J* = 7.7 Hz, 1H), 4.97 (d, *J* = 6.6 Hz, 1H), 4.55 – 4.48 (m, 1H), 2.53 (s, 3H), 2.22 (s, 3H), 1.49 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 140.7, 140.6, 140.4, 138.0, 135.8, 133.6, 133.1, 132.2, 130.1, 128.8, 127.4, 127.1, 127.0, 126.6, 53.4, 23.3, 20.7, 19.8.

IR (film): v (cm⁻¹) 3451, 2117, 1654, 1485, 1420, 1315, 1154, 1101, 1065, 1016, 959, 765, 733, 696.

HRMS (ESI-TOF, m/z) calcd for C₂₂H₂₃NNaO₂S⁺ (M+Na)⁺: 388.1342, found: 388.1346.

Note: Side products such as self-coupling products of 2,5-dimethylbenzenesulfonamide were detected by HRMS.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-2,5-dichlorobenzenesulfonamide (16)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 54.7 mg, 0.30 mmol), 2,5dichlorobenzenesulfonamide (**2n**, 45.2 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **16** as a white solid (78.8 mg, 0.194 mmol, 97% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, *J* = 2.4 Hz, 1H), 7.42 – 7.38 (m, 2H), 7.38 – 7.33 (m, 2H), 7.29 – 7.23 (m, 3H), 7.18 – 7.15 (m, 1H), 7.13 (s, 1H), 7.09 – 7.03 (m, 2H), 5.31 (d, *J* = 7.8 Hz, 1H), 4.55 – 4.47 (m, 1H), 1.47 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 140.9, 140.4, 139.4, 139.3, 133.1, 132.8, 132.2, 131.0, 129.4, 128.8, 127.5, 127.1, 127.0, 126.6, 54.2, 22.8.

IR (film): v (cm⁻¹) 3436, 1654, 1560, 1450, 1331, 1167, 429.

HRMS (ESI-TOF, m/z) calcd for C₂₀H₁₇Cl₂NNaO₂S⁺ (M+Na)⁺: 428.0249, found: 428.0251.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-2-bromo-4,6-difluorobenzenesulfonamide (17)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 54.7 mg, 0.30 mmol), 2bromo-4,6-difluorobenzenesulfonamide (**2o**, 54.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **17** as a white solid (72.4 mg, 0.160 mmol, 80% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.49 – 7.40 (m, 4H), 7.39 – 7.32 (m, 3H), 7.23 – 7.17 (m, 2H), 7.11 (dt, *J* = 7.8, 2.1 Hz, 1H), 6.65 (m, 1H), 5.60 (d, *J* = 8.2 Hz, 1H), 4.75 – 4.60 (m, 1H), 1.58 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 163.5 (dd, J = 260.8, 12.6 Hz), 160.8 (dd, J = 263.3, 12.6 Hz), 141.1, 140.4, 139.4, 128.8, 127.5, 127.2, 127.0, 126.5, 125.7 (dd, J = 12.6, 5.0 Hz), 122.9 (dd, J = 11.3, 1.3 Hz), 118.8 (dd, J = 25.2, 3.8 Hz), 105.1 (dd, J = 27.7, 25.2 Hz), 54.3, 22.7.

IR (film): v (cm⁻¹) 3454, 2110, 1640, 1485, 1420, 1350, 1175, 1127, 1072.

HRMS (ESI-TOF, m/z) calcd for C₂₀H₁₆BrF₂NNaO₂S⁺ (M+Na)⁺: 473.9945, found: 473.9946.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)naphthalene-1-sulfonamide (18)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (1a, 54.7 mg, 0.30 mmol), naphthalene-1-sulfonamide (2p, 41.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and

dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **18** as a white solid (45.0 mg, 0.116 mmol, 58% yield).

¹H NMR (500 MHz, CDCl₃) δ 8.59 (d, *J* = 8.6 Hz, 1H), 8.09 (d, *J* = 7.3 Hz, 1H), 7.91 (d, *J* = 8.2 Hz, 1H), 7.87 – 7.79 (m, 1H), 7.66 – 7.62 (m, 1H), 7.57 – 7.54 (m, 1H), 7.45 – 7.38 (m, 4H), 7.37 – 7.29 (m, 2H), 7.13 – 7.08 (m, 2H), 6.91 – 6.86 (m, 2H), 5.07 (d, *J* = 7.0 Hz, 1H), 4.55 –4.48 (m, 1H), 1.41 (d, *J* = 6.9 Hz, 3H).

13C NMR (126 MHz, CDCl3) δ 140.6, 140.2, 135.1, 134.1, 133.9, 129.9, 129.0, 128.7, 128.2, 128.1, 127.3, 127.0, 126.8, 126.6, 126.3, 124.3, 124.0, 53.7, 23.4.

IR (film): v (cm⁻¹) 1735, 1654, 1484, 1320, 1160, 1135, 802, 767, 733, 697, 677.

HRMS (ESI-TOF, m/z) calcd for C₂₄H₂₁NNaO₂S⁺ (M+Na)⁺: 410.1185, found: 410.1196.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)thiophene-2-sulfonamide (19)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (1a, 54.7 mg, 0.30 mmol), thiophene-2-sulfonamide (2q, 32.6 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford 19 as a white solid (27.5 mg, 0.080 mmol, 40% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.55 – 7.51 (m, 2H), 7.49 (dd, J = 5.0, 1.4 Hz, 1H), 7.48 – 7.40 (m, 5H), 7.38 – 7.31 (m, 1H), 7.25 – 7.18 (m, 2H), 6.94 (dd, J = 5.0, 3.7 Hz, 1H), 5.04 (d, J = 7.1 Hz, 1H), 4.65 – 4.58 (m, 1H), 1.52 (d, J = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 141.8, 140.8, 140.6, 140.6, 132.3, 131.7, 128.8, 127.4, 127.3, 127.1,

127.0, 126.5, 53.8, 23.4.

IR (film): v (cm⁻¹) 3428, 1651, 1324, 1156, 1055 1033, 1015.

HRMS (ESI-TOF, m/z) calcd for C₁₈H₁₇NNaO₂S₂⁺ (M+Na)⁺: 366.0951, found: 366.0953.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-*N*-methylbenzenesulfonamide (20)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 54.7 mg, 0.30 mmol), *N*-methylbenzenesulfonamide (**2r**, 34.2 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **20** as a white solid (54.8 mg, 0.156 mmol, 78% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.91 – 7.86 (m, 2H), 7.62 – 7.51 (m, 7H), 7.46 – 7.41 (m, 2H), 7.38 – 7.31 (m, 3H), 5.34 (q, *J* = 7.0 Hz, 1H), 2.64 (s, 3H), 1.34 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 140.6, 140.5, 140.3, 138.8, 132.4, 129.1, 128.8, 127.7, 127.4, 127.1, 127.1, 127.1, 54.7, 28.6, 15.5.

IR (film): v (cm⁻¹) 3727, 3582, 1735, 1685, 1654, 1560, 1332, 1148, 417.

HRMS (ESI-TOF, m/z) calcd for C₂₁H₂₁NNaO₂S⁺ (M+Na)⁺: 374.1185, found: 374.1180.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)methanesulfonamide (21)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 54.7 mg, 0.30 mmol), methanesulfonamide (**2s**, 19.0 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan

cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **21** as a white solid (40.2 mg, 0.146 mmol, 73% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.66 – 7.57 (m, 4H), 7.49 – 7.40 (m, 4H), 7.40 – 7.30 (m, 1H), 5.07 (d, J = 7.0 Hz, 1H), 4.75 – 4.67 (m, 1H), 2.69 (s, 3H), 1.59 (d, J = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 141.5, 140.9, 140.4, 128.9, 127.6, 127.5, 127.0, 126.7, 53.5, 41.9, 24.0. IR (film): v (cm⁻¹) 3428, 2973, 1654, 1315, 1054, 1033, 1016, 428.

HRMS (ESI-TOF, m/z) calcd for C₁₅H₁₇NNaO₂S⁺ (M+Na)⁺: for 298.0876, found: 298.0872.

4,4-(sulfonylbis(propane-1,2-diyl))di-1,1-biphenyl (22)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 91.1 mg, 0.50 mmol), sulfonyl diamide (**2t**, 48.0 mg, 0.50 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **22** as a white solid (56.6 mg, 0.124 mmol, 62% yield, 3.3:1 *d.r.*), regional selectivity was determined by crude ¹H NMR analysis.

¹H NMR (500 MHz, CDCl₃) δ 7.57 – 7.51 (m, 6H), 7.47 – 7.38 (m, 5H), 7.38 – 7.31 (m, 6H), 7.22 – 7.18 (m, 1 H), 4.62 – 4.38 (m, 4H), 1.53 – 1.31 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 142.0, 140.6, 140.6, 128.8, 127.4, 127.4, 127.0, 126.7, 53.5, 23.5.

IR (film): v (cm⁻¹) 3278, 3029, 2973, 2928, 1912, 1804, 1752, 1735, 1664, 1600, 1561, 1519, 1487, 1450, 1427, 1376, 1318, 1263, 1211, 1155, 1126, 1103, 1078, 1022, 1008, 977, 895, 838, 799, 765, 734, 697, 620, 569.

HRMS (ESI-TOF, m/z) calcd for C₂₈H₂₈N₂NaO₂S⁺ (M+Na)⁺: 479.1764, found: 479.1766.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-4-(5-(*p*-tolyl)-3-(trifluoromethyl)-1*H*-pyrazol-1yl)benzenesulfonamide (23)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 54.7 mg, 0.30 mmol), Celecoxib (**2u**, 76.3 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **23** as a white solid (94.4 mg, 0.168 mmol, 84% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.69 – 7.64 (m, 2H), 7.48 – 7.43 (m, 2H), 7.41 – 7.38 (m, 4H), 7.35 – 7.32 (m, 1H), 7.32 – 7.28 (m, 2H), 7.16 – 7.09 (m, 4H), 7.06 – 6.99 (m, 2H), 6.72 (s, 1H), 5.23 (d, *J* = 7.0 Hz, 1H), 4.60 – 4.53 (m, 1H), 2.34 (s, 3H), 1.48 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 145.0, 143.9 (q, *J* = 37.9 Hz), 142.0, 140.5 (d, *J* = 18.0 Hz), 140.4 (d, *J* = 24.0 Hz), 140.3, 140.1, 139.6, 129.6, 128.7, 128.6, 127.9, 127.3, 127.1, 126.8, 126.6 (d, *J* = 18.0 Hz), 125.6, 125.0, 121.1 (q, *J* = 268.8 Hz), 106.2, 53.6, 23.3, 21.2.

IR (film): v (cm⁻¹) 3462, 1654, 1470, 1407, 1371, 1327, 1271, 1236, 1160 1132, 1093, 975, 838, 765, 425.

HRMS (ESI-TOF, m/z) calcd for C₃₁H₂₆F₃N₃NaO₂S⁺ (M+Na)⁺: 584.1590, found: 584.1592.

N-(1-phenylethyl)benzenesulfonamide (24)

A dried 10 mL Schlenk tube was charged with ethylbenzene (1b, 63.7 mg, 0.60 mmol), benzenesulfonamide (2b, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and

dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **24** as a pale yellow oil (34.0 mg, 0.130 mmol, 65% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.77 – 7.69 (m, 2H), 7.53 – 7.43 (m, 1H), 7.39 – 7.36 (m, 2H), 7.20 – 7.15 (m, 3H), 7.12 – 7.03 (m, 2H), 4.96 (d, *J* = 7.1 Hz, 1H), 4.53 – 4.47 (m, 1H), 1.44 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 141.8, 140.7, 132.3, 128.8, 128.6, 127.6, 127.0, 126.1, 53.7, 23.6.

IR (film): v (cm⁻¹) 3727, 3278, 3064, 3031, 2976, 2929, 1735, 1654, 1603, 1560, 1495, 1481, 1447, 1427, 1377, 1324, 1208, 1162, 1121, 1092, 1020, 1000, 961, 868, 785, 754, 721, 700, 689, 613, 581, 545.

HRMS (ESI-TOF, m/z) calcd for C₁₄H₁₅NNaO₂S⁺ (M+Na)⁺: 284.0716, found: 284.0735.

N-(1-(4-fluorophenyl)ethyl)benzenesulfonamide (25)

A dried 10 mL Schlenk tube was charged with 1-ethyl-4-fluorobenzene (1c, 74.5 mg, 0.60 mmol), benzenesulfonamide (2b, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **25** as a pale yellow oil (46.9 mg, 0.168 mmol, 84% yield).

¹H NMR (500 MHz, CDCl₃) δ 8.16 – 8.09 (m, 2H), 7.96 – 7.86 (m, 1H), 7.85 – 7.74 (m, 2H), 7.54 – 7.42 (m, 2H), 7.32 – 7.19 (m, 2H), 5.73 (d, *J* = 6.7 Hz, 1H), 4.94 – 4.87 (m, 1H), 1.82 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 162.5 (d, J = 119.7 Hz), 140.6, 137.7 (d, J = 3.8 Hz), 132.4, 128.8,

127.8 (d, J = 8.8 Hz), 127.0, 115.3 (d, J = 18.9 Hz), 53.1, 23.6.

IR (film): v (cm⁻¹) 3727, 3277, 2977, 1735, 1654, 1605, 1510, 1448, 1379, 1323, 1225, 1161, 1120, 1090, 1023, 961, 868, 836, 755, 743, 719, 689, 598, 426.

HRMS (ESI-TOF, m/z) calcd for C₁₄H₁₄FNNaO₂S⁺ (M+Na)⁺: 302.0621, found: 302.0625.

N-(1-(4-chlorophenyl)ethyl)benzenesulfonamide (26)

A dried 10 mL Schlenk tube was charged with 1-chloro-4-ethylbenzene (1d, 84.4 mg, 0.60 mmol), benzenesulfonamide (2b, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford 26 as a pale yellow oil (36.7 mg, 0.124 mmol, 62% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.73 – 7.66 (m, 2H), 7.55 – 7.45 (m, 1H), 7.42 – 7.33 (m, 2H), 7.17 – 7.11 (m, 2H), 7.06 – 6.99 (m, 2H), 5.01 (d, *J* = 6.8 Hz, 1H), 4.52 – 4.44 (m, 1H), 1.40 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 140.5, 140.4, 133.3, 132.5, 128.9, 128.6, 127.6, 127.0, 53.1, 23.5.
IR (film): v (cm⁻¹) 3451, 1654, 1492 1447, 1323, 1160, 1090, 1014, 961, 827, 754, 722, 689, 422.
HRMS (ESI-TOF, m/z) calcd for C₁₄H₁₄ClNNaO₂S⁺ (M+Na)⁺: 318.0326, found: 318.0327.

