Supporting Information

Aqueous C-H aminomethylation of phenols by iodine catalysis

Zhi-Hua Zhou,^a Ben Wang,^a Yao Ding,^b Teck-Peng Loh^{*b,c,d} and Jie-Sheng Tian^{*a}

^a School of Chemistry and Chemical Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China. E-mail: tjs@nwpu.edu.cn

^b School of Chemistry and Molecular Engineering, Nanjing Tech University (NanjingTech), Nanjing 211816, China.

^c College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhenzhou, 450001, China.

^d School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University, Singapore 637371, Singapore. Email: teckpeng@ntu.edu.sg

Table of contents

1.	General Information	S2
2.	Preparation of Starting Materials	S3
3.	General Procedure for the ortho-Aminomethylation of Phenols	S7
4.	Characterization Data of Products	S8
5.	Procedure for Gram Scale Experiment	S23
6.	Mechanistic Study	S24
7.	References	S28
8.	NMR Spectra of Products	S29

1. General Information

All reactions were carried out in a 10 mL Schlenk tube without exclusion of air. Unless specified, all reagents and solvents were commercially available and were used without further purification. Phenols, iodine and sodium percarbonate (Na₂CO₃·1.5H₂O₂) were purchased from J&K, TCI and Alfa-Aesar. Potassium trifluoroborates were synthesized according to the reported method given below. Column chromatography was carried out using Merck silica gel 60 with freshly distilled solvents. NMR spectra were recorded on Bruker (500 MHz) or Joel (400 MHz) instruments (CDCl₃, DMSO-*d*₆ or acetone-*d*₆ as solvents) and chemical shifts (δ) were provided in ppm relative to the deuterated solvent peak or Me₄Si. High-resolution mass spectra (HRMS) were detected by a Waters Q-Tof Permier Spectrometer.

2. Preparation of Starting Materials

2.1 Synthesis of potassium trifluoroborate^[1,2]

 $KF_{3}B \xrightarrow{R^{2}} HN^{R^{1}} \xrightarrow{R^{2}} KF_{3}B \xrightarrow{R^{2}} N^{R^{1}} \xrightarrow{R^{2}} BuOH, THF \qquad R^{2} \xrightarrow{R^{2}} B0 \ ^{\circ}C, 2 \ h \qquad 2a-d$

For the synthesis of potassium *N*,*N*-dialkylmethyltrifluoroborate, potassium (bromomethyl)trifluoroborate (10 mmol, 1.56 g) was added to a 25 mL reaction tube. Then, the tube was sealed and degassed with argon. After that, THF (5.5 mL), *tert*-butanol (^tBuOH) (2.5 mL) and amine (20 mmol) were sequentially added and the mixture was heated at 80 °C for 2 h. When the reaction finished, the resulting solution was evaporated under reduced pressure and the obtained solids were dissolved in hot acetone, followed by the filtration of insoluble KBr. Then, the filtrate was evaporated using a rotary evaporator, the residue was dissolved with a small amount of hot acetone, and the white solid as the target compound was precipitated after the addition of ether.

Potassium (N-benzyl-N-methyl)methyltrifluoroborate (2a)^[1]

¹H NMR (500 MHz, acetone- d_6) δ 7.61 – 7.58 (m, 2H), 7.47 (dd, J = 4.1, 2.4 Hz, 3H), 4.49 (d, J = 13.0 Hz, 1H), 4.33 (d, J = 13.0 Hz, 1H), 2.91 (s, 3H), 2.25 (s, 1H), 2.09 (s, 1H) ppm; ¹³C NMR (126 MHz, acetone- d_6) δ 131.83, 131.68, 130.22, 129.61, 62.20, 43.16 ppm; ¹⁹F NMR (471 MHz, acetone- d_6) δ -141.84 ppm.

Potassium (N-benzyl-N-ethyl)methyltrifluoroborate (2b)

¹H NMR (400 MHz, acetone-*d*₆) δ 7.63-7.59 (m, 2H), 7.49-7.43 (m, 3H), 4.42 (s, 2H), 3.27

(q, J = 7.3 Hz, 2H), 2.12 (d, J = 3.9 Hz, 2H), 1.37 (t, J = 7.3 Hz, 3H) ppm;

¹³C NMR (100 MHz, acetone-*d*₆) δ 132.04, 131.90, 130.22, 129.69, 58.85, 58.83, 50.52,
9.28 ppm;

¹⁹F NMR (376 MHz, acetone-*d*₆) *δ* -141.02 ppm.

