SUPPLEMENTARY INFORMATION

Comproportionation of a dialuminyne with alane or dialane dihalides as a clean route to dialuminenes

Joshua D. Queen and Philip P. Power
Department of Chemistry University of California, Davis, One Shields Ave. Davis, California, 95616, United States.

Table of Contents

S2 Experimental Details
S5 NMR Spectra
S20 UV-Visible Spectra
S23 X-ray Crystallography
S28 Photos of Compounds
S29 References

Experimental Details

General Procedures

All manipulations were carried out using modified Schlenk techniques or in a Vacuum Atmospheres OMNI-Lab drybox under a N_{2} or argon atmosphere. Solvents were dried over columns of activated alumina using a Grubbs type purification system ${ }^{1}$, stored over $\mathrm{Na}\left(\mathrm{Et}_{2} \mathrm{O}\right.$, hexanes), K (toluene) or $3 \AA$ molecular sieves (benzene). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectra were recorded on Varian Inova 600 MHz or Bruker Avance III HD Nanobay 400 MHz spectrometers and were referenced to the residual solvent signals in $\mathrm{C}_{6} \mathrm{D}_{6}{ }^{2}$ UV-Visible spectra were recorded in 3.5 mL quartz cuvettes using an Olis 17 Modernized Cary 14 UV-Vis/NIR spectrophotometer. Melting points were measured in glass capillary tubes sealed under argon using a Mel-Temp II apparatus using a partial immersion thermometer.
$\mathrm{LiAr}{ }^{\mathrm{Prr}}-4-\mathrm{SiMe}_{3}{ }^{3}$ and $\mathrm{AlH}_{3} \cdot \mathrm{NMe}_{3}{ }^{4}$ were prepared according to the literature procedures.
[$\left.\mathrm{LiAlH}_{3} \mathbf{A r}^{\mathbf{i P r}}{ }_{4} \mathbf{- 4}-\mathrm{SiMe}_{3}\right]$. A solution of $\mathrm{LiAr}^{\mathrm{iPr}}{ }_{4}-4-\mathrm{SiMe}_{3}(7.15 \mathrm{~g}, 15.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(\mathrm{ca} 50 \mathrm{~mL}$. was added dropwise onto a solution of $\mathrm{AlH}_{3} \cdot \mathrm{NMe}_{3}(1.34 \mathrm{~g}, 15.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(\mathrm{ca} .10 \mathrm{~mL})$ cooled to $0^{\circ} \mathrm{C}$ in an ice/water bath. The mixture was warmed to room temperature and stirred for 18 h . The volatile components removed under reduced pressure and the residue dried at $40^{\circ} \mathrm{C}$ for 2 h . The solid was dissolved in ca. 90 mL of hot (ca. $60^{\circ} \mathrm{C}$) hexanes and filtered. Removal of the solvent afforded $\left[\mathrm{LiAlH}_{3} \mathrm{Ar}^{\left.i \mathrm{Pr}_{4}-4-\mathrm{SiMe}_{3}\right]}\right.$ as a white solid. Yield: $6.18 \mathrm{~g}(81 \%)$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.38$ (s, 2H m-Ar \boldsymbol{H}), 7.27 (t, $\left.{ }^{3} J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Dipp} \mathrm{p}-\mathrm{Ar} \boldsymbol{H}\right)$, 7.18 (d, ${ }^{3} J=7.7 \mathrm{~Hz}, 4 \mathrm{H}$, Dipp m-ArH), 3.04 (sept, $\left.{ }^{3} J=7.2 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.25$ (br, 3H, $\mathrm{AlH}), 1.29\left(\mathrm{~d},{ }^{3} J=7.0 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.12\left(\mathrm{~d},{ }^{3} J=6.8 \mathrm{~Hz}, 12 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.29(\mathrm{~s}$, $\left.9 \mathrm{H},-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 146.57,146.29,143.22,139.77,133.50,129.01$, 123.37, 31.43, 25.04, 23.59, -1.37.