N-(1-(4-bromophenyl)ethyl)benzenesulfonamide (27)

A dried 10 mL Schlenk tube was charged with 1-bromo-4-ethylbenzene (**1e**, 111.0 mg, 0.60 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk

tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **27** as a pale yellow oil (57.2 mg, 0.168 mmol, 84% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.68 (m, 2H), 7.55 – 7.46 (m, 1H), 7.42 – 7.33 (m, 2H), 7.31 – 7.26 (m, 2H), 6.99 – 6.92 (m, 2H), 5.18 (d, *J* = 10.0 Hz, 1H), 4.48 – 4.42 (m, 1H), 1.39 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 140.9, 140.5, 132.5, 131.6, 128.9, 127.9, 127.0, 121.4, 53.1, 23.4. IR (film): v (cm⁻¹) 3727, 3277, 3066, 2976, 1735, 1685, 1654, 1592, 1560, 1489, 1447, 1378, 1324, 1161, 1124, 1090, 1011, 961, 868, 823, 779, 754, 722, 689, 645, 588.

HRMS (ESI-TOF, m/z) calcd for C₁₄H₁₄BrNNaO₂S⁺ (M+Na)⁺: 361.9821, found: 361.9824.

N-(1-(4-ethylphenyl)ethyl)benzenesulfonamide (28)

A dried 10 mL Schlenk tube was charged with 1,4-diethylbenzene (**1f**, 80.5 mg, 0.60 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **28** as a pale yellow oil (40.5 mg, 0.140 mmol, 70% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.75 – 7.69 (m, 2H), 7.52 – 7.45 (m, 1H), 7.42 – 7.32 (m, 2H), 7.04 – 6.94 (m, 4H), 4.70 (d, *J* = 6.9 Hz, 1H), 4.50 – 4.43 (m, 1H), 2.57 (q, *J* = 7.6 Hz, 2H), 1.43 (d, *J* = 6.9 Hz, 3H), 1.18 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 143.6, 140.7, 139.1, 132.3, 128.8, 128.0, 127.1, 126.1, 53.5, 28.4, 23.5, 15.6.

IR (film): v (cm⁻¹) 3278, 2966, 2930, 2872, 1654, 1617, 1514, 1447, 1376, 1324, 1162, 1127, 1092,

1019, 963, 868, 831, 754, 722, 689, 599.

HRMS (ESI-TOF, m/z) calcd for C₁₆H₁₉NNaO₂S⁺ (M+Na)⁺: 312.1029, found: 312.1033.

4-(1-(phenylsulfonamido)ethyl)phenyl acetate (29)

A dried 10 mL Schlenk tube was charged with 4-ethylphenyl acetate (**1g**, 98.5 mg, 0.60 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **29** as a pale yellow oil (45.4 mg, 0.142 mmol, 71% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.74 – 7.66 (m, 2H), 7.53 – 7.43 (m, 1H), 7.43 – 7.32 (m, 2H), 7.16 – 7.04 (m, 2H), 6.92 – 6.84 (m, 2H), 5.15 (d, *J* = 7.2 Hz, 1H), 4.54 – 4.46 (m, 1H), 2.27 (s, 3H), 1.40 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 169.3, 149.9, 140.6, 139.4, 132.4, 128.9, 127.2, 127.0, 121.6, 53.2, 23.5, 21.1.

IR (film): v (cm⁻¹) 3281, 3066, 2977, 2932, 1970, 1902, 1758, 1665, 1606, 1508, 1481, 1448, 1431, 1371, 1324, 1198, 1161, 1122, 1090, 1018, 962, 913, 811, 755, 720, 690, 656, 594, 569, 546. HRMS (ESI-TOF, m/z) calcd for C₁₆H₂₁N₂O₄S⁺ (M+NH₄)⁺: 337.1217, found: 337.1218.

N-(1-(3-(tert-butyl)phenyl)ethyl)benzenesulfonamide (30)

A dried 10 mL Schlenk tube was charged with 1-(*tert*-butyl)-3-ethylbenzene (**1h**, 97.4 mg, 0.60 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk

tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **30** as a pale yellow oil (38.1 mg, 0.120 mmol, 60% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.74 – 7.69 (m, 2H), 7.48 – 7.43 (m, 1H), 7.38 – 7.32 (m, 2H), 7.19 (m, 1H), 7.11 (t, *J* = 7.7 Hz, 1H), 7.05 (t, *J* = 1.9 Hz, 1H), 6.90 (t, *J* = 7.4, 1H), 5.02 (d, *J* = 7.2 Hz, 1H), 4.54 – 4.46 (m, 1H), 1.46 (d, *J* = 6.9 Hz, 3H), 1.21 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 151.5, 141.4, 140.7, 132.3, 128.8, 128.3, 127.0, 124.6, 123.2, 123.1, 54.1, 34.6, 31.3, 23.7.

IR (film): v (cm⁻¹) 3726, 3277, 2963, 1735, 1654, 1560, 1447, 1323, 1160, 1092.

HRMS (ESI-TOF, m/z) calcd for C₁₈H₂₃NNaO₂S⁺ (M+Na)⁺: 340.1342, found: 340.1344.

N-(1-(3,5-diethylphenyl)ethyl)benzenesulfonamide (31)

A dried 10 mL Schlenk tube was charged with 1,3,5-triethylbenzene (**1i**, 97.4 mg, 0.60 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **31** as a pale yellow oil (33.0 mg, 0.104 mmol, 52% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.78 – 7.65 (m, 2H), 7.50 – 7.42 (m, 1H), 7.41 – 7.31 (m, 2H), 6.83 (d, *J* = 1.7 Hz, 1H), 6.68 (d, *J* = 1.6 Hz, 2H), 4.87 (d, *J* = 7.1 Hz, 1H), 4.49 – 4.41 (m, 1H), 2.49 (q, *J* = 7.6 Hz, 4H), 1.45 (d, *J* = 6.9 Hz, 3H), 1.14 (t, *J* = 7.6 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 144.6, 141.7, 140.8, 132.2, 128.7, 127.0, 126.7, 123.0, 53.9, 28.7, 23.5, 15.5.

IR (film): v (cm⁻¹) 3727, 3278, 2966, 1735, 1685, 1654, 1604, 1560, 1447, 1324, 1159, 1093, 870, 753, 721, 688, 429.

HRMS (ESI-TOF, m/z) calcd for $C_{18}H_{23}NNaO_2S^+$ (M+Na)⁺: 340.1342, found: 340.1351.

N-(1-(4'-chloro-[1,1'-biphenyl]-4-yl)ethyl)benzenesulfonamide (32)

A dried 10 mL Schlenk tube was charged with 4-chloro-4'-ethyl-1,1'-biphenyl (**1j**, 65.0 mg, 0.30 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **32** as a white solid (38.7 mg, 0.104 mmol, 52% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.77 – 7.69 (m, 1H), 7.50 – 7.45 (m, 1H), 7.45 – 7.32 (m, 4H), 7.20 – 7.10 (m, 1H), 5.15 (d, *J* = 7.1 Hz, 1H), 4.58 – 4.51 (m, 1H), 1.46 (d, *J* = 6.9 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 141.3, 140.7, 139.2, 139.1, 133.5, 132.3, 129.0, 128.8, 128.2, 127.1, 126.7, 53.4, 23.5.

IR (film): v (cm⁻¹) 3726, 3278, 3063, 1735, 1654, 1598, 1560, 1486, 1448, 1324, 1162, 1091, 1028, 1005, 961, 818, 754, 721, 689, 589, 557.

HRMS (ESI-TOF, m/z) calcd for C₂₀H₁₈ClNNaO₂S⁺ (M+Na)⁺: 394.0639, found: 394.0639.

N-(1-(4'-ethyl-[1,1'-biphenyl]-4-yl)ethyl)benzenesulfonamide (33)

A dried 10 mL Schlenk tube was charged with 4,4'-diethyl-1,1'-biphenyl (1k, 63.1 mg, 0.30 mmol),

benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **33** as a white solid (62.9 mg, 0.172 mmol, 86% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.68 – 7.62 (m, 2H), 7.41 – 7.31 (m, 3H), 7.30 – 7.22 (m, 4H), 7.21 – 7.14 (m, 2H), 7.08 – 7.02 (m, 2H), 5.25 (d, *J* = 7.2 Hz, 1H), 4.52 – 4.44 (m, 1H), 2.60 (q, *J* = 7.6 Hz, 2H), 1.37 (d, *J* = 6.9 Hz, 3H), 1.19 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 143.5, 140.7, 140.6, 140.4, 138.0, 132.3, 128.8, 128.3, 127.1, 127.1, 127.0, 126.6, 53.5, 28.5, 23.5, 15.6.

IR (film): v (cm⁻¹) 3449, 2966, 1735, 1654, 1560, 1497, 1446, 1322, 1158, 1090, 1033, 960, 820, 753, 720, 688, 425.

HRMS (ESI-TOF, m/z) calcd for C₂₂H₂₃NNaO₂S⁺ (M+Na)⁺: 388.1342, found: 388.1344.

N-(1-(4'-isopropyl-[1,1'-biphenyl]-4-yl)ethyl)benzenesulfonamide (34)

A dried 10 mL Schlenk tube was charged with 4-ethyl-4'-isopropyl-1,1'-biphenyl (**11**, 67.3 mg, 0.30 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **34** as a white solid (41.7 mg, 0.110 mmol, 55% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.76 – 7.72 (m, 2H), 7.46 (dd, *J* = 16.4, 7.8 Hz, 3H), 7.39 – 7.34 (m, 4H), 7.32 – 7.27 (m, 2H), 7.14 (d, *J* = 8.1 Hz, 2H), 5.16 (d, *J* = 7.1 Hz, 1H), 4.59 – 4.52 (m, 1H), 3.02

-2.91 (m, 1H), 1.48 (d, J = 6.9 Hz, 3H), 1.30 (d, J = 6.8 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 148.2, 140.7, 140.5, 140.4, 138.1, 132.3, 128.8, 127.1, 127.1, 126.9, 126.9, 126.6, 53.5, 33.8, 24.0, 23.5.

IR (film): v (cm⁻¹) 3727, 3277, 2961, 1735, 1685, 1654, 1617, 1560, 1497, 1447, 1324, 1161, 1091, 1019, 962, 821, 753, 721, 689, 433.

HRMS (ESI-TOF, m/z) calcd for C₂₃H₂₅NNaO₂S⁺ (M+Na)⁺: 402.1498, found: 402.1501.

N-(1-(4'-(tert-butyl)-[1,1'-biphenyl]-4-yl)ethyl)-4-methylbenzenesulfonamide (35)

A dried 10 mL Schlenk tube was charged with 4-(*tert*-butyl)-4'-ethyl-1,1'-biphenyl (**1m**, 71.5 mg, 0.30 mmol), *p*-methylbenzenesulfonamide (**2a**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **35** as a white solid (62.0 mg. 0.152 mmol, 76% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.66 – 7.59 (m, 2H), 7.46 (s, 4H), 7.42 – 7.37 (m, 2H), 7.20 – 7.13 (m, 4H), 5.20 (d, *J* = 7.1 Hz, 1H), 4.56 – 4.48 (m, 1H), 2.36 (s, 3H), 1.46 (d, *J* = 6.9 Hz, 3H), 1.37 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 150.4, 143.1, 140.7, 140.3, 137.8, 137.7, 129.4, 127.2, 127.1, 126.7, 126.6, 125.7, 53.4, 34.6, 31.4, 23.5, 21.5.

IR (film): v (cm⁻¹) 3662, 3514, 3275, 3029, 2964, 2869, 2305, 1912, 1794, 1655, 1599, 1497, 1460, 1430, 1377, 1363, 1324, 1267, 1210, 1185, 1160, 1091, 1020, 1004, 961, 868, 852, 822, 738, 706, 671, 576, 552.

HRMS (ESI-TOF, m/z) calcd for C₂₅H₂₉NNaO₂S⁺ (M+Na)⁺: 430.1811, found: 430.1813.

N-(1-(4'-phenoxy-[1,1'-biphenyl]-4-yl)ethyl)benzenesulfonamide (36)

A dried 10 mL Schlenk tube was charged with 4-ethyl-4'-phenoxy-1,1'-biphenyl (**1n**, 82.3 mg, 0.30 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **36** as a white solid (53.3 mg, 0.124 mmol, 62% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.79 – 7.70 (m, 2H), 7.54 – 7.43 (m, 3H), 7.42 – 7.32 (m, 6H), 7.18 – 7.10 (m, 3H), 7.10 – 7.03 (m, 4H), 4.98 (m, 1H), 4.59 – 4.52 (m, 1H), 1.47 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 157.0, 140.7, 140.6, 140.6, 139.8, 135.6, 132.3, 129.8, 128.8, 128.3, 127.1, 127.0, 126.6, 123.5, 119.1, 119.0, 53.5, 23.5.

IR (film): v (cm⁻¹) 3421, 2950, 2843, 2137, 1654, 1454, 1413, 1239, 1108, 1032, 1019, 429.

HRMS (ESI-TOF, m/z) calcd for $C_{26}H_{23}NNaO_3S^+$ (M+Na)⁺: 452.1291, found: 452.1300.

N-(1-(naphthalen-1-yl)ethyl)benzenesulfonamide (37)

A dried 10 mL Schlenk tube was charged with 1-ethylnaphthalene (10, 93.7 mg, 0.60 mmol), benzenesulfonamide (2b, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **37** as a brown oil (54.2 mg, 0.174 mmol, 87% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.85 – 7.80 (m, 1H), 7.73 – 7.68 (m, 1H), 7.62 – 7.55 (m, 3H), 7.38 – 7.34 (m, 2H), 7.32 – 7.24 (m, 2H), 7.22 – 7.13 (m, 3H), 5.32 – 5.20 (m, 2H), 1.50 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 140.5, 137.5, 133.8, 132.3, 130.2, 128.9, 128.7, 128.2, 127.0, 126.4, 125.7, 125.2, 123.4, 122.6, 49.9, 23.3.

IR (film): v (cm⁻¹) 3726, 3281, 1735, 1654, 1617, 1560, 1447, 1326, 1159, 1093, 800, 778, 725, 688. HRMS (ESI-TOF, m/z) calcd for C₁₈H₁₇NNaO₂S⁺ (M+Na)⁺: 334.0872, found: 334.0880.

N-(1-(naphthalen-2-yl)ethyl)benzenesulfonamide (38)

A dried 10 mL Schlenk tube was charged with 2-ethylnaphthalene (**1p**, 93.7 mg, 0.60 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **38** as a brown oil (46.7 mg, 0.150 mmol, 75% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.69 – 7.57 (m, 4H), 7.56 (d, *J* = 8.5 Hz, 1H), 7.43 (d, *J* = 1.8 Hz, 1H), 7.38 – 7.32 (m, 2H), 7.31 – 7.25 (m, 1H), 7.20 – 7.15 (m, 2H), 7.12 (dd, *J* = 8.5, 1.8 Hz, 1H), 5.16 (d, *J* = 7.1 Hz, 1H), 4.63 – 4.55 (m, 1H), 1.43 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 140.6, 139.1, 133.1, 132.7, 132.3, 128.7, 128.5, 127.8, 127.5, 127.0, 126.2, 126.0, 125.1, 124.0, 53.9, 23.4.