Potassium (*N*-benzyl-*N*-isopropyl)methyltrifluoroborate (2c)

¹H NMR (500 MHz, acetone-*d*₆) δ 7.58 (dd, *J* = 6.4, 3.1 Hz, 2H), 7.48 – 7.43 (m, 3H), 4.54 – 4.45 (m, 1H), 4.31 (dd, *J* = 13.4, 6.7 Hz, 1H), 3.80 – 3.68 (m, 1H), 2.17 (s, 1H), 2.01 (s, 1H), 1.42 (dd, *J* = 6.6, 1.7 Hz, 3H), 1.36 (d, *J* = 6.6 Hz, 3H) ppm; ¹³C NMR (126 MHz, acetone-*d*₆) δ 132.12, 131.51, 130.05, 129.63, 56.30, 55.20, 17.33, 15.74 ppm; ¹⁹F NMR (471 MHz, acetone-*d*₆) δ -141.46 ppm.

Potassium ((S)-N-methyl-N-(1-phenylethyl))methyltrifluoroborate (2d)

¹H NMR (400 MHz, acetone- d_6) δ 7.61 (t, J = 2.3 Hz, 1H), 7.49 – 7.43 (m, 3H), 4.64 (t, J = 7.0 Hz, 1H), 2.81 (s, 3H), 2.08 (d, J = 14.8 Hz, 1H), 1.98 (s, 1H), 1.75 (s, 2H) ppm; ¹³C NMR (100 MHz, acetone- d_6) δ 136.45, 130.36, 130.18, 129.79, 66.71, 40.57, 16.02 ppm;

¹⁹F NMR (376 MHz, acetone- d_6) δ -142.28 ppm.

$$KF_{3}B \xrightarrow{H} Br + \underbrace{\bigvee_{0}^{H}}_{0} \underbrace{80 \ ^{\circ}C, 30 \ min}_{2e} KF_{3}B \xrightarrow{N}_{0} O$$

For the synthesis of trifluoroborate **2e**, potassium (bromomethyl)trifluoroborate (10 mmol, 2.0 g) was added to morpholine (8 mL) in a 25 mL round-bottom flask. Then, the reaction mixture was heated at 80 °C for 30 min. When finished, the resulting solution was evaporated under reduced pressure and the obtained solids were dissolved in a solution of KHCO₃ (10 mmol, 1.4 g) in acetone (100 mL), and stirred at room temperature for 30 min. Then, the insoluble KBr was filtered, and the filtrate was evaporated using a rotary evaporator, the residue was dissolved with a small amount of hot acetone, and the white solid as the target compound was precipitated after the addition of ether.

Potassium 1-morpholinyl-N-methyltrifluoroborate (2e)

¹H NMR (400 MHz, acetone-*d*₆) δ 3.97 (s, 4H), 3.57 (d, *J* = 4.9 Hz, 2H), 3.14 (s, 2H), 2.18 (s, 2H) ppm; ¹³C NMR (100 MHz, acetone-*d*₆) δ 207.56, 65.72, 56.28 ppm; ¹⁹F NMR (376 MHz, acetone-*d*₆) δ -141.41 ppm.

2.2 Synthesis of methyl (*tert*-butoxycarbonyl)-*L*-tyrosyl-*L*-valinate ^[3]

To a 50 mL reaction bottle, (*tert*-butoxycarbonyl)-*L*-tyrosine (5 mmol, 1.41 g), *L*-valine methyl ester hydrochloride (5 mmol, 0.84 g), HATU (10 mmol, 3.80 g),

N,*N*-diisopropylethylamine (DIPEA) (10 mmol, 1.29 g) and DCM (10 mL) were sequentially added and the mixture was stirred at room temperature for 20 h. When the reaction finished, the resulting mixture was filtered and the filtrate was concentrated in vacuum. The desired compound was purified by column chromatography.

White solid, m.p.: 47-48 °C;

¹H NMR (500 MHz, CDCl₃) δ 7.01 (d, *J* = 8.1 Hz, 2H), 6.89 (s, 1H), 6.72 (d, *J* = 8.2 Hz, 2H), 6.50 (d, *J* = 8.6 Hz, 1H), 5.17 (s, 1H), 4.50 – 4.39 (m, 1H), 4.29 (s, 1H), 3.68 (s, 3H), 2.96 (d, *J* = 5.6 Hz, 2H), 2.14 – 2.05 (m, 1H), 1.41 (s, 9H), 0.86 (dd, *J* = 12.9, 6.8 Hz, 6H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 171.77, 171.63, 155.63, 155.25, 130.32, 127.73, 115.59, 80.42, 57.34, 56.08, 52.14, 37.24, 31.26, 28.21, 18.77, 17.72 ppm.