$\mathbf{A l (E t} \mathbf{2} \mathbf{O}) \mathbf{I}_{\mathbf{2}} \mathbf{A r}^{\mathbf{i P r}}{ }_{4} \mathbf{4}-\mathbf{S i M e}_{\mathbf{3}} \mathbf{(1)}$. A solution of $\left[\mathrm{LiAlH}_{3} \mathrm{Ar}^{\mathrm{iPr}}{ }_{4}-4-\mathrm{SiMe}_{3}\right](3.67 \mathrm{~g}, 7.25 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ (ca. 40 mL) was cooled to $0^{\circ} \mathrm{C}$ in an ice/water bath and $\mathrm{CH}_{3} \mathrm{I}(2.3 \mathrm{~mL}, 36 \mathrm{mmol}, 5 \mathrm{eq})$ was added via syringe. The mixture was allowed to slowly come to room temperature overnight with stirring (ca. 12 h). The volatile components were removed under reduced pressure and the white residue extracted with hexanes (ca. 60 mL). The colorless solution was filtered, concentrated to ca. 15 mL , and stored at ca. $-18^{\circ} \mathrm{C}$ overnight to give colorless blocks of $\mathbf{1}$. Yield: $3.87 \mathrm{~g}(65 \%)$. m.p. $=185-188^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.40$ (s, 2H, m-ArH), 7.31 (t, ${ }^{3} J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$, Dipp p$\mathrm{Ar} \boldsymbol{H}), 7.21\left(\mathrm{~d},{ }^{3} J=7.7 \mathrm{~Hz}, 4 \mathrm{H}\right.$, Dipp m-ArH$), 3.57\left(\mathrm{q},{ }^{3} J=7.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 3.15$ (sept, $\left.{ }^{3} J=6.8 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.43\left(\mathrm{~d},{ }^{3} J=6.8 \mathrm{~Hz} 12 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.06\left(\mathrm{~d},{ }^{3} J=6.7 \mathrm{~Hz}\right.$, $\left.12 \mathrm{H}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.73\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 0.21\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 147.68,147.51,143.03,138.59,136.15,128.8$, 123.47, 71.65, 31.09, 26.35, 23.51, 13.95, -1.45.
$\left\{\mathbf{A l (I) A r}{ }^{\mathbf{i P r}} \mathbf{4}_{\mathbf{4}} \mathbf{4 - S i M e} \mathbf{3}_{\mathbf{2}}\right.$. (2) Ether (ca. 30 mL) was added to a mixture of solid $\mathbf{1}(1.65 \mathrm{~g}, 2.00$ $\mathrm{mmol})$ and $\mathrm{KC}_{8}(0.350 \mathrm{~g} 2.60 \mathrm{mmol})$ at ambient temperature. The mixture was stirred for ca. 18 h during which time the color changed to yellow. The volatile components were removed under reduced pressure and the yellow residue dissolved in toluene (ca. 30 mL). The solution was filtered, concentrated to ca. 8 mL , and stored at ca. $-18^{\circ} \mathrm{C}$ for 2 days to give pale yellow blocks of 2. Yield: $0.536 \mathrm{~g}(43 \%)$.
m.p. $=198-201^{\circ} \mathrm{C}(\mathrm{dec})$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.37$ (s, overlapping with triplet, $4 \mathrm{H}, \mathrm{m}-\mathrm{Ar} \boldsymbol{H}$), 7.37 (t, overlapping with singlet, ${ }^{3} J=7.8 \mathrm{~Hz}, 4 \mathrm{H}$, Dipp, p-ArH), $7.18\left(\mathrm{~d},{ }^{3} J=7.8 \mathrm{~Hz}, 8 \mathrm{H}\right.$, Dipp m-Ar $\left.\boldsymbol{H}\right)$, 3.03 (sept, $\left.{ }^{3} J=6.7 \mathrm{~Hz} .8 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.16\left(\mathrm{~d}, 24 \mathrm{H},{ }^{3} J=6.8 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.04\left(\mathrm{~d},{ }^{3} J=6.7\right.$ $\left.\mathrm{Hz}, 24 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.19\left(\mathrm{~s}, 18 \mathrm{H},-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right): ~ \delta 147.83,146.01,140.29,139.70,134.83,129.99$, 124.16, 30.57, 26.44, 25.18, -1.49.