IR (film): v (cm⁻¹) 3727, 3277, 3057, 2976, 2930, 1735, 1685, 1654, 1601, 1560, 1508, 1447, 1426, 1379, 1327, 1161, 1130, 1018, 969, 944, 881, 858, 819, 751, 723, 689, 665, 595, 571.

HRMS (ESI-TOF, m/z) calcd for C₁₈H₁₇NNaO₂S⁺ (M+Na)⁺: 334.0872, found: 334.0889.

N-(1-phenylpropyl)benzenesulfonamide (39)

A dried 10 mL Schlenk tube was charged with propylbenzene (**1q**, 72.1 mg, 0.60 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **39** as a pale yellow oil (24.8 mg, 0.090 mmol, 45% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, *J* = 8.1 Hz, 2H), 7.42 (t, *J* = 7.5 Hz, 1H), 7.31 (t, *J* = 7.8 Hz, 2H), 7.18 – 7.09 (m, 3H), 6.99 (dt, *J* = 6.7, 2.8 Hz, 2H), 4.97 (d, *J* = 7.2 Hz, 1H), 4.22 (q, *J* = 7.3 Hz, 1H), 1.91 – 1.64 (m, 2H), 0.80 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 140.7, 140.5, 132.2, 128.7, 128.4, 127.4, 127.0, 126.5, 59.9, 30.6, 10.4. IR (film): v (cm⁻¹) 3726, 3278, 2925, 1735, 1654, 1560, 1494, 1448, 1322, 1161, 1092, 753, 720, 688. HRMS (ESI-TOF, m/z) calcd for C₁₅H₁₇NNaO₂S⁺ (M+Na)⁺: 298.0872, found: 298.0880.

N-(1-(4-propylphenyl)propyl)benzenesulfonamide (40)

A dried 10 mL Schlenk tube was charged with 1,4-dipropylbenzene (**1r**, 97.4 mg, 0.60 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LED ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **40** as a pale yellow oil (39.4 mg, 0.124 mmol, 62% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.66 – 7.62 (m, 2H), 7.43 – 7.37 (m, 1H), 7.32 – 7.27 (m, 2H), 6.96 – 6.85 (m, 4H), 5.10 (d, J = 7.5 Hz, 1H), 4.19 (q, J = 7.3 Hz, 1H), 2.47 (t, J = 8.5 Hz, 2H), 1.87 – 1.75 (m, 1H), 1.76 – 1.66 (m, 1H), 1.62 – 1.50 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H), 0.79 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 141.8, 140.8, 137.7, 132.1, 128.6, 128.5, 127.0, 126.4, 59.7, 37.6, 30.6, 24.5, 13.8, 10.5.

IR (film): v (cm⁻¹) 3853, 3790, 3727, 3629, 3602, 3278, 2962, 2931, 2872, 1735, 1685, 1654, 1617, 1560, 1513, 1448, 1322, 1161, 1093, 1049, 920, 802, 753, 720, 688, 425.

HRMS (ESI-TOF, m/z) calcd for C₁₈H₂₃NNaO₂S⁺ (M+Na)⁺: 340.1342, found: 340.1345.

N-(1-(4-methoxyphenyl)propyl)benzenesulfonamide (41)

A dried 10 mL Schlenk tube was charged with 1-methoxy-4-propylbenzene (**1s**, 90.1 mg, 0.60 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **41** as a pale yellow oil (28.7 mg, 0.094 mmol, 47% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.68 – 7.62 (m, 2H), 7.47 – 7.40 (m, 1H), 7.36 – 7.29 (m, 2H), 6.94 – 6.88 (m, 2H), 6.69 – 6.62 (m, 2H), 5.05 (d, *J* = 7.2 Hz, 1H), 4.16 (q, *J* = 7.2 Hz, 1H), 3.73 (s, 3H), 1.86 – 1.65 (m, 2H), 0.77 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 158.8, 140.8, 132.6, 132.1, 128.6, 127.7, 127.0, 113.8, 59.4, 55.2, 30.5, 10.5.

IR (film): v (cm⁻¹) 3727, 3279, 2964, 1735, 1685, 1654, 1612, 1560, 1513, 1448, 1321, 1250, 1160, 1092, 1030, 829, 754, 719, 689, 425.

HRMS (ESI-TOF, m/z) calcd for C₁₆H₁₉NNaO₃S⁺ (M+Na)⁺: 328.0978, found: 328.0981.
N-(1-([1,1'-biphenyl]-4-yl)propyl)benzenesulfonamide (42)

A dried 10 mL Schlenk tube was charged with 4-propyl-1,1'-biphenyl (1t, 58.9 mg, 0.30 mmol), benzenesulfonamide (2b, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford 42 as a white solid (54.1 mg, 0.154 mmol, 77% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.68 – 7.62 (m, 2H), 7.52 – 7.47 (m, 2H), 7.45 – 7.40 (m, 3H), 7.38 – 7.33 (m, 3H), 7.33 – 7.27 (m, 2H), 7.08 – 7.03 (m, 2H), 4.93 (d, *J* = 7.2 Hz, 1H), 4.28 (q, *J* = 7.3 Hz, 1H), 1.91 – 1.70 (m, 2H), 0.84 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 140.8, 140.6, 140.4, 139.5, 132.1, 128.8, 128.7, 127.4, 127.1, 127.0, 127.0, 127.0, 59.7, 30.5, 10.5.

IR (film): v (cm⁻¹) 3727, 3409, 2925, 1654, 1617, 1447, 1321, 1160, 1091, 765.

HRMS (ESI-TOF, m/z) calcd for C₂₁H₂₁NNaO₂S⁺ (M+Na)⁺: 374.1185, found: 374.1198.

N-(1-([1,1'-biphenyl]-4-yl)butyl)benzenesulfonamide (43)

A dried 10 mL Schlenk tube was charged with 4-butyl-1,1'-biphenyl (**1u**, 63.1 mg, 0.30 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **43** as a white solid (49.7 mg, 0.136 mmol, 68% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.68 – 7.64 (m, 2H), 7.51 – 7.47 (m, 2H), 7.45 – 7.38 (m, 3H), 7.36 – 7.31 (m, 3H), 7.30 – 7.26 (m, 2H), 7.09 – 7.04 (m, 2H), 5.37 (d, *J* = 7.6 Hz, 1H), 4.37 (q, *J* = 7.4 Hz, 1H), 1.82 – 1.68 (m, 2H), 1.35 – 1.19 (m, 2H), 0.85 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 140.7, 140.7, 140.2, 139.9, 132.1, 128.8, 128.6, 127.3, 127.1, 127.0, 127.0, 127.0, 57.9, 39.6, 19.2, 13.6.

IR (film): v (cm⁻¹) 3727, 3277, 3059, 3029, 2961, 2931, 2873, 1735, 1654, 1599, 1487, 1447, 1322, 1161, 1093, 1008, 927, 838, 766, 754, 735, 720, 689, 587, 560.

HRMS (ESI-TOF, m/z) calcd for C₂₂H₂₃NNaO₂S⁺ (M+Na)⁺: 388.1342, found: 388.1355.

methyl 3-([1,1'-biphenyl]-4-yl)-3-(phenylsulfonamido)propanoate (44)

A dried 10 mL Schlenk tube was charged with methyl 3-([1,1'-biphenyl]-4-yl)propanoate (1v, 72.1 mg, 0.30 mmol), benzenesulfonamide (2b, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford 44 as a white solid (41.9 mg, 0.106 mmol, 53% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.75 – 7.70 (m, 2H), 7.52 – 7.48 (m, 2H), 7.48 – 7.44 (m, 1H), 7.44 – 7.40 (m, 2H), 7.40 – 7.31 (m, 5H), 7.19 – 7.12 (m, 2H), 5.93 (d, *J* = 7.7 Hz, 1H), 4.83 (dt, *J* = 8.0, 6.3 Hz, 1H), 3.58 (s, 3H), 2.97 – 2.73 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 171.1, 140.7, 140.4, 140.4, 138.1, 132.4, 128.9, 128.8, 127.5, 127.3, 127.1, 127.0, 126.9, 54.2, 52.0, 41.1.

IR (film): v (cm⁻¹) 3727, 3279, 3060, 3030, 2954, 1735, 1601, 1560, 1488, 1447, 1437, 1325, 1291, 1262, 1206, 1162, 1093, 1073, 1008, 964, 839, 799, 767, 755, 735, 689, 588.

HRMS (ESI-TOF, m/z) calcd for C₂₂H₂₁NNaO₄S⁺ (M+Na)⁺: 418.1083, found: 418.1087.

N-benzhydrylbenzenesulfonamide (45)

A dried 10 mL Schlenk tube was charged with diphenylmethane (**1w**, 100.9 mg, 0.60 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **45** as a white solid (55.0 mg, 0.170 mmol, 85% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.73 – 7.64 (m, 2H), 7.51 – 7.42 (m, 1H), 7.33 (t, *J* = 7.8 Hz, 2H), 7.24 – 7.16 (m, 6H), 7.13 – 7.05 (m, 4H), 5.61 (d, *J* = 7.2 Hz, 1H), 5.23 (d, *J* = 7.2 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 140.4, 140.4, 132.4, 128.8, 128.6, 127.7, 127.4, 127.1, 61.4.

IR (film): v (cm⁻¹) 3727, 3267, 2922, 1654, 1585, 1493, 1457, 1448, 1348, 1315, 1165, 1083, 1044, 1029, 938, 923, 905, 830, 754, 743, 723, 699, 686, 590.

HRMS (ESI-TOF, m/z) calcd for C₁₉H₁₇NNaO₂S⁺ (M+Na)⁺: 346.0872, found: 346.0874.

N-((4-chlorophenyl)(phenyl)methyl)benzenesulfonamide (46)

A dried 10 mL Schlenk tube was charged with 1-benzyl-4-chlorobenzene (1x, 121.6 mg, 0.60 mmol), benzenesulfonamide (2b, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford 46 as a white solid (46.5 mg, 0.130 mmol, 65% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.70 – 7.64 (m, 2H), 7.51 – 7.44 (m, 1H), 7.34 (t, *J* = 7.9 Hz, 2H), 7.22 – 7.18 (m, 3H), 7.18 – 7.13 (m, 2H), 7.09 – 7.00 (m, 4H), 5.59 – 5.53 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 140.2, 139.9, 139.0, 133.5, 132.5, 128.8, 128.8, 128.7, 128.7, 127.9, 127.3, 127.1, 60.8.

IR (film): v (cm⁻¹) 3279, 2109, 1654, 1491, 1448, 1324, 1161, 1091, 1054, 1014, 932, 843, 799, 753, 724, 688, 589, 557, 422.

HRMS (ESI-TOF, m/z) calcd for C₁₆H₂₁NNaO₂S⁺ (M+Na)⁺: 380.0482, found: 380.0492.

N-(2,3-dihydro-1H-inden-1-yl)benzenesulfonamide (47)

A dried 10 mL Schlenk tube was charged with 2,3-dihydro-1*H*-indene (**1y**, 70.9 mg, 0.60 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **47** as a white solid (42.6 mg, 0.156 mmol, 78% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.99 – 7.93 (m, 2H), 7.64 – 7.58 (m, 1H), 7.54 (t, *J* = 8.4, 2H), 7.23 – 7.16 (m, 2H), 7.16 – 7.10 (m, 1H), 7.06 (d, *J* = 7.5 Hz, 1H), 4.90 (d, *J* = 9.0 Hz, 1H), 4.92 – 4.81 (m, 1H), 2.94 – 2.86 (m, 1H), 2.78 – 2.70 (m, 1H), 2.36 – 2.28 (m, 1H), 1.80 – 1.71 (m, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 142.8, 141.9, 141.3, 132.7, 129.2, 128.3, 127.1, 126.9, 124.8, 124.1, 58.8, 34.7, 30.0.

IR (film): v (cm⁻¹) 3726, 3277, 3068, 2930, 2852, 1735, 1685, 1654, 1605, 1560, 1478, 1447, 1328, 1214, 1162, 1094, 1073, 1024, 984, 911, 877, 753, 722, 690, 666, 605, 585, 553, 431, 422.

HRMS (ESI-TOF, m/z) calcd for C₁₅H₁₅NNaO₂S⁺ (M+Na)⁺: 296.0716, found: 296.0719.

N-(1,2,3,4-tetrahydronaphthalen-1-yl)benzenesulfonamide (48)

A dried 10 mL Schlenk tube was charged with 1,2,3,4-tetrahydronaphthalene (**1z**, 79.3 mg, 0.60 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **48** as a white solid (35.6 mg, 0.124 mmol, 62% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.95 (m, 2H), 7.65 – 7.59 (m, 1H), 7.56 (t, *J* = 2.5 Hz, 2H), 7.13 (t, *J* = 7.3, 1.4 Hz, 1H), 7.08 – 7.01 (m, 2H), 6.92 – 6.86 (m, 1H), 4.67 (d, *J* = 7.8 Hz, 1H), 4.51 – 4.46 (m, 1H), 2.80 – 2.61 (m, 2H), 1.91 – 1.78 (m, 3H), 1.78 – 1.68 (m, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 141.2, 137.6, 135.5, 132.7, 129.3, 129.2, 128.7, 127.7, 127.1, 126.3, 52.0, 30.8, 28.9, 19.1.

IR (film): v (cm⁻¹) 3438, 1637, 1560, 1444, 1323, 1151, 1074.

HRMS (ESI-TOF, m/z) calcd for C₁₆H₁₇NNaO₂S⁺ (M+Na)⁺: 310.0872, found: 310.0874.

N-((3s,5s,7s)-adamantan-1-yl)benzenesulfonamide (49)

A dried 10 mL Schlenk tube was charged with adamantane (**1za**, 109.0 mg, 0.80 mmol), benzenesulfonamide (**2b**, 62.9 mg, 0.40 mmol), Selectfluor[®] (425.1 mg, 1.20 mmol) and dichloromethane (2.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 70 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **49** as a pale yellow oil (31.5 mg, 0.108 mmol, 27% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.93 – 7.89 (m, 2H), 7.55 – 7.51 (m, 1H), 7.50 – 7.45 (m, 2H), 4.67 (s, 1H), 2.02 – 1.97 (m, 3H), 1.79 (d, *J* = 3.0 Hz, 6H), 1.61 – 1.53 (m, 6H).
¹³C NMR (126 MHz, CDCl₃) δ 144.0, 132.1, 128.8, 126.9, 55.2, 43.1, 35.8, 29.5.
IR (film): v (cm⁻¹) 3727, 3267, 2909, 2851, 1735, 1654, 1617, 1560, 1447, 1360, 1346, 1311, 1260, 1157, 1117, 1088, 994, 969, 873, 814, 756, 728, 690, 588, 560, 523, 503, 487, 469, 426.
HRMS (ESI-TOF, m/z) calcd for C₃₂H₄₉NNaO⁺ (M+Na)⁺: 314.1185, found: 314.1189.