HRMS (ESI, m/z): calcd for $C_{20}H_{31}N_2O_6^+$ [M+H]⁺ 395.2182, found: 395.2177.

3. General Procedure for the *ortho*-Aminomethylation of Phenols

To a 10 mL Schlenk tube with a stirring bar, $Na_2CO_3 \cdot 1.5H_2O_2$ (0.6 mmol, 94.2 mg), phenols (0.2 mmol), potassium *N*,*N*-dialkylmethyltrifluoroborate (0.3 mmol), H₂O (0.6 mL), toluene (0.1 mL) and I₂ (0.04 mmol, 10.2 mg) were subsequently added. Then, the Schlenk tube was sealed and heated at 100 °C for the desired time. When finished, the resulting mixture was extracted with ethyl acetate. The organic solution was evaporated under reduced pressure after drying over anhydrous Na_2SO_4 , and the residue was further purified by flash column chromatography on silica gel to afford the desired product.

4. Characterization Data of Products

2-((Benzyl(methyl)amino)methyl)phenol (3a)^[4]

Yellow oil (36.3 mg, 80% yield);

¹H NMR (500 MHz, CDCl₃) δ 10.62 (s, 1H), 7.46 (dd, *J* = 8.5, 2.2 Hz, 0.08H) (C4), 7.40 – 7.34 (m, 2H), 7.35 – 7.28 (m, 3H), 7.20 (td, *J* = 8.0, 1.6 Hz, 1H), 7.04 – 6.99 (m, 1H), 6.88 (dd, *J* = 8.1, 0.7 Hz, 0.87H) (C2), 6.81 (td, *J* = 7.4, 1.1 Hz, 1H), 6.65 (d, *J* = 8.5 Hz, 0.07H) (C4), 3.77 (s, 1.83H) (C2), 3.70 (s, 0.13H) (C4), 3.62 (s, 1.74H) (C2), 3.60 (s, 0.15H) (C4), 2.26 (s, 2.73H) (C2), 2.25 (s, 0.22H) (C4) ppm;

¹³C NMR (126 MHz, CDCl₃) δ 157.79, 136.80, 129.31, 128.75, 128.55, 128.50, 127.63, 121.83, 119.07, 116.04, 61.38, 60.84, 41.22 ppm;

HRMS (ESI, m/z): calcd for C₁₅H₁₈NO⁺ [M+H]⁺ 228.1377, found: 228.1374.

2-((Benzyl(methyl)amino)methyl)-6-(tert-butyl)phenol (3b)

Yellow oil (29.6 mg, 52% yield);

¹H NMR (500 MHz, CDCl₃) δ 11.36 (s, 1H), 7.48 (d, *J* = 2.2 Hz, 0.11H) (C4), 7.39 – 7.35 (m, 2H), 7.34 – 7.28 (m, 3H), 7.25 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.21 (d, *J* = 2.2 Hz, 0.1H) (C4), 6.93 – 6.90 (m, 1H), 6.77 (t, *J* = 7.6 Hz, 1H), [3.79 (s, 1.80H) (C2), 3.71 (s, 0.23H) (C4)], 3.57 (s, 2H), [2.25 (s, 2.63H) (C2), 2.24 (s, 0.37H) (C4)], [1.49 (s, 8.16H) (C2), 1.44 (s, 0.97H) (C4)] ppm;

¹³C NMR (100 MHz, CDCl₃) δ 156.79, 137.03, 136.55, 129.41, 128.45, 127.49, 126.76, 125.96, 122.19, 118.26, 61.57, 60.71, 40.97, 34.66, 29.44 ppm;

HRMS (ESI, m/z): calcd for $C_{19}H_{26}NO^+$ [M+H]⁺ 284.2003, found: 284.2006.

2-((Benzyl(methyl)amino)methyl)-6-fluorophenol (3c)

Yellow oil (15.4 mg, 31% yield);

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.30 (m, 5H), 7.28 – 7.24 (m, 1H), 6.94 – 6.90 (m, 1H), 6.76-6.71 (t, *J* = 7.7 Hz, 1H), 3.78 (s, 2H), 3.66 (s, 2H), 2.25 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 153.60, 135.97, 129.36, 129.11, 128.66, 127.86, 126.85, 122.86, 120.70, 119.35, 61.50, 60.30, 40.94 ppm; ¹⁹F NMR (471 MHz, CDCl₃) δ -138.50 ppm;

HRMS (ESI, m/z): calcd for $C_{15}H_{17}FNO^+$ [M+H]⁺ 246.1283, found: 246.1287.

