Electronic Supplementary Information

A π -extended benzothiadiazole derivative for high-efficiency

TADF-sensitized fluorescent organic light-emitting diode

Guang-Jin Shi,^{‡a} Ke-Ke Tan,^{‡b} Shu-Yang Liu,^a Hao Zhang,^a Hao-Ran Hu,^a Kun-Peng

Wang,^a Liang-Zhong Xu,^a Meng Li,^{*b} and Zhi-Qiang Hu^{*a}

^aKey Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.

^bBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

[‡]These authors contributed equally to this work.

Email: huzhiqiang@qust.edu.cn; limeng@iccas.ac.cn

Contents

. General information	·····S1
. Synthetic procedures and characterized data	••••••S2
. Thermal properties	·····S3
. Theoretical calculations	·····S4
. Electrochemical measurements	••••••S4
. Photophysical properties	······S5
. OLEDs performances	······S7
. ¹ H NMR, ¹³ C NMR and HRMS of new compounds	·····S8
. References	·····S9

1. General information

All reagents were purchased from commercial sources and used without further purification. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker DMX 500 MHz spectrometer. HRMS mass spectra were measured by Waters ACQUITY UPLC H-Class. Theoretical calculations were carried out with software package. Density functional theory (DFT) calculations were performed using the Gaussian 09 package at the B3LYP/6-31G(d) level. Multiwfn and VMD were used for data processing and rendering.^[S1]

Absorption spectra were recorded on SHIMADZU UV-2600i spectrophotometer and fluorescence spectra were recorded on SHIMADZU RF-6000 spectrometer at room temperature. The transient PL decay characteristics, delayed PL emission spectra and absolute PLQY were measured on an Edinburgh Instruments FLS 980 spectrometer. Tetrahydrofuran solutions of **BTD-PAH** with a concentration of 10⁻³ M were prepared as stock solutions. Dilute the stock solutions with toluene (PhMe), chloroform (CHCl₃), tetrahydrofuran (THF), methyl alcohol (MeOH), dimethyl sulfoxide (DMSO) to the concentration of 10⁻⁵ µM for measuring absorption, emission spectra and fluorescence lifetime. The absorption wavelength (λ_{abs}), emission wavelength (λ_{em}), molar extinction coefficient (ε), Stokes shifts ($\Delta\lambda$) were calculated by the measurement data. The fluorescent quantum yield in different solvents were calculated by standard compound (Rhodamine 101 as a standard), according to the following equation: $\Phi_f = \Phi_{ST}(Grad_x/Grad_{ST})(\eta^2 x/\eta^2_{ST})$. The subscripts ST and X denote is standard compound and test compound respectively, Φ_f is the Relative fluorescent quantum yield, Grad is the gradient from the plot of integrated fluorescence intensity vs absorbance, and η is the refractive index of the solvent.

The OLED devices were fabricated by vacuum deposition onto pre-coated ITO glass substrates at a low pressure $(1 \times 10^{-5} \text{ mbar})$ for organic and metal deposition successively, with deposition rate of 0.5~3 Å s⁻¹. Before the fabrication of devices, the ITO glass substrates were cleaned with Decon 90, rinsed in ultrapure water and ethanol, dried in an oven at 120 °C, then by plasma cleaning process. The electroluminescence and current-voltage-luminance characteristics of the devices

were measured with a computer-controlled Spectrascan PR 670 spectrophotometer and Keithley 2400 SourceMeter after device packaging.

2. Synthetic procedures and characterized data

Scheme S1. Synthetic route of XBTD-NPh.

The synthetic methods of 1, 2 and 3 were referred to the reported literature^[S2].

Scheme S2. Molecular structures of BTD-NPh.

The synthetic methods of **BTD-NPh** were referred to the reported literature^[S3].

4,7-bis(4-(diphenylamino)phenyl)benzo[c][1,2,5]thiadiazole-5,6-diamine (2)

1 (3.56 g, 5 mmol) and reduced iron powder (2.80 g, 50 mmol) were dissolved in 50 mL glacial acetic acid and stirred at 90 °C for 2 h until no **1** was detected by TLC. Added 50 mL water and stirring for another 1 h. After cooling to room temperature, filtered and dried to obtain brown solid **2** (2.64 g, 81%). Proceed directly to the next step without purification.