N-((1s,3s,5R,7S)-3-methyladamantan-1-yl)benzenesulfonamide (50)

A dried 10 mL Schlenk tube was charged with 1-methyladamantane (**1zb**, 120.2 mg, 0.80 mmol), benzenesulfonamide (**2b**, 62.9 mg, 0.40 mmol), Selectfluor[®] (425.1 mg, 1.20 mmol) and dichloromethane (2.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 70 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **50** as a pale yellow oil (37.9 mg, 0.124 mmol, 31% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.92 – 7.88 (m, 2H), 7.56 – 7.52 (m, 1H), 7.51 – 7.45 (m, 2H), 4.54 (s, 1H), 2.06 – 2.01 (m, 2H), 1.74 (d, *J* = 11.4 Hz, 2H), 1.65 (d, *J* = 11.7 Hz, 2H), 1.51 (s, 2H), 1.50 – 1.45 (m, 2H), 1.35 – 1.28 (m, 4H), 0.77 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 144.0, 132.0, 128.8, 126.8, 56.0, 50.0, 42.9, 42.2, 35.0, 32.1, 30.2, 29.8.

IR (film): v (cm⁻¹) 3726, 3266, 2905, 2849, 1735, 1654, 1560, 1447, 1317, 1163, 1149, 1095, 1053, 979, 756, 718, 690, 587.

HRMS (ESI-TOF, m/z) calcd for $C_{17}H_{23}NNaO_2S^+$ (M+Na)⁺: 328.1342, found: 328.1349.

N-(1-(4'-isobutyl-[1,1'-biphenyl]-4-yl)ethyl)benzenesulfonamide (51)

A dried 10 mL Schlenk tube was charged with 4-ethyl-4'-isobutyl-1,1'-biphenyl (**1zc**, 143.0 mg, 0.60 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **51-1** as a white solid (66.9 mg, 0.170 mmol, 85% yield, 10:1 *r.r.*), site-selectivity was determined by crude 1H NMR analysis.

¹H NMR (500 MHz, CDCl₃) δ 7.75 – 7.71 (m, 1H), 7.49 – 7.45 (m, 1H), 7.43 – 7.40 (m, 1H), 7.40 – 7.34 (m, 2H), 7.22 – 7.18 (m, 1H), 7.15 – 7.11 (m, 1H), 4.94 (d, *J* = 6.9 Hz, 1H), 4.59 – 4.51(m, 1H), 2.51 (d, *J* = 7.1 Hz, 1H), 1.94 – 1.85 (m, 1H), 1.48 (d, *J* = 6.8 Hz, 2H), 0.94 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 141.0, 140.7, 140.5, 140.4, 132.3, 129.6, 128.8, 127.1, 126.7, 126.5, 53.5, 45.1, 30.2, 23.5, 22.4.

IR (film): v (cm⁻¹) 3727, 3409, 2956, 2875, 1735, 1685, 1654, 1617, 1560, 1513, 1465, 1414, 1383, 1366, 1237, 1165, 1073, 1004, 842, 800, 741, 688.

HRMS (ESI-TOF, m/z) calcd for C₂₄H₂₇NNaO₂S⁺ (M+Na)⁺: 416.1655, found: 416.1654.

N-(1-(4-(4-isobutylphenoxy)phenyl)ethyl)benzenesulfonamide (52)

A dried 10 mL Schlenk tube was charged with 1-ethyl-4-(4-isobutylphenoxy)benzene (**1zd**, 152.6 mg, 0.60 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk

tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **52-1** and **52-2** as a pale yellow oil (total yield 0.120 mmol, 60%, **52-1**: **52-2** = 4.5:1 *r.r.*), site-selectivity was determined by isolated yield.

52-1: ¹H NMR (500 MHz, CDCl₃) δ 7.76 – 7.72 (m, 2H), 7.54 – 7.48 (m, 1H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.12 – 7.07 (m, 2H), 7.05 – 6.99 (m, 2H), 6.88 – 6.83 (m, 2H), 6.81 – 6.76 (m, 2H), 4.77 (d, *J* = 6.8 Hz, 1H), 4.53 – 4.46 (m, 1H), 2.46 (d, *J* = 7.2 Hz, 2H), 1.90 – 1.80 (m, 1H), 1.43 (d, *J* = 6.8 Hz, 3H), 0.91 (d, *J* = 6.6 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 157.1, 154.8, 140.8, 136.9, 136.3, 132.3, 130.3, 128.8, 127.5, 127.1, 118.8, 118.4, 53.2, 44.7, 30.3, 23.5, 22.3.

IR (film): v (cm⁻¹) 3490, 3277, 3061, 3032, 2956, 2926, 2868, 2404, 1892, 1773, 1665, 1602, 1502, 1448, 1383, 1366, 1324, 1240, 1205, 1162, 1122, 1091, 1016, 963, 874, 836, 800, 754, 720, 689, 595, 545.

HRMS (ESI-TOF, m/z) calcd for C₂₄H₂₇NNaO₃S⁺ (M+Na)⁺: 432.1604, found: 432.1611.

52-2: ¹H NMR (500 MHz, CDCl₃)δ 7.58 – 7.52 (m, 2H), 7.38 – 7.31 (m, 1H), 7.23 (t, *J* = 7.9 Hz, 2H), 7.11 – 7.06 (m, 2H), 6.83 – 6.74 (m, 4H), 6.66 – 6.60 (m, 2H), 4.96 (d, *J* = 8.3 Hz, 1H), 3.97 (t, *J* = 7.9 Hz, 1H), 2.57 (q, *J* = 7.6 Hz, 2H), 1.89 – 1.75 (m, 1H), 1.17 (t, *J* = 7.6 Hz, 3H), 0.90 (d, *J* = 6.7 Hz, 3H), 0.67 (d, *J* = 6.7 Hz, 3H).

4-(1-(phenylsulfonamido)ethyl)phenyl 4-methylpentanoate (53)

A dried 10 mL Schlenk tube was charged with 4-ethylphenyl 4-methylpentanoate (**1ze**, 132.2 mg, 0.60 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced

pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **53** as a pale yellow oil (35.3 mg, 0.094 mmol, 47% yield, > 20:1 r.r.), site-selectivity was determined by ¹H NMR analysis.

¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 7.8 Hz, 2H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.39 (t, *J* = 7.7 Hz, 2H), 7.08 (d, *J* = 8.4 Hz, 2H), 6.88 (d, *J* = 8.4 Hz, 2H), 5.03 (d, *J* = 7.0 Hz, 1H), 4.53 – 4.48 (m, 1H), 2.59 – 2.46 (m, 2H), 1.70 – 1.60 (m, 4H), 1.41 (d, *J* = 6.9 Hz, 3H), 0.95 (d, *J* = 5.8 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 172.4, 150.0, 140.6, 139.3, 132.4, 128.9, 127.2, 127.0, 121.6, 53.2, 33.7, 32.5, 27.7, 23.5, 22.2.

IR (film): v (cm⁻¹) 3439, 2957, 1752, 1654, 1508, 1447, 1324, 1205, 1159, 1089, 1017, 719.

HRMS (ESI-TOF, m/z) calcd for C₂₀H₂₅NNaO₄S⁺ (M+Na)⁺: 398.1397, found: 398.1407.

3-phenylpropyl 4'-(1-(phenylsulfonamido)ethyl)-[1,1'-biphenyl]-4-carboxylate (54)

A dried 10 mL Schlenk tube was charged with 3-phenylpropyl 4'-ethyl-[1,1'-biphenyl]-4-carboxylate (**1zf**, 206.7 mg, 0.60 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **54** as a white solid (62.0 mg, 0.124 mmol, 62% yield, > 20:1 *r.r.*), site-selectivity was determined by ¹H NMR analysis.

¹H NMR (500 MHz, CDCl₃) δ 7.64 – 7.59 (m, 2H), 7.47 – 7.39 (m, 1H), 7.31 (t, *J* = 7.8 Hz, 2H), 7.18 – 7.10 (m, 2H), 6.89 – 6.77 (m, 4H), 6.74 – 6.67 (m, 2H), 4.97 (d, *J* = 8.2 Hz, 1H), 4.05 (t, *J* = 7.9 Hz, 1H), 2.64 (q, *J* = 7.6 Hz, 2H), 1.95 – 1.86 (m, 1H), 1.30 – 1.14 (m, 6H), 0.97 (d, *J* = 6.7 Hz, 3H), 0.74 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 166.4, 145.0, 141.9, 141.2, 140.7, 139.2, 132.3, 130.1, 129.2, 128.8, 128.5, 128.5, 127.4, 127.1, 126.9, 126.8, 126.1, 64.4, 53.4, 32.4, 30.3, 23.5.
IR (film): v (cm⁻¹) 3727, 3629, 1701, 1654, 1605, 1560, 1495, 1445, 1274, 1159, 1090.
HRMS (ESI-TOF, m/z) calcd for C₃₀H₂₉NNaO₄S⁺ (M+Na)⁺: 522.1710, found: 522.1711.

N-(chroman-4-yl)-4-methylbenzenesulfonamide (55)

A dried 10 mL Schlenk tube was charged with chromane (**1zg**, 80.5 mg, 0.60 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford the amination product **55** as a white solid (24.9 mg, 0.082 mmol, 41% yield, > 20:1 *r.r.*), site-selectivity was determined by ¹H NMR analysis.

¹H NMR (500 MHz, CDCl₃) δ 8.03 – 7.89 (m, 2H), 7.71 – 7.63 (m, 1H), 7.63 – 7.55 (m, 2H), 7.13 (m, 1H), 6.74 – 6.79 (m, 2H), 6.65 (dd, *J* = 7.8, 1.7 Hz, 1H), 4.71 (d, *J* = 6.5 Hz, 1H), 4.41 (q, *J* = 4.9 Hz, 1H), 4.29 – 4.04 (m, 2H), 2.18 – 1.96 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 155.0, 140.6, 133.0, 129.8, 129.4, 129.1, 127.1, 120.8, 120.6, 117.4, 62.3, 47.7, 29.9.

IR (film): v (cm⁻¹) 3727, 3288, 1735, 1654, 1582, 1491, 1448, 1333, 1267, 1224, 1159, 1071, 928, 829, 752, 719, 689, 422.

HRMS (ESI-TOF, m/z) calcd for C₁₆H₁₇NNaO₃S⁺ (M+Na)⁺: 326.0821, found: 326.0821.

N-(7-acetyl-5-(tert-butyl)-3,3-dimethyl-2,3-dihydro-1H-inden-1-yl)benzenesulfonamide (56)

A dried 10 mL Schlenk tube was charged with Celestolide (1zh, 73.3 mg, 0.30 mmol), benzenesulfonamide (2b, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford 56 as a white solid (65.5 mg, 0.164 mmol, 82% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.91 – 7.86 (m, 2H), 7.51 (d, *J* = 1.8 Hz, 1H), 7.50 – 7.39 (m, 3H), 7.26 (d, *J* = 1.8 Hz, 1H), 5.73 (d, *J* = 2.1 Hz, 1H), 4.41 (dt, *J* = 7.2, 2.3 Hz, 1H), 2.58 (dd, *J* = 13.7, 2.4 Hz, 1H), 2.40 (s, 3H), 1.81 (dd, *J* = 13.7, 7.3 Hz, 1H), 1.25 (s, 3H), 1.23 (s, 9H), 1.12 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 201.7, 155.4, 152.9, 139.4, 137.1, 134.4, 132.5, 128.9, 128.0, 125.7, 124.2, 57.3, 45.1, 43.2, 34.9, 31.3, 30.6, 29.4, 28.2.

IR (film): v (cm⁻¹) 3436, 2958, 2101, 1752, 1637, 1447, 1332, 1239, 1164, 1093.

HRMS (ESI-TOF, m/z) calcd for C₂₃H₂₉NNaO₃S⁺ (M+Na)⁺: 422.1760, found: 422.1774.

methyl(1*R*,4a*S*,10a*R*)-7-isopropyl-1,4a-dimethyl-9-(phenylsulfonamido)-1,2,3,4,4a,9,10,10aoctahydrophenanthrene-1-carboxylate (57)

A dried 10 mL Schlenk tube was charged with Dehydroabietic acid methyl ester (**1zi**, 188.7 mg, 0.60 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk

tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1, v: v) to afford **57** as a white solid (72.3 mg, 0.154 mmol, 77% yield, 11:1 *d.r.*), site-selectivity was determined by ¹H NMR analysis.

¹H NMR (500 MHz, CDCl₃) δ 8.00 – 7.95 (m, 2H), 7.66 – 7.59 (m, 1H), 7.59 – 7.53 (m, 2H), 7.13 (d, J = 8.2 Hz, 1H), 7.08 – 7.03 (m, 1H), 6.57 (d, J = 2.0 Hz, 1H), 5.11 (d, J = 7.7 Hz, 1H), 4.43 – 4.39 (m, 1H), 3.74 (s, 3H), 2.73 – 2.64 (m, 1H), 2.34 (d, J = 12.7 Hz, 1H), 2.26 (d, J = 13.0 Hz, 1H), 2.02 - 1.92 (m, 1H), 1.76 – 1.67 (m, 4H), 1.49 (d, J = 13.2 Hz), 1.45 – 1.37 (m, 1H), 1.22 (s, 3H), 1.13 (s, 3H), 1.09 (d, J = 4.0 Hz, 3H), 1.08 (d, J = 4.0 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 178.4, 147.0, 146.8, 141.1, 133.3, 132.5, 129.1, 127.6, 127.3, 126.7, 124.5, 52.5, 52.4, 47.2, 40.5, 37.9, 37.2, 36.5, 33.3, 29.5, 24.2, 23.8, 23.7, 18.5, 16.3.

IR (film): v (cm⁻¹) 3726, 3284, 2927, 1719, 1654, 1560, 1497, 1446, 1333, 1255, 1166, 1055, 755, 720, 690.

HRMS (ESI-TOF, m/z) calcd for C₂₇H₃₅NNaO₄S⁺ (M+Na)⁺: 492.2179, found: 492.2185.