2-((Benzyl(methyl)amino)methyl)-6-bromophenol (3d)^[4]

Yellow oil (50.2 mg, 82% yield);

¹H NMR (500 MHz, CDCl₃) δ 7.42 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.39 – 7.33 (m, 2H), 7.34 – 7.27 (m, 3H), 6.94 (d, *J* = 7.4 Hz, 1H), 6.67 (t, *J* = 7.7 Hz, 1H), 3.75 (s, 2H), 3.64 (s, 2H), 2.24 (s, 3H) ppm;

¹³C NMR (126 MHz, CDCl₃) δ 154.66, 136.11, 132.08, 129.37, 128.66, 127.83, 127.50,

122.98, 119.87, 110.10, 77.25, 77.00, 76.75, 61.55, 60.57, 40.98 ppm;

HRMS (ESI, m/z): calcd for C₁₅H₁₇BrNO⁺ [M+H]⁺ 306.0483, found: 306.0486.

2-((Benzyl(methyl)amino)methyl)-6-iodophenol (3e)

Colorless oil (62.6 mg, 89% yield);

¹H NMR (400 MHz, CDCl₃) δ 7.66-7.64 (d, *J* = 7.9 Hz, 1H), 7.37-7.31 (m, 5H), 7.02-7.00 (d, *J* = 7.6 Hz, 1H), 6.59-6.55 (t, *J* = 7.6 Hz, 1H), 3.74 (s, 2H), 3.65 (s, 2H), 2.24 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 156.92, 138.12, 135.72, 129.55, 128.878, 128.67, 127.92, 121.89, 120.80, 85.97, 61.37, 60.37, 40.85 ppm;

HRMS (ESI, m/z): calcd for C₁₅H₁₇INO⁺ [M+H]⁺ 354.0344, found: 354.0344.

2-((Benzyl(methyl)amino)methyl)-6-nitrophenol (3f)

Yellow oil (11.0 mg, 20% yield);

¹H NMR (500 MHz, CDCl₃) δ 7.92 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.43 (d, *J* = 7.3 Hz, 1H), 7.39 – 7.28 (m, 5H), 6.87 (dd, *J* = 8.3, 7.5 Hz, 1H), 3.83 (s, 2H), 3.69 (s, 2H), 2.29 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 153.80, 136.34, 136.17, 134.57, 129.29, 128.64, 127.85, 126.12, 124.71, 118.34, 61.54, 58.47, 41.26 ppm;

HRMS (ESI, m/z): calcd for $C_{15}H_{17}N_2O_3^+$ [M+H]⁺ 273.1228, found: 273.1227.

2-((Benzyl(methyl)amino)methyl)-4-methylphenol (3g)^[4]

Yellow oil (32.8 mg, 68% yield);

¹H NMR (400 MHz, CDCl₃) δ 10.86 (s, 1H), 7.38 – 7.28 (m, 5H), 6.98 (d, *J* = 8.1 Hz, 1H), 6.81 (s, 1H), 6.76 (d, *J* = 8.2 Hz, 1H), 3.72 (s, 2H), 3.60 (s, 2H), 2.25 (s, 3H), 2.24 (s, 3H) ppm;

¹³C NMR (126 MHz, CDCl₃) δ 155.34, 136.86, 129.27, 129.13, 129.07, 128.50, 128.07,

127.56, 121.48, 115.76, 61.38, 60.88, 41.16, 20.41 ppm;

HRMS (ESI, m/z): calcd for C₁₆H₂₀NO⁺ [M+H]⁺ 242.1534, found: 242.1530.

2-((Benzyl(methyl)amino)methyl)-4-(tert-butyl)phenol (3h)^[5]

Yellow oil (51.0 mg, 90% yield);

¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.29 (m, 5H), 7.21 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.00 (d, *J* = 2.2 Hz, 1H), 6.80 (d, *J* = 8.4 Hz, 1H), 3.76 (s, 2H), 3.62 (s, 2H), 2.27 (s, 3H), 1.30 (s, 9H) ppm;

¹³C NMR (126 MHz, CDCl₃) δ 155.25, 141.70, 136.87, 129.30, 128.48, 127.55, 125.42,

125.27, 120.96, 115.38, 61.41, 61.22, 41.29, 33.89, 31.55 ppm;

HRMS (ESI, m/z): calcd for $C_{19}H_{26}NO^+$ [M+H]⁺ 284.2004, found: 284.2012.