N,*N*'-(4,7-bis(4-(diphenylamino)phenyl)benzo[c][1,2,5]thiadiazole-5,6-diyl)bis(2,2-d imethylpropanamide) (3)

2 (1.30 g, 2 mmol) was dissolved in 20 mL of dichloromethane, added with triethylamine (0.81 g, 8 mmol), and stirred at 0 °C for 5 min. Pivaloyl chloride (0.48 g, 4 mmol) was slowly added dropwise and stirred for 8 h at room temperature until no **2** was detected by TLC. Removed solvents by rotary evaporator and purified by silica gel column chromatography (EA:PE = 1:8) and **3** was obtained as yellow solid (1.41 g, 86%). ¹H NMR (500 MHz, CDCl₃) δ = 7.82 (s, 1H), 7.34 (d, *J* = 7.9 Hz, 2H), 7.20 (t, *J* = 7.3 Hz, 4H), 7.11 (dd, *J* = 23.1, 7.7 Hz, 6H), 6.98 (t, *J* = 6.8 Hz, 2H), 1.07 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ = 177.4, 153.3, 148.1, 147.5, 133.0, 131.0, 129.4, 129.1, 127.9, 124.9, 123.4, 122.9, 39.5, 27.5. HRMS: *m*/*z* [M+Na]⁺ calcd for C₅₂H₄₈N₆NaO₂S⁺, theory: 843.3452, found: 843.3471.

5,8-di-tert-butyl-N³,N³,N¹⁰,N¹⁰-tetraphenyldibenzo[c,i][1,2,5]thiadiazolo[3,4-f][1,10] phenanthroline-3,10-diamine (**XBTD-NPh**)

3 (820 mg, 1 mmol) was dissolved in 5 mL of phosphorus oxychloride and phosphorus pentoxide (1.41 g, 10 mmol), and reflux for 4 h under nitrogen protection. Cooled to room temperature and slowly added 40% aqueous sodium hydroxide solution until pH = 14. Filtered and purified by silica gel column chromatography (EA:PE = 1:12) and XBTD-NPh was obtained as orange solid (196 mg, 25%). ¹H NMR (500 MHz, CDCl₃) δ = 10.34 (d, *J* = 9.3 Hz, 1H), 8.16 (d, *J* = 1.9 Hz, 1H), 7.77 (dd, *J* = 9.3, 2.0 Hz, 1H), 7.36 (t, *J* = 7.7 Hz, 4H), 7.30 – 7.23 (m, 4H), 7.14 (t, *J* = 7.2 Hz, 2H), 1.64 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ = 168.3, 153.0, 147.1, 146.0, 141.3, 129.6, 129.2, 129.1, 126.7, 126.3, 125.4, 124.1, 118.2, 115.4, 40.9, 31.3. HRMS: *m*/*z* [M+H]⁺ calcd for C₅₂H₄₅N₆S⁺, theory: 785.3421, found: 785.3417.

3. Thermal properties

The thermal stability of **XBTD-NPh** was then investigated. Thermogravimetric analyses (TGA) were performed on a TA Instruments Q-50 with a heating rate of 10 °C min⁻¹ at N₂ atmosphere. Differential scanning calorimetry (DSC) curves were performed on Netzsch DSC 204F1 at a heating rate of 10 °C min⁻¹ at N₂ atmosphere. The result was shown as in Fig. S1.

Fig. S1 (a) TGA and (b) DSC curve of XBTD-NPh.

4. Theoretical calculations

Fig. S2 HOMO/LUMO distributions and energy levels of XBTD-NPh.

5. Electrochemical measurements

A conventional three electrode cell was used as electrolytic cell with a glassy carbon working electrode, an Ag/Ag⁺ (0.01 M AgNO₃) as the reference electrode, and Pt wire as the counter electrode. The oxidation potential was measured in CH₂Cl₂ with 0.1 M of tetra-nbutylammonium hexafluorophosphate (n-Bu₄NPF₆) as a supporting electrolyte. Ferrocene used as internal standard for calibrating the reference electrode.