UV-Visible (hexanes): $\lambda_{\max } 386 \mathrm{~nm}\left(\varepsilon=2300 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$.
$\mathbf{N a}_{\mathbf{2}}\left(\mathbf{A l A r}^{\mathbf{i P r}}{ }^{\mathbf{4}} \mathbf{- 4} \mathbf{- S i M e} \mathbf{3}_{\mathbf{2}} \mathbf{2}\right.$ (3). Method A: A $100-\mathrm{mL}$ Schlenk flask containing $\mathrm{Na}(0.201 \mathrm{~g}, 10.0$ mmol, 5 eq) metal was heated under vacuum to mirror the interior wall of the flask with Na . The flask was then charged with a magnetic stirbar and $1(1.65 \mathrm{~g}, 2.00 \mathrm{mmol}) . \mathrm{Et}_{2} \mathrm{O}(\mathrm{ca} .70 \mathrm{~mL})$ was added and the mixture was vigorously stirred for 3 days, during which time the mixture turned dark green-brown to black. The volatile components were removed under reduced pressure and the residue washed with hexanes (ca. 50 mL) to remove a dark red colored fraction containing mostly $4-\mathrm{SiMe}_{3}-\mathrm{Ar}^{\mathrm{iPr} 4} \mathrm{H}(62 \%$ with respect to $\mathbf{1})$. The residue was then extracted with toluene (ca. 40 mL) and the inky dark green solution filtered. Concentration to ca. 15 mL and storage at ca. $30^{\circ} \mathrm{C}$ overnight gave dark green/black blocks of 3. Yield: $0.354 \mathrm{~g}(34 \%)$.

Method B: $\mathrm{Et}_{2} \mathrm{O}(\mathrm{ca} .70 \mathrm{~mL})$ was added to mixture of $1(1.65 \mathrm{~g}, 2.00 \mathrm{mmol})$ and $5 \% \mathrm{w} / \mathrm{w}$ $\mathrm{Na} / \mathrm{NaCl}(4.60 \mathrm{~g}, 5 \mathrm{eq})$ and stirred for 3 days. The volatile components were removed under reduced pressure and the residue washed with hexanes (ca. 50 mL) then extracted with toluene (ca. 40 mL). The dark green toluene filtrate was concentrated to ca. 20 mL and stored at ca. $-30^{\circ} \mathrm{C}$ overnight to give dark green blocks of 3. Yield: $0.302 \mathrm{~g}(29 \%)$
m.p. $=204-208^{\circ} \mathrm{C}(\mathrm{dec})$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K} 0$): $\delta 7.20(\mathrm{~s}, 4 \mathrm{H}, \mathrm{m}-\mathrm{Ar} \boldsymbol{H}), 7.16$ (t, overlapping with solvent signal, 4H, Dipp, p-ArH), 6.97 (d, ${ }^{3} J=7.6 \mathrm{~Hz}, 8 \mathrm{H}$, Dipp m-ArH), 2.95 (sept, ${ }^{3} J=6.9 \mathrm{~Hz}, 8 \mathrm{H},-$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.46\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, 24 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) 1.03\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz} 24 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.28$ (s, $\left.18 \mathrm{H},-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 165.10,149.70,148.38,133.62,130.98,126.08$, 122.06, 31.03, 25.27, 24.59, -0.95.