2-((Benzyl(methyl)amino)methyl)-4-methoxyphenol (3i)^[4]

Yellow oil (20.6 mg, 40% yield);

¹H NMR (400 MHz, CDCl₃) δ 10.61 (s, 1H), 7.38 – 7.29 (m, 5H), 6.81 (d, *J* = 8.7 Hz, 1H), 6.76 (dd, *J* = 8.8, 2.9 Hz, 1H), 6.61 (d, *J* = 2.6 Hz, 1H), 3.75 (s, 3H), 3.72 (s, 2H), 3.60 (s, 2H), 2.25 (s, 3H) ppm;

¹³C NMR (126 MHz, CDCl₃) δ 152.48, 151.52, 136.74, 129.30, 128.54, 127.63, 122.48,

116.40, 114.49, 113.54, 61.39, 60.87, 55.71, 41.21 ppm;

HRMS (ESI, m/z): calcd for $C_{16}H_{20}NO_2^+$ [M+H]⁺ 258.1483, found: 258.1499.

3-((Benzyl(methyl)amino)methyl)-[1,1'-biphenyl]-4-ol (3j)^[5]

Yellow oil (58.3 mg, 96% yield);

¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.3 Hz, 2H), 7.41 – 7.26 (m, 9H), 7.24 – 7.22 (m, 1H), 6.93 (d, *J* = 8.4 Hz, 1H), 3.80 (s, 2H), 3.62 (s, 2H), 2.26 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 157.42, 140.89, 136.58, 132.23, 129.32, 128.63, 128.56, 127.68, 127.42, 127.22, 126.50, 126.40, 121.94, 116.44, 61.37, 60.85, 41.19 ppm; HRMS (ESI, m/z): calcd for C₂₁H₂₂NO⁺ [M+H]⁺ 304.1690, found: 304.1690.

2-((Benzyl(methyl)amino)methyl)-4-fluorophenol (3k)^[4]

White solid (34.8 mg, 71% yield); m.p.: 30-31 °C;

¹H NMR (500 MHz, CDCl₃) δ 10.90 (s, 1H), 7.37 (dd, J = 10.1, 4.3 Hz, 2H), 7.34 – 7.28 (m, 3H), 6.88 (td, J = 8.6, 3.0 Hz, 1H), 6.79 (dd, J = 8.8, 4.8 Hz, 1H), 6.74 (dd, J = 8.7, 3.0 Hz, 1H), 3.71 (s, 2H), 3.60 (s, 2H), 2.25 (s, 3H) ppm;

¹³C NMR (126 MHz, CDCl₃) δ 157.13, 154.78, 153.68, 136.53, 129.29, 128.59, 127.72, 122.70, 122.64, 116.68, 116.61, 115.01, 114.97, 114.78, 114.75, 61.37, 60.40, 41.21 ppm;

¹⁹F NMR (471 MHz, CDCl₃) δ -125.72 ppm;

HRMS (ESI, m/z): calcd for C₁₅H₁₇FNO⁺ [M+H]⁺ 246.1283, found: 246.1281.

2-((Benzyl(methyl)amino)methyl)-4-bromophenol (31)^[4]

White solid (60.0 mg, 98% yield); m.p.: 69-71 °C;

¹H NMR (500 MHz, CDCl₃) δ 11.22 (s, 1H), 7.38 – 7.32 (m, 2H), 7.28 (ddd, *J* = 10.6, 7.7, 1.9 Hz, 3H), 7.11 (d, *J* = 2.4 Hz, 1H), 6.73 (d, *J* = 8.6 Hz, 1H), 3.70 (s, 2H), 3.59 (s, 2H), 2.23 (s, 3H);

¹³C NMR (126 MHz, CDCl₃) δ 157.02, 136.40, 131.47, 131.03, 129.30, 128.63, 127.79, 123.82, 117.92, 110.72, 61.40, 60.22, 41.19 ppm;

HRMS (ESI, m/z): calcd for C₁₅H₁₇BrNO⁺ [M+H]⁺ 306.0483, found: 306.0495.