4-(1-(phenylsulfonamido)ethyl)phenyl 2-(4-isobutylphenyl)propanoate (58)

A dried 10 mL Schlenk tube was charged with 4-ethylphenyl 2-(4-isobutylphenyl)propanoate (**1zj**, 186.3 mg, 0.60 mmol), benzenesulfonamide (**2b**, 31.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **58** as a pale yellow oil (56.8 mg, 0.122 mmol, 61% yield, a:b:c = 6.1:1:0 *r.r.*), site-selectivity was determined by ¹H NMR analysis.

¹H NMR (500 MHz, CDCl₃) δ 7.72 – 7.65 (m, 2H), 7.49 – 7.43 (m, 1H), 7.40 – 7.34 (m, 2H), 7.30 –

7.27 (m, 2H), 7.14 (d, *J* = 1.8 Hz, 2H), 7.07 – 7.01 (m, 2H), 6.83 – 6.77 (m, 2H), 5.13 (d, *J* = 7.0 Hz, 1H), 4.51 – 4.43 (m, 1H), 3.94 – 3.88 (m, 1H), 2.48 (d, *J* = 7.2 Hz, 2H), 1.92 – 1.82 (m, 1H), 1.59 (d, *J* = 7.2 Hz, 3H), 1.38 (d, *J* = 6.9 Hz, 3H), 0.92 (d, *J* = 6.6 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 173.0, 150.1, 140.8, 140.5, 139.3, 137.1, 132.4, 129.5, 128.8, 127.1, 127.1, 126.9, 121.4, 53.1, 45.2, 45.0, 30.1, 23.4, 22.4, 18.4.

IR (film): v (cm⁻¹) 3727, 3284, 2956, 2869, 1756, 1654, 1605, 1560, 1508, 1448, 1378, 1326, 1205, 1163, 1090, 1018, 962, 897, 848, 754, 720, 689.

HRMS (ESI-TOF, m/z) calcd for C₂₇H₃₁NNaO₄S⁺ (M+Na)⁺: 488.1866, found: 488.1891.

4.3 Unsuccessful Substrates

Under the standard condition, tetrahydrofuran and cylcoalkanes such as cyclohexane and methylcyclohexane, were found to be unreactive substrates.

Under the standard condition, primary C(sp³)-H such as 4-methyl-1,1'-biphenyl, bromine-substituent benzylic substrates such as (1-bromoethyl)benzene, 2-ethylpyridine failed in the reaction to construct the sulfonamidation product and gave a very complex mixture.

4.4 Determination of pH Value after the Reaction

Contraction of the second second	-	1	1	5	
Contraction of the local division of the loc	in i				
	-		-		
		11	No.		
		a 5			
		-		1000	
		-			
and the second of the					
States Area			_		week.

The pH value of the reaction $1a+2a \rightarrow 3$ under standard conditions was determined as ~6.0 through pH test strips. This result suggests that the photochemical reaction is relatively neutral.

5. Synthetic Utility

5.1 A Scale-up Reaction

A dried 25 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 0.82 g, 4.5 mmol), Celecoxib (**2u**, 1.14 g, 3.0 mmol), Selectfluor[®] (3.19 g, 9.0 mmol) and dichloromethane (15 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 96 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **23** as a white solid (1.12 g, 2.0 mmol, 67% yield).

5.2 Scope of Other N-Containing Reagents

ethyl (1-([1,1'-biphenyl]-4-yl)ethyl)carbamate (59)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 72.9 mg, 0.40 mmol), ethyl carbamate (17.8 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL).

The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs lamp ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 48 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **59** as a white solid (41.5 mg, 0.0154 mmol, 77% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.62 – 7.54 (m, 4H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.39 (d, *J* = 7.9 Hz, 2H), 7.37 – 7.31 (m, 1H), 5.07 – 4.79 (m, 2H), 4.17 – 4.08 (m, 2H), 1.52 (d, *J* = 6.8 Hz, 3H), 1.24 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 155.9, 142.8, 140.8, 140.3, 128.8, 127.4, 127.3, 127.1, 126.4, 60.8, 50.3, 22.5, 14.6.

IR (film): v (cm⁻¹) 3302, 2980, 2929, 1715, 1689, 1542, 1485, 1453, 1406, 1369, 1314, 1253, 1153, 1104, 1066, 1025, 836, 763, 728, 693.

HRMS (ESI-TOF, m/z) calcd for $C_{17}H_{20}NO_2^+$ (M+H)⁺: 270.1489, found: 270.1498.

benzyl (1-([1,1'-biphenyl]-4-yl)ethyl)carbamate (60)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 72.9 mg, 0.40 mmol), benzyl carbamate (30.2 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs lamp ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 48 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford **60** as a white solid (57.0 mg, 0.172 mmol, 86% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.58 (t, J = 7.8 Hz, 4H), 7.45 (t, J = 7.6 Hz, 2H), 7.41 – 7.30 (m, 7H), 5.19 – 5.04 (m, 3H), 4.99 – 4.85 (m, 1H), 1.53 (d, J = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 155.6, 142.6, 140.8, 140.4, 136.5, 128.8, 128.5, 128.2, 128.1, 127.4, 127.3, 127.1, 126.4, 66.8, 50.6, 22.5.

IR (film): v (cm⁻¹) 3330, 3030, 2971, 1696, 1529, 1486, 1453 1407, 1246, 1058, 1007, 913, 839, 749, 765, 696.

HRMS (ESI-TOF, m/z) calcd for C₂₂H₂₂NO₂⁺ (M+H)⁺: 332.1645, found: 332.1642

methyl (1-([1,1'-biphenyl]-4-yl)ethyl)(methyl)carbamate (61)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 72.9 mg, 0.40 mmol), methyl methylcarbamate (17.8 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs lamp ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for for 48 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford the amination product **61** as a colorless oil (30.7 mg, 0.114 mmol, 57% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.55 (m, 4H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.40 – 7.32 (m, 3H), 5.62 (s, 1H), 3.78 (s, 3H), 2.67 (s, 3H), 1.56 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 157.2, 140.7, 140.1, 139.9, 128.7, 127.4, 127.3, 127.1, 127.0, 52.9, 52.7, 28.5, 16.3.

IR (film): v (cm⁻¹) 3445, 2954, 1697, 1487, 1452, 1392, 1321, 1190, 1153, 1077, 1007, 842, 766, 738, 697.

HRMS (ESI-TOF, m/z) calcd for $C_{17}H_{20}NO_2^+$ (M+H)⁺: 270.1489, found: 270.1487.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)benzamide (62)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (1a, 74.9 mg, 0.40 mmol),

benzamide (24.2 mg, 0.2 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs lamp ($\lambda_{max} = 365$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 48 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford the amination product **62** as a white solid (27.1 mg, 0.090 mmol, 45% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.83 – 7.77 (m, 2H), 7.61 – 7.56 (m, 4H), 7.52 – 7.39 (m, 7H), 7.38 – 7.32 (m, 1H), 6.44 (d, *J* = 7.8 Hz, 1H), 5.43 – 5.36 (m, 1H), 1.65 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 166.6, 142.2, 140.8, 140.5, 134.6, 131.5, 128.8, 128.6, 127.5, 127.3, 127.1, 127.0, 126.7, 49.0, 21.7.

IR (film): v (cm⁻¹) 3726, 3316, 1735, 1654, 1632, 1560, 1541, 1105, 420.

HRMS (ESI-TOF, m/z) calcd for C₄₂H₃₈N₂NaO₂⁺ (2M+Na)⁺: 625.2825, found: 625.2830.

5.3 Optimization of Conditions for the C(sp³)-H Amidation Reaction with Nitriles

General procedure. A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 36.5 mg, 0.20 mmol), benzyl cyanide (117.2 mg, 1.0 mmol), Selectfluor[®] or other oxidative reagents (0.60 mmol), acid (0.10 mmol or 0.20 mmol) and the indicated solvent (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **67** as a white solid.

Ph	H + Ph 1a	Selectfluor [®] or othe (3.0 equiv.), acio CN argon, 50 W LEDs (λ	er oxidative reage I (0.5–1.0 equiv.) 40 °C _{max} = 395 nm)	ents Ph	Ph H 67
entry	Selectfluor [®] or other oxidative reagents	acid	solvent	time (h)	yield (%)
1	Selectfluor®	H ₂ SO ₄ (0.5 equiv.)	CH_2Cl_2	72	70
2	Selectfluor®	H_2SO_4 (0.5 equiv.)	ClCH ₂ CH ₂ Cl	72	78
3	Selectfluor®	H_2SO_4 (0.5 equiv.)	CHCl ₃	72	48
4	Selectfluor®	H_2SO_4 (0.5 equiv.)	Cl ₂ CHCHCl ₂	72	64
5	Selectfluor®	H_2SO_4 (0.5 equiv.)	THF	72	n.a.
6	Selectfluor®	H_2SO_4 (0.5 equiv.)	DMSO	72	n.a.
7	Selectfluor®	H_2SO_4 (0.5 equiv.)	THF	72	n.a.
8	Selectfluor®	H_2SO_4 (0.5 equiv.)	MeCN	72	trace
9	Selectfluor®	H_2SO_4 (0.5 equiv.)	ethyl acetate	72	11
10	Selectfluor®	H_2SO_4 (0.5 equiv.)	DMF	72	n.a.
11	Selectfluor®	H_2SO_4 (0.5 equiv.)	DMSO	72	n.a.
12	Selectfluor®	H_2SO_4 (0.5 equiv.)	acetone	48	12
13	NFSI	H_2SO_4 (0.5 equiv.)	ClCH ₂ CH ₂ Cl	48	31
14	TBHP	H_2SO_4 (0.5 equiv.)	ClCH ₂ CH ₂ Cl	48	n.a.
15	$(NH_4)_2S_2O_8$	H_2SO_4 (0.5 equiv.)	ClCH ₂ CH ₂ Cl	48	9
16	PhI(OAc) ₂	H_2SO_4 (0.5 equiv.)	ClCH ₂ CH ₂ Cl	48	47
17	Selectfluor®	TFA (1.0 equiv.)	ClCH ₂ CH ₂ Cl	48	26
18	Selectfluor®	CF_3SO_2H (1.0 equiv.)	ClCH ₂ CH ₂ Cl	48	13
19	Selectfluor®	HCl (1.0 equiv.) ^c	ClCH ₂ CH ₂ Cl	48	trace
20	none	H_2SO_4 (0.5 equiv.)	ClCH ₂ CH ₂ Cl	48	trace
21^d	Selectfluor®	H_2SO_4 (0.5 equiv.)	ClCH ₂ CH ₂ Cl	48	41
22 ^e	Selectfluor®	H_2SO_4 (0.5 equiv.)	ClCH ₂ CH ₂ Cl	48	55
23	Selectfluor®	none	ClCH ₂ CH ₂ Cl	48	0

Table S2. Optimization of conditions for the C(sp³)-H amidation reaction with nitriles ^a

^{*a*} Reaction conditions: **1a** (36.5 mg, 0.20 mmol), benzyl cyanide (117.2 mg, 1.0 mmol), Selectfluor[®] or other oxidative reagents (3.0 equiv.), acid (0.5 or 1.0 equiv.) and the indicated solvent (1.0 mL), 40 °C, 50 W LEDs ($\lambda_{max} = 395$ nm), under argon. ^{*b*} Isolated yield. ^{*c*} HCl (2 M in Et₂O). ^{*d*} Selectfluor[®] (2.0 equiv.). ^{*e*} Selectfluor[®] (2.5 equiv.). n.a. = not applicable.

5.4 Substrate Scope of the C(sp³)-H Amidation Reaction with Nitriles

$$\begin{array}{c} H\\ Ar \stackrel{H}{\frown} R^{3} \end{array} + R^{4} - CN \qquad \begin{array}{c} Selectfluor^{(8)} (3.0 \text{ equiv.})\\ H_{2}SO_{4} (0.50 \text{ equiv.}) \end{array} \xrightarrow{} NHCOR^{4}\\ CH_{2}CICH_{2}CI, \text{ argon, } 40 \ ^{\circ}C, \ 72 \text{ h}\\ 50 \text{ W LEDs } (\lambda_{max} = 395 \text{ nm}) \end{array} \xrightarrow{} 63-90$$

2-phenyl-N-(1-phenylethyl)acetamide (63)

A dried 10 mL Schlenk tube was charged with ethylbenzene (**1b**, 21.2 mg, 0.20 mmol), benzyl cyanide (117.2 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **63** as a white solid (24.9 mg, 0.104 mmol, 40% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.26 – 7.29 (m, 2H), 7.24 – 7.13 (m, 6H), 7.11 (d, *J* = 7.1 Hz, 2H), 5.55 (d, *J* = 7.6 Hz, 1H), 5.09 – 5.01 (m, 1H), 3.50 (s, *J* = 1.3 Hz, 2H), 1.32 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 170.0, 143.1, 134.9, 129.4, 129.0, 128.6, 127.4, 127.3, 125.9, 48.7, 43.9, 21.8.

IR (film): v (cm⁻¹) 3727, 3296, 2923, 1735, 1701, 1639, 1560, 1546, 1438, 763, 401.

HRMS (ESI-TOF, m/z) calcd for C₁₆H₁₈NO⁺ (M+H)⁺: 240.1383, found: 240.1385.

N-(1-(4-fluorophenyl)ethyl)-2-phenylacetamide (64)

A dried 10 mL Schlenk tube was charged with 1-ethyl-4-fluorobenzene (1c, 24.8 mg, 0.20 mmol), benzyl cyanide (117.2 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-

thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **64** as a white solid (18.0 mg, 0.070 mmol, 35% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.32 (m, 2H), 7.32 – 7.27 (m, 1H), 7.26 – 7.21 (m, 2H), 7.18 – 7.12 (m, 2H), 7.00 – 6.93 (m, 2H), 5.59 (d, J = 7.1 Hz, 1H), 5.13 – 5.05 (m, 1H), 3.57 (s, 2H), 1.37 (d, J = 7.0 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 170.0, 161.9 (d, *J* = 147.4 Hz), 138.9, 138.9, 134.8, 129.2 (d, *J* = 35.3 Hz), 127.6 (d, *J* = 7.6 Hz), 127.4, 115.4 (d, *J* = 21.4 Hz), 48.1, 43.9, 21.8.

IR (film): v (cm⁻¹) 3696, 3386, 2949, 2843, 1752, 1735, 1654, 1560, 1512, 1455, 1225, 1113, 1053, 1033, 1017.

HRMS (ESI-TOF, m/z) calcd for C₁₆H₁₆FNNaO⁺ (M+Na)⁺: 280.1108, found: 280.1111.

N-(1-(4-chlorophenyl)ethyl)-2-phenylacetamide (65)

A dried 10 mL Schlenk tube was charged with 1-chloro-4-ethylbenzene (**1d**, 28.1 mg, 0.20 mmol), benzyl cyanide (117.2 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} =$ 395 nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **65** as a white solid (25.7 mg, 0.094 mmol, 47% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.33 (m, 2H), 7.29 – 7.24 (m, 1H), 7.23 – 7.18 (m, 4H), 7.09 – 7.06 (m, 2H), 5.62 – 5.48 (m, 1H), 5.07 – 4.99 (m, 1H), 3.53 (s, 2H), 1.33 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 170.1, 141.7, 134.8, 133.0, 129.3, 129.1, 128.7, 127.4, 127.3, 48.2, 43.8, 21.7.