UV-Visible (toluene): $\lambda_{\max } 344 \mathrm{~nm}\left(\varepsilon=9400 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$), 470 nm (shoulder, $\varepsilon=4800 \mathrm{~L} \mathrm{~mol}^{-1}$ $\left.\mathrm{cm}^{-1}\right), 612 \mathrm{~nm}\left(\varepsilon=4400 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right), 660 \mathrm{~nm}$ (shoulder, $\varepsilon=4100 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$).
 $70.6 \mu \mathrm{~mol})$ and $\mathrm{Al}\left(\mathrm{Et}_{2} \mathrm{O}\right) \mathrm{I}_{2} \mathrm{Ar}^{\mathrm{iPr}} 4-4-\mathrm{SiMe}_{3}(58.2 \mathrm{mg}, 70.6 \mu \mathrm{~mol})$ was dissolved in ca. 5 mL benzene. The mixture was stirred for ca. 15 min during which time the color changed from dark green to red with formation of a white precipitate. The mixture was filtered via cannula and concentrated under reduced pressure to ca. 1 mL . Storage of the solution at ca. $8^{\circ} \mathrm{C}$ yielded red blocks of 4. Yield: 0.045 g (42\%)
m.p. $=110-115^{\circ} \mathrm{C}(\mathrm{dec})$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.27\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz}, 4 \mathrm{H}, \operatorname{Dipp} \mathrm{p}-\mathrm{Ar} \boldsymbol{H}\right), 7.14\left(\mathrm{~d},{ }^{3} J=7.7 \mathrm{~Hz}\right.$, 8H, Dipp m-Ar \boldsymbol{H}), 7.11 (s, 4H, m-Ar \boldsymbol{H}), 3.04-2.91 (mult, br, 8H, - $\boldsymbol{C H}\left(\mathrm{CH}_{3}\right)_{2}$), 1.24-0.85 (mult, br, $\left.48 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.13\left(\mathrm{~s}, 18 \mathrm{H},-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$. Complexed $\mathrm{C}_{6} \mathrm{H}_{6}$ signals not observed.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 146.15,142.30,138.90,133.79,129.19,123.80$, 30.91 (br), 25.54 (br), 23.25, -1.39.

UV-Visible (hexanes): $\lambda_{\text {max }} 323 \mathrm{~nm}\left(\varepsilon=2200 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$), 460 (shoulder, $\varepsilon=230 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}$).

4-SiMe ${ }_{3}-\mathrm{Ar}^{\mathrm{iPr} 4} \mathrm{H}$ NMR data:

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$): $\delta 7.49$ (d, $\left.{ }^{4} J=1.7 \mathrm{~Hz}, \mathrm{~m}-\mathrm{Ar} \boldsymbol{H}, 2 \mathrm{H}\right), 7.33\left(\mathrm{t},{ }^{3} J=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right.$, Dipp p-Ar \boldsymbol{H}), $7.21\left(\mathrm{~d},{ }^{3} J=7.6 \mathrm{~Hz}, 4 \mathrm{H}\right.$, Dipp, m-Ar \boldsymbol{H}), $7.11\left(\mathrm{t},{ }^{4} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{i}-\mathrm{Ar} \boldsymbol{H}\right), 2.94$ (sept, $\left.{ }^{3} J=6.9 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.16\left(\right.$ mult, $\left.24 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.21\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right) \delta 146.97,140.39,140.18,140.07,133.05,131.85$, 122.97, 30.89, 24.44, 24.41, -1.10.

NMR Scale Comproportionation Reactions:
$\mathbf{1 + 3}$ to 2: Solid $\mathbf{1}(5.0 \mathrm{mg}, 6.1 \mu \mathrm{~mol})$ was added to a solution of $\mathbf{3}(3.0 \mathrm{mg}, 3.0 \mu \mathrm{~mol})$ in ca. 0.5 $\mathrm{mL} \mathrm{C}_{6} \mathrm{D}_{6}$ resulting in a color change from dark green to yellow.
$\mathbf{1}+\mathbf{3}$ to $\mathbf{4}$ A mixture of solid $\mathbf{1}(2.1 \mathrm{mg}, 2.5 \mu \mathrm{~mol})$ and $\mathbf{3}(2.6 \mathrm{mg}, 2.6 \mu \mathrm{~mol})$ were dissolved in ca. $0.5 \mathrm{~mL} \mathrm{C}_{6} \mathrm{D}_{6}$. The resulting spectrum showed $\mathbf{4}$, excess $\mathbf{3}$, and $\mathrm{Et}_{2} \mathrm{O}$.
$\mathbf{2}+\mathbf{3}$ to 4 A mixture of solid $\mathbf{2}(3.1 \mathrm{mg}, 2.5 \mu \mathrm{~mol})$ and $\mathbf{3}(2.6 \mathrm{mg}, 2.6 \mu \mathrm{~mol})$ were dissolved in ca. $0.5 \mathrm{~mL} \mathrm{C}_{6} \mathrm{D}_{6}$. The resulting spectrum showed $\mathbf{4}$ and excess 3 .