Fig. S3 Cyclic voltammogram of XBTD-NPh

Table S1. Electrochemical properties of XBTD-NPh

$E_{\rm ox,onset}{}^a$	$E_{\mathrm{HOMO}}{}^{b}$	E_{LUMO}^{c}	$E_{\mathrm{g,opt}}{}^d$	$\lambda_{\text{onset}}^{e}$
0.99 eV	-5.64 eV	-3.21 eV	2.43 eV	510 nm

^{*a*}The onset of oxidation curve; ^{*b*}E_{HOMO} = $-[E_{ox} - E_{(Fc/Fc+)} + 4.8]$ eV; ^{*c*}E_{LUMO} = $E_{HOMO} + E_{g,opt}$; ^{*d*}energy gap ($E_{g,opt} = 1240 / \lambda_{onset}$); ^{*e*}energy gap ($E_{g,opt} = 1240 / \lambda_{onset}$); ^{*e*}the onset of the absorption spectrum.

6. Photophysical properties

Fig. S4 (a) UV-Vis absorption and (b) emission spectra of **XBTD-NPh** ($\lambda_{ex} = 470 \text{ nm}$) in different solutions ($c = 1 \times 10^{-5} \text{ M}$).

Fig. S5 Transient PL decay of **XBTD-NPh** and **XBTD-NPh** in toluene ($c = 1 \times 10^{-5}$ M) at room temperature.

solvents ^a	λ _{abs,max} (nm)	λ _{em} (nm)	$\Delta \lambda^b$ (nm)	$\epsilon (10^4 \mathrm{M^{-1}cm^{-1}})$	$\Phi_{ m f}{}^c$ (%)	τ _f (ns)
PhMe	468	531	63	0.9	98	9.1
CHCl ₃	475	571	96	1.1	67	
THF	468	560	92	0.8	87	
MeOH	469	630	161	0.9	3	
DMSO	470	631	161	0.8	21	

Table S2. Photophysical properties of XBTD-NPh in different solvents

^{*a*}Measured at room temperature ($c = 1 \times 10^{-5}$ M); ^{*b*} $\Delta \lambda = \lambda_{em} - \lambda_{abs,max}$; ^{*c*}Rhodamine 101 as a standard (excited at 450 nm, $\Phi_{f} = 0.96$ in ethanol)^[S4].

7. OLEDs performances

Fig. S6 The molecular structures of the compounds used in the device.

The CP-OLEDs had the structure: Glass/ITO/ TAPC (40 nm)/ TCTA (10 nm)/PhCzTrz: 10 wt% PXZ-DPS: 1.0 wt% XBTD-NPh (20 nm)/BPBiPA (40 nm) LiF nm). nm)/Al (150 In ITO (0.5)which, is indium tin oxide. 1,1-bis[4-[N,N-di(p-tolyl)-amino]phenyl]cyclohexane (TAPC) was used as hole-transporting layer, 4,4',4"-Tris(carbazol-9-yl)-triphenylamine (TCTA) was acted electron-blocking as layer, 3-(3-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-9-phenyl-9H-carbazole (PhCzTrz) was employed as host material, 10,10'-(sulfonylbis(4,1-phenylene))bis(10H-phenoxazine) (PZX-DPS) was served as TADF sensitizer, 1.0 wt% XBTD-NPh was co-deposited with PhCzTrz and 10 wt% PXZ-DPS to serve as the emitting layer, 9,10-bis(4-(2-phenyl-1*H*-benzo[*d*]imidazol-1-yl)phenyl)anthracene (BPBiPA) was used as electron-transporting layer, LiF and Al acted as electron-transporting layer, electron-injection layer and the cathode, respectively.

8. ¹H NMR, ¹³C NMR and HRMS of new compounds

Fig. S8 ¹³C NMR spectrum (126 MHz, CDCl₃) of XBTD-NPh.

Fig. S9 HRMS of XBTD-NPh.

9. References

[S1] (a) T. Lu, and F. Chen, J. Comput. Chem. 2012, 33, 580; (b) W. Humphrey, A.

Dalke, and K. Schulten, J Molec Graphics 1996, 14, 33.

[S2] G.-J. Shi, Y.-D. Wang, Z.-X. Yu, Q. Zhang, S. Chen, L.-Z. Xu, K.-P. Wang and

Z.-Q. Hu, Dye. Pigment., 2022, 204, 110471.

[S3] W. Fu, H. Chen, Y. Han, W. Wang, R. Zhang and J Liu, *New J. Chem.*, 2021, 45, 19082.

[S4] R. F. Kubin and A. N. Fletcher, J. Lumin., 1982, 27, 455.