IR (film): v (cm⁻¹) 3311, 2949, 2843, 1644, 1536, 1492, 1452, 1411, 1247, 1102, 1053, 1033, 1015,

823, 430.

HRMS (ESI-TOF, m/z) calcd for C₁₆H₁₆ClNNaO⁺ (M+Na)⁺: 296.0813, found: 296.0815.

N-(1-(4-bromophenyl)ethyl)-2-phenylacetamide (66)

A dried 10 mL Schlenk tube was charged with 1-bromo-4-ethylbenzene (**1e**, 37.0 mg, 0.20 mmol), benzyl cyanide (117.2 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} =$ 395 nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **66** as a white solid (26.7 mg, 0.084 mmol, 42% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.43 – 7.38 (m, 2H), 7.38 – 7.33 (m, 2H), 7.32 – 7.27 (m, 1H), 7.26 – 7.22 (m, 2H), 7.07 – 7.03 (m, 2H), 5.58 (d, *J* = 7.8 Hz, 1H), 5.09 – 5.02 (m, 1H), 3.57 (s, 2H), 1.36 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 170.1, 142.2, 134.8, 131.7, 129.3, 129.1, 127.7, 127.4, 121.1, 48.3, 43.8, 21.7.

IR (film): v (cm⁻¹) 3388, 2949, 2837, 2520, 2216, 1645, 1536, 1451, 1411, 1113, 1032, 429. HRMS (ESI-TOF, m/z) calcd for C₁₆H₁₆BrNNaO⁺ (M+Na)⁺: 340.0307, found: 340.0310.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-2-phenylacetamide (67)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 36.5 mg, 0.20 mmol), benzyl cyanide (117.2 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with

a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **67** as a white solid (49.2 mg, 0.156 mmol, 78% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.55 – 7.51 (m, 2H), 7.51 – 7.47 (m, 2H), 7.42 – 7.37 (m, 2H), 7.35 – 7.29 (m, 3H), 7.29 – 7.26 (m, 1H), 7.26 – 7.21 (m, 4H), 5.75 (d, *J* = 8.1 Hz, 1H), 5.18 – 5.10 (m, 1H), 3.56 (s, 2H), 1.40 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 170.0, 142.1, 140.7, 140.2, 134.9, 129.3, 129.0, 128.7, 127.3, 127.2, 127.0, 126.4, 48.4, 43.8, 21.7.

IR (film): v (cm⁻¹) 3438, 2964, 2108, 1734, 1735, 1638, 1261, 763.

HRMS (ESI-TOF, m/z) calcd for C₂₂H₂₁NNaO⁺ (M+Na)⁺: 338.1515, found: 338.1517.

N-(1-(4'-(tert-butyl)-[1,1'-biphenyl]-4-yl)ethyl)-2-phenylacetamide (68)

A dried 10 mL Schlenk tube was charged with 4-(*tert*-butyl)-4'-ethyl-1,1'-biphenyl (**1m**, 47.7 mg, 0.20 mmol), benzyl cyanide (117.2 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **68** as a white solid (37.9 mg, 0.102 mmol, 51% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.49 – 7.43 (m, 4H), 7.40 (d, *J* = 8.5 Hz, 2H), 7.28 – 7.33 (m, 2H), 7.25 – 7.17 (m, 5H), 5.63 (d, *J* = 8.2 Hz, 1H), 5.15 – 5.08 (m, 1H), 3.54 (s, 2H), 1.38 (d, *J* = 6.9 Hz, 3H), 1.31 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 170.1, 150.3, 141.8, 140.1, 137.8, 135.0, 129.4, 129.0, 127.4, 127.2, 126.7, 126.4, 125.7, 48.5, 43.9, 34.5, 31.4, 21.7.

IR (film): v (cm⁻¹) 3727, 3409, 2963, 1735, 1640, 1546, 1496, 1452, 1112, 821. HRMS (ESI-TOF, m/z) calcd for C₂₆H₂₉NNaO⁺ (M+Na)⁺: 394.2141, found: 394.2157.

2-phenyl-N-(1-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)ethyl)acetamide (69)

A dried 10 mL Schlenk tube was charged with 4-ethyl-4'-(trifluoromethyl)-1,1'-biphenyl (50.1 mg, 0.20 mmol), benzyl cyanide (117.2 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **69** as a white solid (46.8 mg, 0.122 mmol, 61% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.66 (q, *J* = 8.4 Hz, 4H), 7.54 – 7.50 (m, 2H), 7.40 – 7.34 (m, 2H), 7.33 – 7.27 (m, 5H), 5.65 (d, *J* = 7.8 Hz, 1H), 5.20 – 5.13 (m, 1H), 3.61 (s, 2H), 1.43 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 170.1, 144.2, 143.3, 138.7, 134.9, 129.4, 129.3 (q, *J* = 31.7 Hz),
129.1, 127.5, 127.4, 127.3, 126.6, 125.7 (q, *J* = 3.0 Hz), 124.2 (q, *J* = 271.8 Hz), 48.5, 43.9, 21.8.
IR (film): v (cm⁻¹) 3726, 3582, 3305, 1735, 1701, 1638, 1560, 1541, 1495, 1438, 1336, 1163, 1116, 1073, 821, 696.

HRMS (ESI-TOF, m/z) calcd for C₂₃H₂₀F₃NNaO⁺ (M+Na)⁺ :406.1389, found: 406.1392.

2-phenyl-N-(1-phenylpropyl)acetamide (70)

A dried 10 mL Schlenk tube was charged with propylbenzene (**1q**, 24.0 mg, 0.20 mmol), benzyl cyanide (117.2 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **70** as a white solid (20.3 mg, 0.080 mmol, 40% yield).

¹H NMR (500 MHz, CDCl₃, TMS signal at 0.0 ppm as a standard) δ 7.24 – 7.30 (m, 2H), 7.24 – 7.12 (m, 6H), 7.08 – 7.03 (m, 2H), 5.62 (d, *J* = 7.9 Hz, 1H), 4.80 (q, *J* = 7.6 Hz, 1H), 3.58 – 3.39 (m, 2H), 1.66 – 1.57 (m, 2H), 0.72 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 170.2, 142.1, 135.0, 129.4, 129.0, 128.6, 127.2, 127.4, 126.4, 54.8, 43.9, 29.2, 10.5.

IR (film): v (cm⁻¹) 3405, 2951, 2844, 2078, 1644, 1546, 1495, 1454, 1054, 1033, 1017, 699.

HRMS (ESI-TOF, m/z) calcd for $C_{17}H_{20}NO^+$ (M+H)⁺: 254.1539, found: 254.1543.

N-(1-([1,1'-biphenyl]-4-yl)propyl)-2-phenylacetamide (71)

A dried 10 mL Schlenk tube was charged with 4-propyl-1,1'-biphenyl (**1t**, 39.3 mg, 0.20 mmol), benzyl cyanide (117.2 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **71** as a white solid (45.5 mg, 0.138 mmol, 69% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.58 – 7.54 (m, 2H), 7.54 – 7.50 (m, 2H), 7.45 – 7.41 (m, 2H), 7.39 – 7.35 (m, 2H), 7.35 – 7.31 (m, 2H), 7.30 – 7.25 (m, 2H), 7.23 – 7.19 (m, 2H), 5.66 (d, *J* = 8.4 Hz, 1H), 4.93 (q, *J* = 7.6 Hz, 1H), 3.69 – 3.49 (m, 2H), 1.81 – 1.68 (m, 2H), 0.84 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 141.1, 140.8, 140.2, 135.0, 129.4, 129.1, 128.8, 127.4, 127.3, 127.3, 127.1, 126.8, 54.5, 44.0, 29.2, 10.6.

IR (film): v (cm⁻¹) 3424, 2093, 1640, 1542, 1494, 1451, 1264, 761, 694.

HRMS (ESI-TOF, m/z) calcd for C₂₃H₂₃NNaO⁺ (M+Na)⁺: 352.1672, found: 352.1676.

N-(1-([1,1'-biphenyl]-4-yl)butyl)-2-phenylacetamide (72)

A dried 10 mL Schlenk tube was charged with 4-butyl-1,1'-biphenyl (**1u**, 42.1 mg, 0.20 mmol), benzyl cyanide (117.2 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **72** as a white solid (52.2 mg, 0.152 mmol, 76% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.55 – 7.50 (m, 2H), 7.50 – 7.46 (m, 2H), 7.39 (t, *J* = 7.7 Hz, 2H), 7.36 – 7.26 (m, 4H), 7.25 – 7.16 (m, 4H), 5.73 (d, *J* = 8.3 Hz, 1H), 4.98 (q, *J* = 7.6 Hz, 1H), 3.65 – 3.41 (m, 2H), 1.62 – 1.70 (m, 2H), 1.35 – 1.08 (m, 3H), 0.86 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 170.2, 141.5, 140.8, 140.2, 135.0, 129.4, 129.0, 128.8, 127.4, 127.3, 127.3, 127.1, 126.8, 52.9, 43.9, 38.4, 19.4, 13.8.

IR (film): v (cm⁻¹) 3427, 2078, 1640, 1546, 1455, 1055, 1033, 1014, 762, 436.

HRMS (ESI-TOF, m/z) calcd for C₂₄H₂₅NNaO⁺ (M+Na)⁺: 366.1828, found: 366.1835.

methyl 3-([1,1'-biphenyl]-4-yl)-3-(2-phenylacetamido)propanoate (73)

A dried 10 mL Schlenk tube was charged with methyl 3-([1,1'-biphenyl]-4-yl)propanoate (**1v**, 48.1 mg, 0.20 mmol), benzyl cyanide (117.2 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **73** as a white solid (35.1 mg, 0.094 mmol, 47% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.56 – 7.52 (m, 2H), 7.52 – 7.49 (m, 2H), 7.44 – 7.28 (m, 8H), 7.24 – 7.20 (m, 2H), 6.52 (d, *J* = 8.6 Hz, 1H), 5.48 – 5.42 (m, 1H), 3.63 (s, 2H), 3.55 (s, 3H), 2.95 – 2.68 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 171.3, 170.3, 140.6, 140.5, 139.4, 134.8, 129.4, 129.0, 128.8, 127.4, 127.4, 127.0, 126.5, 51.8, 49.3, 43.9, 39.8.

IR (film): v (cm⁻¹) 3726, 3284, 2922, 2851, 1735, 1652, 1542, 1486, 1437, 1261, 1166, 765, 731, 696. HRMS (ESI-TOF, m/z) calcd for C₂₄H₂₃NNaO₃⁺ (M+Na)⁺: 396.1570, found: 396.1573.

N-(7-acetyl-5-(tert-butyl)-3,3-dimethyl-2,3-dihydro-1H-inden-1-yl)-2-phenylacetamide (74)

A dried 10 mL Schlenk tube was charged with Celestolide (**1zh**, 48.9 mg, 0.20 mmol), benzyl cyanide (117.2 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC

fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford 74 as a white solid (37.0 mg, 0.098 mmol, 49% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, *J* = 1.8 Hz, 1H), 7.31 (d, *J* = 1.8 Hz, 1H), 7.30 – 7.27 (m, 2H), 7.25 – 7.20 (m, 3H), 5.66 – 5.60 (m, 1H), 5.57 (d, *J* = 7.2 Hz, 1H), 3.51 – 3.60 (m, 2H), 2.47 (s, 3H), 2.41 – 2.34 (m, 1H), 1.92 – 1.87 (m, 1H), 1.33 (s, 9H), 1.23 (d, *J* = 11.3 Hz, 7H). ¹³C NMR (126 MHz, CDCl₃) δ 200.7, 170.3, 154.8, 152.5, 136.8, 135.7, 134.9, 129.5, 128.9, 127.2, 124.8, 123.0, 53.1, 49.3, 43.9, 42.4, 34.9, 31.4, 30.5, 29.7, 28.8. IR (film): v (cm⁻¹) 3432, 2957, 1640, 1560, 1535, 1495, 1459, 1364, 1234.

HRMS (ESI-TOF, m/z) calcd for $C_{25}H_{32}NO_2^+$ (M+H)⁺: 378.2428, found: 378.2429.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)acetamide (75)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 36.5 mg, 0.20 mmol), acetonitrile (41.1 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **75** as a white solid (28.2 mg, 0.118 mmol, 59% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.57 (d, *J* = 8.4, 4H), 7.45 – 7.41(m, 2H), 7.41 – 7.37 (m, 2H), 7.37 – 7.31 (m, 1H), 5.75 (d, *J* = 7.0 Hz, 1H), 5.22 – 5.14 (m, 1H), 2.01 (s, 3H), 1.53 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 169.1, 142.2, 140.7, 140.4, 128.8, 127.4, 127.3, 127.1, 126.6, 48.6, 23.5, 21.7.

IR (film): v (cm⁻¹) 3424, 1654, 1560, 1438, 1055, 1033, 1014.

HRMS (ESI-TOF, m/z) calcd for C₁₆H₁₇NNaO⁺ (M+Na)⁺: 262.1202, found: 262.1204.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)acetamide-2,2,2-d₃ (76)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 36.5 mg, 0.20 mmol), acetonitrile- d_3 (44.1 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **76** as a white solid (20.8 mg, 0.086 mmol, 43% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.54 (m, 4H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.41 – 7.37 (m, 2H), 7.37 – 7.31 (m, 1H), 5.76 (d, *J* = 7.9 Hz, 1H), 5.22 – 5.14 (m, 1H), 1.53 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 169.1, 142.2, 140.7, 140.4, 128.8, 127.4, 127.3, 127.1, 126.6, 48.5, 21.7.

IR (film): v (cm⁻¹) 3409, 2950, 2843, 1640, 1546, 1454, 1408, 1113, 1053, 1033, 1018, 422. HRMS (ESI-TOF, m/z) calcd for C₁₆H₁₅D₃NO⁺ (M+H)⁺: 243.1571, found: 243.1575.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)pentanamide (77)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 36.5 mg, 0.20 mmol), pentanenitrile (83.1 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford 77 as a white solid (35.5 mg, 0.126 mmol, 63% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.52 (m, 4H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.41 – 7.36 (m, 2H), 7.36 – 7.31 (m, 1H), 5.67 (d, *J* = 7.9 Hz, 1H), 5.23 – 5.15 (m, 1H), 2.28 – 2.14 (m, 2H), 1.67 – 1.62 (m, 2H), 1.53 (d, *J* = 6.9 Hz, 3H), 1.40 – 1.32 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 172.2, 142.4, 140.8, 140.3, 128.8, 127.4, 127.3, 127.1, 126.6, 48.3, 36.7, 27.8, 22.4, 21.7, 13.8.