Figure S1．${ }^{1} \mathrm{H}$ NMR（ $600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$ ）spectrum of $\left[\mathrm{LiAlH}_{3} \mathrm{Ar}^{\mathrm{iPr}} \mathrm{r}_{4}-4-\mathrm{SiMe}_{3}\right]$ ．

ion in in in in $\stackrel{m}{i}$

Figure S2. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$) spectrum of $\left[\mathrm{LiAlH}_{3} \mathrm{Ar}^{\text {iPr}}{ }^{\mathrm{i}}-4-\mathrm{SiMe}_{3}\right]$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$) spectrum of $\mathrm{Al}\left(\mathrm{Et}_{2} \mathrm{O}\right) \mathrm{I}_{2}\left(4-\mathrm{SiMe}_{3}-\mathrm{Ar}^{\mathrm{iPr} 4}\right)(\mathbf{1})$.

$$
\begin{aligned}
& \stackrel{\text { n }}{\substack{\text { in } \\
\text { i }}} \\
& \stackrel{\stackrel{0}{m}}{\dot{m}} \stackrel{\sim}{\sim}
\end{aligned}
$$

Figure S4. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right)$ spectrum $\mathrm{Al}^{\left(E t_{2} \mathrm{O}\right)} \mathrm{I}_{2}\left(4-\mathrm{SiMe}_{3}-\mathrm{Ar}^{\mathrm{iPr} 4}\right)(\mathbf{1})$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$) spectrum of $\left\{\mathrm{Al}(\mathrm{I}) \mathrm{Ar}^{\mathrm{iPr} 4}-4-\mathrm{SiMe}_{3}\right\}_{2}(\mathbf{2})$.

160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

Figure S6. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$) spectrum of $\left\{\mathrm{Al}(\mathrm{I}) \mathrm{Ar}^{\mathrm{iPr} 4}-4-\mathrm{SiMe}_{3}\right\}_{2}(\mathbf{2})$.
소솟구궁 ini

|
人̀

Figure S7. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right)$ spectrum of $\mathrm{Na}_{2}\left(\mathrm{AlAr}^{\mathrm{iPr} 4}-4-\mathrm{SiMe}_{3}\right)_{2}(\mathbf{3})$ The signal at 7.18 ppm corresponds to 25% of the $1: 2: 1$ triplet overlapping with the benzene solvent signal.

Figure S8. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$) spectrum of $\mathrm{Na}_{2}\left(\mathrm{AlAr}^{\text {iPr } 4}-4-\mathrm{SiMe}_{3}\right)_{2}(\mathbf{3})$.

Figure S9. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right)$ spectrum of the dialuminene-benzene cycloaddition product 4.

Figure S10. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$) of $\mathbf{4}$ generated by the reaction between $\mathbf{2}$ and $\mathbf{3}$. Signals marked with * correspond to excess $\mathbf{3}$.
~N~M~N
~N~M~N
iN~
iN~
$\stackrel{+}{\underset{\sim}{i}}$
$\stackrel{\text { N }}{\substack{0 \\ i \\ i \\ i}}$

										$\begin{aligned} & T \\ & \stackrel{T}{m} \\ & \underset{\sim}{n} \end{aligned}$							
8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

Figure S11 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}$) spectrum of $4-\mathrm{SiMe}_{3} \mathrm{Ar}^{\mathrm{iPr} 4} \mathrm{H}$.

Figure S12. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right)$ spectrum of $4-\mathrm{SiMe}_{3} \mathrm{Ar}^{\mathrm{iPr} 4} \mathrm{H}$.

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of the comproportionation reaction between excess $\mathbf{1}$ (blue $\mathbf{\Delta}$) and $\mathbf{3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ to give $\mathbf{2}$ (magenta \bullet) and $\mathbf{4}$ (orange \downarrow).

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of the comproportionation reaction $\mathbf{1}$ and excess $\mathbf{3}$ (green \bullet) in $\mathrm{C}_{6} \mathrm{D}_{6}$ to give $\mathbf{4}$ (orange \downarrow).

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of the comproportionation reaction $\mathbf{2}$ and excess $\mathbf{3}$ (green \bullet) in $\mathrm{C}_{6} \mathrm{D}_{6}$ to give $\mathbf{4}$ (orange \downarrow).

UV-Visible Spectra

Figure S16. UV-Visible spectrum of $\mathbf{2}$ in hexanes.

Figure S17. UV-Visible spectrum of $\mathbf{3}$ in toluene

Figure S18. UV-Visible spectrum of $\mathbf{4}$ in hexanes.

X-Ray Crystallography

Crystals of 1-4 were removed from a Schlenk flask under a stream of argon and immediately covered with hydrocarbon oil. A suitable crystal was selected, attached to a MiTeGen microloop, and mounted on the goniometer of the diffractometer under a cold stream of N_{2}. Data were collected at 90 K on a Bruker Duo APEXII CCD diffractometer $(\mathbf{1 , 2 , 3})$ or 100 K on a Bruker D8 VENTURE diffractometer (4) with Mo K α radiation $(\lambda=0.71073 \AA)(\mathbf{1 , 3} \mathbf{3})$ or $\mathrm{Cu} \mathrm{K} \alpha$ radiation $\lambda=1.54178$ (2). Data were integrated with SAINT ${ }^{5}$ and an absorption correction (multi-scan) was applied using SADABS ${ }^{6}$. The structures were solved using SHELXTL program package ${ }^{7}$ by intrinsic phasing methods using SHELXT ${ }^{8}$ and were refined by full matrix leastsquares procedures using SHELXL. ${ }^{9}$ All non-H atoms were refined anisotropically.

Table S1. X-ray crystallographic data for 1.

Empirical formula	$\mathrm{C}_{37} \mathrm{H}_{55} \mathrm{OAlSiI}_{2}$
Formula weight	824.68
Temperature/K	90.15
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a/ \AA	10.998(2)
b/Å	13.500(3)
c / \AA	26.336(5)
$\alpha{ }^{\circ}$	90
$\beta /{ }^{\circ}$	97.410(3)
γ°	90
Volume/ \AA^{3}	3877.6(13)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.413
μ / mm^{-1}	1.701
F(000)	1672.0
Crystal size/ mm^{3}	$0.163 \times 0.111 \times 0.076$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ} 3.118$ to 54.932	
Index ranges	$-14 \leq \mathrm{h} \leq 14,-17 \leq \mathrm{k} \leq 17,-34 \leq 1 \leq 34$
Reflections collected	34107
Independent reflections	$8898\left[\mathrm{R}_{\text {int }}=0.0287, \mathrm{R}_{\text {sigma }}=0.0221\right]$
Data/restraints/parameters	8898/0/392
Goodness-of-fit on F^{2}	1.058
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0238, \mathrm{wR}_{2}=0.0566$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0289, \mathrm{wR}_{2}=0.0596$

Table S2. X-ray crystallographic data for 2.

Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a / \AA
b/ \AA
c/ \AA
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
γ°
Volume/ \AA^{3}
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [I>=2 σ (I)]
Final R indexes [all data]
$\mathrm{C}_{40} \mathrm{H}_{53} \mathrm{AlISi}$
715.79
90.15
monoclinic
P2 ${ }_{1} / \mathrm{n}$
17.4939(8)
12.7921(7)
18.3769(9)

90
109.048(2)

90
3887.3(3)

4
1.223
7.154
1492.0
$0.209 \times 0.155 \times 0.121$
$\mathrm{CuK} \alpha(\lambda=1.54178)$
6.058 to 144.582
$-17 \leq \mathrm{h} \leq 21,-15 \leq \mathrm{k} \leq 15,-22 \leq 1 \leq 20$
15859
$7423\left[\mathrm{R}_{\text {int }}=0.0265, \mathrm{R}_{\text {sigma }}=0.0341\right]$
7423/20/464
1.012
$\mathrm{R}_{1}=0.0554, \mathrm{wR}_{2}=0.1441$
$\mathrm{R}_{1}=0.0583, \mathrm{wR}_{2}=0.1464$

Table S3. X-ray crystallographic data for 3.

Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/ \AA
b/ \AA
c/ \AA
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
γ°
Volume/ \AA^{3}
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [I>=2 σ (I)]
Final R indexes [all data]
$\mathrm{C}_{43.5} \mathrm{H}_{57} \mathrm{AlNaSi}$
657.95
90.15
triclinic
P-1
11.4744(10)
17.7494(15)
21.1607(18)
98.4810(10)
90.4220(10)
106.9270(10)
4072.1(6)

4
1.073
0.117
1424.0
$0.629 \times 0.326 \times 0.282$
$\mathrm{MoK} \alpha(\lambda=0.71073)$
3.342 to 54.982
$-14 \leq \mathrm{h} \leq 14,-23 \leq \mathrm{k} \leq 23,-27 \leq 1 \leq 27$
37051
$18661\left[\mathrm{R}_{\text {int }}=0.0203, \mathrm{R}_{\text {sigma }}=0.0303\right]$
18661/34/982
1.020
$\mathrm{R}_{1}=0.0496, \mathrm{wR}_{2}=0.1363$
$\mathrm{R}_{1}=0.0632, \mathrm{wR}_{2}=0.1480$

Table S4. X-ray crystallographic data for 4.

Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/ \AA
b/ \AA
c/ \AA
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
γ°
Volume/ \AA^{3}
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [I>=2 σ (I)]
Final R indexes [all data]
$\mathrm{C}_{81} \mathrm{H}_{105} \mathrm{Al}_{2} \mathrm{Si}_{2}$
1188.78
100.0
monoclinic
P2 ${ }_{1} / n$
11.3894(11)
19.669(2)
32.660(6)

90
91.426(6)

90
7314.1(16)

4
1.080
0.113
2580.0
$0.244 \times 0.196 \times 0.18$
$\mathrm{MoK} \alpha(\lambda=0.71073)$
2.418 to 52.844
$-12 \leq \mathrm{h} \leq 14,-24 \leq \mathrm{k} \leq 24,-40 \leq 1 \leq 39$
43076
$14960\left[\mathrm{R}_{\text {int }}=0.0330, \mathrm{R}_{\text {sigma }}=0.0307\right]$
14960/0/789
1.044
$\mathrm{R}_{1}=0.0443, \mathrm{wR}_{2}=0.1137$
$\mathrm{R}_{1}=0.0471, \mathrm{wR}_{2}=0.1157$

Photos of Compounds

Figure S19. An ice-cold solution of $\mathbf{1}$ and $\mathbf{3}$ in $\mathrm{Et}_{2} \mathrm{O}$ turns dark purple before rapidly fading to colorless.

Figure S20. A pale yellow crystal of $\mathbf{2}$ mounted on a goniometer.

Figure S21. A dark green crystal of $\mathbf{3}$ mounted on a goniometer.

Figure S22. A red crystal of $\mathbf{4}$ mounted on a goniometer.

References

1. A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, and F. J. Timmers, Organometallics, 1996, 15, 1518-1520.
2. G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, and K. I. Goldberg, Organometallics, 2010, 29, 2176-2179.
3. E. Rivard, R. C. Fischer, R. Wolf, Y. Peng, W. A. Merrill, N. D. Schley, Z. Zhu, L. Pu, J. C. Fettinger, S. J. Teat, I Nowik, R. H. Herber, N. Takagi, S. Nagase, and P. P. Power, J. Am. Chem. Soc. 2007, 129, 16197-16208.
4. J. K. Ruff and M. F. Hawthorne, J. Am. Chem. Soc. 1960, 82, 2141-2144.
5. Bruker (2016) SAINT (Version 8.37a). Bruker AXS Inc., Madison, Wisconsin, USA
6. G. M. Sheldrick, (2015) SADABS. University of Göttingen, Germany.
7. G. M. Sheldrick, (2002). SHELXTL. Version 6.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
8. G. M. Sheldrick, (2014). SHELXT. University of Göttingen, Germany.
9. G. M. Sheldrick, (2015). SHELXL University of Göttingen, Germany.