IR (film): v (cm⁻¹) 3727, 3298, 1735, 1685, 1640, 1560, 1546, 1438, 1261, 736.

HRMS (ESI-TOF, m/z) calcd for C₁₉H₂₃NNaO⁺ (M+Na)⁺: 304.1672, found: 304.1677.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)stearamide (78)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 36.5 mg, 0.20 mmol), stearonitrile (265.5 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **78** as a white solid (56.6 mg, 0.122 mmol, 61% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.62 – 7.52 (m, 4H), 7.46 – 7.41 (m, 2H), 7.41 – 7.37 (m, 2H), 7.37 – 7.32 (m, 1H), 5.73 (d, *J* = 7.9 Hz, 1H), 5.23 – 5.16 (m, 1H), 2.19 (t, *J* = 7.5 Hz, 2H), 1.67 – 1.60 (m, 2H), 1.53 (d, *J* = 6.9 Hz, 3H), 1.39 – 1.18 (m, 28H), 0.88 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 172.2, 142.4, 140.8, 140.3, 128.8, 127.4, 127.3, 127.1, 126.6, 48.3, 37.0, 31.9, 29.7, 29.7, 29.6, 29.5, 29.4, 29.3, 25.8, 22.7, 21.7, 14.1.

IR (film): v (cm⁻¹) 3356, 2948, 2834, 2522, 2052, 1654, 1560, 1453, 1413, 1114, 1033.

HRMS (ESI-TOF, m/z) calcd for C₃₂H₄₉NNaO⁺ (M+Na)⁺: 486.3706, found: 486.3711.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-3-methylbutanamide (79)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 36.5 mg, 0.20 mmol), 3methylbutanenitrile (83.1 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freezepump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **79** as a white solid (37.1 mg, 0.132 mmol, 66% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.52 (m, 4H), 7.46 – 7.41 (m, 2H), 7.41 – 7.37 (m, 2H), 7.37 – 7.31 (m, 1H), 5.69 (d, *J* = 7.9 Hz, 1H), 5.24 – 5.17 (p, *J* = 7.1 Hz, 1H), 2.09 – 2.18 (m, 1H), 2.08 – 2.01 (m, 2H), 1.53 (d, *J* = 6.9 Hz, 3H), 0.96 (dd, *J* = 9.4, 6.5 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 171.6, 142.3, 140.8, 140.3, 128.8, 127.4, 127.3, 127.1, 126.6, 48.3, 46.3, 26.2, 22.5, 22.5, 21.7.

IR (film): v (cm⁻¹) 3727, 3298, 2957, 1735, 1640, 1541, 1485, 838, 764, 696, 425.

HRMS (ESI-TOF, m/z) calcd for C₁₉H₂₃NNaO⁺ (M+Na)⁺: 304.1672, found: 304.1676.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)isobutyramide (80)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 36.5 mg, 0.20 mmol), isobutyronitrile (69.1 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} =$ 395 nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **80** as a white solid (34.2 mg, 0.128 mmol, 64% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.54 (m, 4H), 7.46 – 7.41 (m, 2H), 7.40 – 7.37 (m, 2H), 7.37 – 7.32 (m, 1H), 5.66 (d, *J* = 7.7 Hz, 1H), 5.21 – 5.14 (m, 1H), 2.40 – 2.32 (m, 1H), 1.53 (d, *J* = 6.9 Hz, 3H), 1.19 (d, *J* = 6.9 Hz, 3H), 1.17 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 176.0, 142.5, 140.8, 140.3, 128.8, 127.4, 127.3, 127.1, 126.6, 48.2, 35.7, 21.7, 19.6, 19.6.

IR (film): v (cm⁻¹) 3727, 3583, 1735, 1654, 1560, 1438, 422.

HRMS (ESI-TOF, m/z) calcd for C₁₈H₂₂NO⁺ (M+H)⁺: 268.1696, found: 268.1703.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)pivalamide (81)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 36.5 mg, 0.20 mmol), pivalonitrile (83.1 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **81** as a white solid (18.6 mg, 0.066 mmol, 33% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.53 (m, 4H), 7.46 – 7.40 (m, 2H), 7.38 – 7.31 (m, 3H), 5.83 (d, J = 7.6 Hz, 1H), 5.19 – 5.11 (m, 1H), 1.52 (d, J = 6.9 Hz, 3H), 1.22 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 177.5, 142.6, 140.8, 140.2, 128.8, 127.4, 127.3, 127.1, 126.5, 48.2, 38.6, 27.6, 21.7.

IR (film): v (cm⁻¹) 3727, 3341, 2967, 1735, 1632, 1529, 1484, 1207, 839, 762, 729.

HRMS (ESI-TOF, m/z) calcd for C₁₉H₂₄NO⁺ (M+H)⁺ 282.1852, found: 282.1861.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-2-(4-fluorophenyl)acetamide (82)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 36.5 mg, 0.20 mmol), 2-(4-fluorophenyl)acetonitrile (135.1 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **82** as a white solid (50.0 mg, 0.150 mmol, 75% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.50 (m, 4H), 7.43 (dd, *J* = 8.4, 6.9 Hz, 2H), 7.38 – 7.32 (m, 1H), 7.30 – 7.27 (m, 2H), 7.26 – 7.20 (m, 2H), 7.08 – 7.01 (m, 2H), 5.72 (d, *J* = 8.1 Hz, 1H), 5.20 – 5.13 (m, 1H), 3.55 (s, 2H), 1.46 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 169.8, 162.1 (d, *J* = 252.0 Hz), 142.0, 140.7, 140.4, 130.9 (d, *J* = 7.6 Hz), 130.7 (d, *J* = 3.8 Hz), 128.8, 127.4, 127.3, 127.1, 126.4, 115.9 (d, *J* = 1.3 Hz), 48.6, 42.9, 21.7. IR (film): v (cm⁻¹) 3696, 3402, 2950, 2844, 1639, 1560, 1546, 1512, 1455, 1054, 1033, 1016, 764, 429. HRMS (ESI-TOF, m/z) calcd for C₂₂H₂₁FNO⁺ (M+H)⁺: 334.1602, found: 334.1606.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-2-(4-chlorophenyl)acetamide (83)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 36.5 mg, 0.20 mmol), 2-(4chlorophenyl)acetonitrile (151.6 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H_2SO_4 (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **83** as a white solid (49.7 mg, 0.142 mmol, 71% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.58 – 7.51 (m, 4H), 7.46 – 7.41 (m, 2H), 7.37 – 7.27 (m, 5H), 7.23 – 7.16 (m, 2H), 5.69 (d, *J* = 8.0 Hz, 1H), 5.20 – 5.12 (m, 1H), 3.54 (s, 2H), 1.46 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 169.4, 141.9, 140.7, 140.4, 133.4, 133.3, 130.7, 129.1, 128.8, 127.4, 127.4, 127.1, 126.5, 48.7, 43.1, 21.7.

IR (film): v (cm⁻¹) 3853, 3696, 3681, 3372, 2949, 2844, 1735, 1685, 1654, 1560, 1455, 1054, 1033, 1016, 433.

HRMS (ESI-TOF, m/z) calcd for $C_{22}H_{21}CINO^+$ (M+H)⁺: 350.1306, found: 350.1308.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-2-(4-bromophenyl)acetamide (84)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 36.5 mg, 0.20 mmol), 2-(4bromophenyl)acetonitrile (196.0 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **84** as a white solid (43.4 mg, 0.110 mmol, 55% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.58 – 7.52 (m, 4H), 7.50 – 7.45 (m, 2H), 7.46 – 7.40 (m, 2H), 7.38 – 7.32 (m, 1H), 7.31 – 7.27 (m, 2H), 7.19 – 7.10 (m, 2H), 5.71 (d, *J* = 8.0 Hz, 1H), 5.20 – 5.12 (m, 1H), 3.52 (s, 2H), 1.46 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 169.3, 141.9, 140.7, 140.4, 133.9, 132.1, 131.0, 128.8, 127.4, 127.4, 127.1, 126.5, 121.4, 48.7, 43.2, 21.7.

IR (film): v (cm⁻¹) 3377, 2950, 2838, 2522, 2212, 1644, 1536, 1451, 1413, 1113, 1032, 433. HRMS (ESI-TOF, m/z) calcd for C₂₂H₂₀BrNNaO⁺ (M+Na)⁺: 416.0620, found: 416.0624.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-4-phenylbutanamide (85)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 36.5 mg, 0.20 mmol), 4phenylbutanenitrile (145.2 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freezepump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **85** as a white solid (45.3 mg, 0.132 mmol, 66% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.59 – 7.54 (m, 4H), 7.46 – 7.40 (m, 2H), 7.40 – 7.32 (m, 3H), 7.29 – 7.26 (m, 2H), 7.21 – 7.14 (m, 3H), 5.63 (d, *J* = 8.0 Hz, 1H), 5.23 – 5.15 (m, 1H), 2.66 (t, *J* = 7.5 Hz, 2H), 2.25 – 2.11 (m, 2H), 2.03 – 1.98 (m, 2H), 1.52 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 171.7, 142.3, 141.5, 140.8, 140.4, 128.8, 128.5, 128.4, 127.4, 127.3, 127.1, 126.6, 126.0, 48.4, 36.0, 35.2, 27.1, 21.7.

IR (film): v (cm⁻¹) 3727, 3285, 1735, 1640, 1560, 1546, 1484, 697.

HRMS (ESI-TOF, m/z) calcd for C₂₄H₂₆NO⁺ (M+H)⁺: 344.2009, found: 344.2013.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)cyclopropanecarboxamide (86)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 36.5 mg, 0.20 mmol), cyclopropanecarbonitrile (67.1 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H_2SO_4 (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three

freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **86** as a white solid (35.6 mg, 0.134 mmol, 67% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.54 (m, 4H), 7.48 – 7.38 (m, 4H), 7.37 – 7.31 (m, 1H), 5.93 (d, *J* = 7.9 Hz, 1H), 5.23 – 5.16 (m, 1H), 1.54 (d, *J* = 6.9 Hz, 3H), 1.38 – 1.32 (m, 1H), 1.09 – 0.92 (m, 2H), 0.84 – 0.68 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 172.6, 142.5, 140.8, 140.3, 128.8, 127.4, 127.3, 127.1, 126.6, 48.6, 21.8, 14.9, 7.2.

IR (film): v (cm⁻¹) 2950, 2842, 2522, 2178, 1652, 1455, 1404, 1112, 1033, 1014, 479, 471, 444, 430. HRMS (ESI-TOF, m/z) calcd for C₁₈H₂₀NO⁺ (M+H)⁺: 266.1539, found: 266.1544.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)cyclobutanecarboxamide (87)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 36.5 mg, 0.20 mmol), cyclobutanecarbonitrile (81.1 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **87** as a white solid (36.9 mg, 0.132 mmol, 66% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.54 (m, 4H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.40 – 7.36 (m, 2H), 7.36 – 7.32 (m, 1H), 5.61 (d, *J* = 8.0 Hz, 1H), 5.22 – 5.14 (m, 1H), 3.05 – 2.96 (m, 1H), 2.36 – 2.24 (m, 2H), 2.20 – 2.10 (m, 2H), 2.01 – 1.91 (m, 1H), 1.91 – 1.83 (m, 1H), 1.52 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.0, 142.5, 140.8, 140.3, 128.8, 127.4, 127.3, 127.1, 126.6, 48.2,

40.0, 25.3, 25.3, 21.8, 18.2.

IR (film): v (cm⁻¹) 3293, 2110, 1639, 1541, 1449, 1389, 1255, 1015, 840, 763, 729, 693, 433. HRMS (ESI-TOF, m/z) calcd for C₁₉H₂₁NNaO⁺ (M+Na)⁺: 302.1515, found: 302.1517.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)cyclopentanecarboxamide (88)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (1a, 36.5 mg, 0.20 mmol), cyclopentanecarbonitrile (95.2 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **88** as a white solid (40.5 mg, 0.138 mmol, 69% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.53 (m, 4H), 7.45 – 7.40 (m, 2H), 7.40 – 7.37 (m, 2H), 7.37 – 7.31 (m, 1H), 5.69 (d, *J* = 7.8 Hz, 1H), 5.22 – 5.14 (m, 1H), 2.52 (q, *J* = 8.1 Hz, 1H), 1.93 – 1.68 (m, 6H), 1.62 – 1.54 (m, 2H), 1.52 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 175.3, 142.5, 140.8, 140.3, 128.8, 127.4, 127.3, 127.1, 126.6, 48.3, 45.9, 30.4, 30.4, 25.9, 21.8.

IR (film): v (cm⁻¹) 3727, 3293, 2963, 2868, 1735, 1638, 1541, 1485, 1448, 1389, 1235., 1114, 840, 763, 728, 694.

HRMS (ESI-TOF, m/z) calcd for C₂₀H₂₃NNaO⁺ (M+Na)⁺: 316.1672, found: 316.1674.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)cyclohexanecarboxamide (89)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (1a, 36.5 mg, 0.20 mmol),
cyclohexanecarbonitrile (109.2 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **89** as a white solid (39.4 mg, 0.128 mmol, 64% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.59 – 7.53 (m, 4H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.40 – 7.31 (m, 3H), 5.67 (d, *J* = 7.9 Hz, 1H), 5.21 – 5.14 (m, 1H), 2.09 (tt, *J* = 11.8, 3.5 Hz, 1H), 1.92 – 1.83 (m, 2H), 1.83 – 1.76 (m, 2H), 1.70 – 1.64 (m, 1H), 1.52 (d, *J* = 6.9 Hz, 3H), 1.46 (td, *J* = 12.3, 3.5 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 175.51, 142.5, 140.8, 140.3, 128.8, 127.4, 127.3, 127.1, 126.5, 48.0, 45.6, 29.7, 29.7, 25.7, 25.7, 21.7.

IR (film): v (cm⁻¹) 3449, 1735, 1637, 1560, 1546.

HRMS (ESI-TOF, m/z) calcd for C₂₁H₂₅NNaO⁺ (M+Na)⁺: 330.1828, found: 330.1841.

N-(1-([1,1'-biphenyl]-4-yl)ethyl)-3-fluorobenzamide (90)

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 36.5 mg, 0.20 mmol), 3fluorobenzonitrile (121.1 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), concentrated H₂SO₄ (9.8 mg, 0.10 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freezepump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred 40 °C for 72 h, then concentrated to dryness under reduced pressure. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 3:1) to afford **90** as a white solid (19.8 mg, 0.062 mmol, 31% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.42 – 7.37 (m, 4H), 7.36 – 7.30 (m, 2H), 7.29 – 7.18 (m, 5H), 7.18 – 7.12 (m, 1H), 7.03 – 6.98 (m, 1H), 6.14 (d, *J* = 7.7 Hz, 1H), 5.22 – 5.14 (m, 1H), 1.46 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 165.3 (d, *J* = 2.5 Hz), 163.8, 161.8, 141.9, 140.6 (d, *J* = 11.3 Hz), 136.8 (d, *J* = 7.6 Hz), 130.2 (d, *J* = 7.6 Hz), 128.8, 127.5, 127.3, 127.1, 126.7, 122.4 (d, *J* = 2.5 Hz), 118.5 (d, *J* = 20.2 Hz), 114.4 (d, *J* = 22.7 Hz), 49.2, 21.6.

IR (film): v (cm⁻¹) 3423, 2982, 1735, 1654, 1560, 1483, 1055, 1033, 1014.

HRMS (ESI-TOF, m/z) calcd for C₂₁H₁₈FNNaO⁺ (M+Na)⁺: 342.1265, found: 342.1268.

5.5 Synthesis of Rasagiline

N-(2,3-dihydro-1*H*-inden-1-yl)-*N*-(prop-2-yn-1-yl)benzenesulfonamide (91)

A dried 10 mL Schlenk tube was charged with *N*-(2,3-dihydro-1*H*-inden-1-yl)benzenesulfonamide (**47**, 136.7 mg, 0.50 mmol) and DMF (2.0 mL), then cooled down to 0 °C. NaH (24.0 mg, 1.0 mmol) was added, and the resultant mixture was stirred at 0 °C for 30 min. Propargyl bromide (89.2 mg, 0.75 mmol, 80% purity) was added dropwise. The reaction was warmed up to room temperature and stirred for additional 4 h, then quenched with H₂O (10 mL) and extracted with ethyl acetate (10 mL × 3). The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum. The residue was subjected to flash chromatography on silica gel (eluted with PE to PE: EA = 5:1) to afford the **91** as a yellow solid (154.1 mg, 0.495 mmol, 99% yield).

¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 7.8, 2H), 7.64 – 7.58 (m, 1H), 7.57 – 7.51 (m, 2H), 7.25 – 7.20 (m, 2H), 7.18 – 7.14 (m, 1H), 7.05 (d, *J* = 7.6 Hz, 1H), 5.55 (t, *J* = 7.7 Hz, 1H), 4.25 – 4.17 (m, 1H), 3.60 – 3.50 (m, 1H), 2.98 – 3.04 (m, 1H), 2.83 – 2.74 (m, 1H), 2.29 – 2.15 (m, 2H), 2.06 (t, *J* = 2.5 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 143.7, 140.8, 139.5, 132.7, 128.9, 128.5, 127.6, 126.9, 125.0, 124.7,

79.9, 72.1, 63.5, 32.6, 30.2, 29.4.

IR (film): v (cm⁻¹) 3439, 2924, 2121, 1640, 1447, 1322, 1157, 1094.

HRMS (ESI-TOF, m/z) calcd for C₁₈H₁₇NNaO₂S⁺ (M+Na)⁺: 344.0872, found: 344.0883.

N-(prop-2-yn-1-yl)-2,3-dihydro-1H-inden-1-amine (92)

A dried 5.0 mL Schlenk tube was charged with LiAlH₄ (2.5 M in THF, 0.50 mmol) in anhydrous tetrahydrofuran (1.0 mL), and the mixture was cooled down to 0 °C. A solution of **91** (31.1 mg, 0.10 mmol) in anhydrous tetrahydrofuran (1.0 mL) was added dropwise over 10 minutes under Ar. The mixture was heated at reflux for 3 h, then cooled to 0 °C. An aqueous solution of HCl (36% in H₂O) was added until no H₂ evolution. Added H₂O (5 mL) to the mixture and extracted with CH₂Cl₂ (5 mL × 3). After filtration over Na₂SO₄ and evaporation of the solvent under reduced pressure, Rasagiline **92** was obtained as a yellow oil (15.8 mg, 0.092 mmol, 92% yield).

¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.35 (m, 1H), 7.26 – 7.16 (m, 3H), 4.41 (t, *J* = 6.9, 5.2 Hz, 1H), 3.60 – 3.37 (m, 2H), 3.01 – 3.07 (m, 1H), 2.79 – 2.85 (m, 1H), 2.45 – 2.32 (m, 1H), 2.25 (t, *J* = 2.4 Hz, 1H), 1.93 – 1.78 (m, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 144.5, 143.8, 127.6, 126.3, 124.9, 124.2, 82.5, 71.4, 61.9, 36.2, 33.3, 30.5.

IR (film): v (cm⁻¹) 3726, 3405, 2964, 1735, 1685, 1654, 1617, 1560, 1027.

HRMS (ESI-TOF, m/z) calcd for $C_{12}H_{14}N^+$ (M+H)⁺: 172.1121, found: 172.1124.

6. Mechanistic Investigations

6.1 Radical Trapping Experiments

6.1.1 Trapping of *C*-centered Radicals in the Photochemical C(sp³)-H Sulfonylamidation Reaction

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 54.7 mg, 0.30 mmol), *p*-toluenesulfonamide (**2a**, 34.2 mg, 0.20 mmol), radical scavenger 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (31.2 mg, 0.20 mmol) or 5,5-dimethyl-1-pyrroline *N*-oxide (DMPO) (67.9 mg, 0.60 mmol). The mixtures in dichloromethane (1.0 mL) was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 12 h. The reaction mixture was analyzed by HRMS.

Results:

Compound **93**, HRMS (ESI-TOF, m/z) calcd for C₂₃H₃₂NO⁺ (M+H)⁺: 338.2478, found: 338.2483.

Compound **97**, HRMS (ESI-TOF, m/z) calcd for C₂₀H₂₄NO⁺⁺ (M⁺): 294.1858, found: 294.1858.

Figure S3. HRMS data of compound 97.

6.1.2 Trapping of *C*-centered Radicals in the Photochemical C(sp³)-H Amidation Reaction with Nitriles

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 54.7 mg, 0.30 mmol), benzyl cyanide (117.2 mg, 1.0 mmol), concentrated H_2SO_4 (9.8 mg, 0.10 mmol), radical scavenger 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (125.0 mg, 0.80 mmol), 5,5-dimethyl-1-pyrroline *N*-oxide

(DMPO) (67.9 mg, 0.60 mmol) or *N*-Benzylidene-*tert*-butylamine *N*-Oxide (PBN) (106.3 mg, 0.60 mmol). The mixtures in 1,2-dichloroethane (1.0 mL) was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 8 h. The reaction mixture was analyzed by HRMS.

Results:

Compound **93**, HRMS (ESI-TOF, m/z) calcd for C₂₃H₃₂NO⁺ (M+H)⁺: 338.2478, found: 262.2483. Compound **97**, HRMS (ESI-TOF, m/z) calcd for C₂₀H₂₄NO⁺ (M⁺): 294.1858, found: 294.1858. Compound **98**, HRMS (ESI-TOF, m/z) calcd for C₂₅H₂₈NO⁺ (M⁺): 358.2171, found: 358.2174.

Figure S4. HRMS data of compound 98.

6.1.3 Trapping of Fluorine Radicals in the Photochemical C(sp³)-H Sulfonylamidation

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 54.7 mg, 0.30 mmol), *p*-toluenesulfonamide (**2a**, 0.20 mmol), radical scavenger 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (31.2 mg, 0.20 mmol) and dichloromethane (1.0 mL). The mixtures was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W

LEDs (λ_{max} = 395 nm) with a DC fan cooling. The reaction was stirred at 40 °C for 12 h. The reaction mixture was analyzed by HRMS.

Results:

Compound **94**, HRMS (ESI-TOF, m/z) calcd for C₉H₂₂FN₂O⁺ (M+NH₄)⁺: 193.1711, found: 193.1705.

Figure S5. HRMS data of compound 94.

6.2 Probing of Carbon Cations

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 54.7 mg, 0.30 mmol), *p*-toluenesulfonamide (**2a**, 0.20 mmol), sodium acetate (16.4 mg, 0.20 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol) and dichloromethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 48 h, then concentrated to dryness

under reduced pressure. The residue was subjected to flash chromatography on silica gel to afford **3** (10.5 mg, 0.030 mmol, 15% yield) as a white solid and **95** (7.2 mg, 0.030 mmol, 15% yield) as a white solid.

1-([1,1'-biphenyl]-4-yl)ethyl acetate (95)

¹H NMR (500 MHz, CDCl₃) δ 7.62 – 7.56 (m, 4H), 7.44 (t, *J* = 7.4 Hz, 4H), 7.39 – 7.31 (m, 1H), 5.94 (q, *J* = 6.6 Hz, 1H), 2.10 (s, 3H), 1.58 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 170.3, 140.9, 140.8, 140.7, 128.8, 127.3, 127.3, 127.1, 126.6, 72.1, 22.1, 21.4.

IR (film): v (cm⁻¹) 3727, 3583, 1735, 1654, 1560, 1240.

HRMS (ESI-TOF, m/z) calcd for C₁₆H₁₆NaO₂⁺ (M+Na)⁺: 263.1043, found: 263.1044.

6.3 An Isotope Labeling Experiment

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 36.5 mg, 0.20 mmol), benzyl cyanide (117.2 mg, 1.0 mmol), Selectfluor[®] (212.6 mg, 0.60 mmol), H₂SO₄ (9.8 mg, 0.10 mmol), H₂¹⁸O (11.2 mg, 0.56 mmol) and 1,2-dichloroethane (1.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at 40 °C for 48 h. The reaction product **96** was detected by HRMS (ESI-TOF, m/z). Calcd for C₂₂H₂₁NNa¹⁸O⁺ (M+Na)⁺: 340.1558, found: 340.1562.

Figure S6. HRMS data of compound 96.

6.4 Light on/off Experiments

A dried 10 mL Schlenk tube was charged with 4-ethyl-1,1'-biphenyl (**1a**, 109.4 mg, 0.60 mmol), benzenesulfonamide (**2b**, 62.9 mg, 0.40 mmol), Selectfluor® (425.1 mg, 1.2 mmol) and dichloromethane (2.0 mL). The mixture was degassed *via* three freeze-pump-thaw cycles. The Schlenk tube was positioned approximately 3 cm away from a 50 W LEDs ($\lambda_{max} = 395$ nm) with a DC fan cooling. The reaction was stirred at room temperature for the indicated time. The solvent was evaporated, and the yield analyzed by *in-situ* ¹H NMR using 1,1,2,2-tetrachloroethane as an internal standard. The chain reaction process was excluded.

Figure S7. Light-off/on experiments of the reaction $1a+2b\rightarrow 4$.

7. ¹H and ¹³C NMR Spectrum

¹H NMR 500 MHz CDCl₃ M 1zf F10.2 2.224 2.00-I 2.17-2.19 ± 1.89 ± 4.12 ± 3.32 ± 3.05-2.0 8.0 7.5 5.0 4.5 f1 (ppm) 9.5 9.0 8.5 7.0 6.5 6.0 5.5 4'0 3.5 3.0 2.5 1.5 1.0 0.5 0.0 -0.5 1456 1445 1445 1374 1301 1385 1285 1285 1285 1285 1285 1261 1261 -166.6 C64.4 -155 -324 -304 -28.6 ¹³C NMR 126 MHz CDCI₃ M 1zf 100 fl (ppm) 210 80 70 50 10 -10 200 190 180 170 160 150 140 130 120 110 90 60 40 30 20 6

-2.43 <1.56

STATISTICS STATIS

S89

14.1 14.

S91

210 200 190 180 170 160 150 140 150 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2 f1 (ppm)

210 200 150 180 170 160 150 140 150 120 110 100 50 80 70 60 50 40 50 20 10 0 -10 £1 (spen)

7 188 7 198 7

S96

210 200 190 180 170 160 150 140 150 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2 f1 (ppm)

210 200 190 180 170 160 150 140 150 120 110 100 90 f1 (ppm) 80 70 60 50 40 30 20 10 0 -10

1 288 1

210 200 190 180 170 160 150 140 150 120 110 100 90 80 70 60 50 40 50 20 10 0 -10 £1 (ppm)

<144

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 £1 (ppm)

S109

C139

S.19
S.17
S.17
S.17
S.17
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.44
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.43
4.44
4.43
4.44
4.44
4.43
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44
4.44

 $<^{139}_{138}$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 £1 (φραφ)

S111

<146

¹ H NMR
500 MHz
CDCI ₃

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 £1 (ppm)

210 200 190 180 170 160 150 140 150 120 110 100 90 80 70 60 50 40 50 20 10 0 -10 f1 (ppm)

<151

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

4 28

1 20

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 150 180 170 160 150 140 150 120 110 100 50 80 70 60 50 40 50 20 10 0 -10 £1 (ppm)

S130

S132

crude 1H NMR analysis, *r.r.* =10:1

¹ H NMR
500 MHz
CDCI ₃

S140

7 199 7

210 200 190 180 170 160 150 140 150 120 110 100 90 80 70 60 50 40 50 20 10 0 -10 £1 (ppm)

350

<133

¹ H NMR
500 MHz
CDCI ₃

-3.57

<138

¹H NMR 500 MHz CDCl₃

-3.53

210 200 150 180 170 160 150 140 130 120 110 100 50 60 70 60 50 40 30 20 10 0 -10 f1 (ppm)

CLAB LAB

196-

210 200 190 180 170 160 150 140 150 120 110 100 90 80 70 60 50 40 50 20 10 0 -10 £1 (ppm)

23.28 25.55

-201 <154

¹H NMR 500 MHz CDCl₃

S161

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 £1 (ppm)

¹ H NMR
500 MHz
CDCI ₃

Provide a construction of the construction of

210 200 190 180 170 160 150 140 150 120 110 100 90 80 70 60 50 40 50 20 10 0 -10 £1 (ppm)

<133 <151 -122

-3.54

<147 <146

210 200 190 180 170 160 150 140 150 120 110 100 90 80 70 60 50 40 50 20 10 0 -10 £1 (ppm)

-3.52

<147

210 200 190 180 170 160 150 140 150 120 110 100 90 80 70 60 50 40 50 20 10 0 -10 £1 (ppm)

S173

-2.10 <1.59

8. References

1. B. Karimi and P. F. Akhavan. Chem. Commun., 2009, 3750-3752.

2. Z.-W. Hou, D.-J. Liu, P. Xiong, X.-L. Lai, J. Song and H-C. Xu, Angew. Chem. Int. Ed., 2021, 60, 2943–2947.

3. Y. Liu, A. De Nisi, A. Cerveri, M. Monari and M. Bandini, Org. Lett., 2017, 19, 5034–5037.

4. M. Ousmer, N. A. Braun, C. Bavoux, M. Perrin and M. A. Ciufolini, J. Am. Chem. Soc., 2001, 123, 7534–7538.