2-((Benzyl(methyl)amino)methyl)-5-bromophenol (3m)

Yellow oil (36.3 mg, 59% yield);

¹H NMR (400 MHz, CDCl₃) δ 7.33 (tdd, *J* = 7.4, 5.3, 2.2 Hz), 7.05 (d, *J* = 1.8 Hz), 6.91 (dd, *J* = 8.0, 1.9 Hz), 6.87 (s), 3.74 (s), 3.64 (s), 2.26 (s) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 158.69, 135.49, 130.08, 129.51, 128.72, 128.06, 122.36, 122.25, 120.05, 119.58, 61.06, 59.54, 40.85 ppm;

HRMS (ESI, m/z): calcd for C₁₅H₁₇BrNO⁺ [M+H]⁺ 306.0483, found: 306.0481.

2-((Benzyl(methyl)amino)methyl)-3-bromo-6-methoxyphenol (3n)

Yellow oil (50.3 mg, 75% yield);

¹H NMR (400 MHz, CDCl₃) δ 7.38-7.32 (m, 5H), 6.99-6.97 (d, *J* = 8.7 Hz, 1H), 6.68-6.66 (d, *J* = 8.7 Hz, 1H), 4.00 (s, 2H), 3.86 (s, 3H), 3.72 (s, 2H), 2.30 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 148.51, 147.59, 129.43, 128.71, 127.98, 122.35, 120.05, 113.95, 111.79, 61.51, 59.58, 55.92, 40.99 ppm;

HRMS (ESI, m/z): calcd for $C_{16}H_{19}BrNO_2^+$ [M+H]⁺ 336.0588, found: 336.0585.

1-((Benzyl(methyl)amino)methyl)naphthalen-2-ol (30)^[6]

Yellow solid (35.5 mg, 64% yield); m.p.: 116-117 °C;

¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 8.6 Hz, 1H), 7.78 (d, *J* = 8.1 Hz, 1H), 7.71 (d, *J* = 8.8 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.40 – 7.34 (m, 4H), 7.34 – 7.27 (m, 2H), 7.15 (d, *J* = 8.8 Hz, 1H), 4.22 (s, 2H), 3.71 (s, 2H), 2.35 (s, 3H) ppm;

¹³C NMR (126 MHz, CDCl₃) δ 156.51, 136.57, 132.60, 129.41, 129.24, 128.88, 128.62, 128.50, 127.73, 126.29, 122.40, 120.93, 119.14, 111.41, 61.54, 55.68, 41.44 ppm; HRMS (ESI, m/z): calcd for $C_{19}H_{20}NO^+$ [M+H]⁺ 278.1545, found: 278.1549.

2-((Benzyl(ethyl)amino)methyl)phenol (3p)^[7]

Yellow oil (20.2 mg, 42% yield);

¹H NMR (400 MHz, CDCl₃) δ 7.39-7.27 (m, 5H), 7.20-7.16 (m, 1H), 7.02-7.00 (m, 1H), 6.87-6.85 (m, 1H), 6.81-6.77 (m, 1H), 3.80 (s, 1H) , 3.67 (s, 1H) , 2.64-2.59 (m, 2H), 1.18-1.14 (t, *J* = 7.2 Hz, 3H) ppm;

¹³C NMR (100 MHz, CDCl₃) *δ*157.82, 136.63, 129.49, 128.74, 128.73, 128.57, 127.63, 121.78, 119.11, 116.18, 57.44, 56.66, 46.50, 10.93 ppm;

HRMS (ESI, m/z): calcd for C₁₆H₂₀NO⁺ [M+H]⁺ 242.1534, found: 242.1540.

2-((Benzyl(isopropyl)amino)methyl)phenol (3q)

Yellow oil (20.2 mg, 40% yield);

¹H NMR (400 MHz, CDCl₃) *δ* 7.37-7.28 (m, 5H), 7.18-7.14 (m, 1H), 7.02-6.99 (m, 1H), 6.83-6.81 (m, 1H), 6.79-6.75 (m, 1H), 3.80 (s, 2H), 3.61 (s, 2H), 3.14-3.03 (m, 1H), 1.16 (s, 3H), 1.14 (s, 3H) ppm;

¹³C NMR (100 MHz, CDCl₃) δ 157.92, 137.69, 129.33, 128.74, 128.60, 128.56, 127.48,

121.91, 119.00, 116.04, 53.47, 52.23, 48.24, 16.88 ppm;

HRMS (ESI, m/z): calcd for $C_{17}H_{21}NO^+$ [M+H]⁺ 256.1690, found: 256.1694.

(R)-2-((Methyl(1-phenylethyl)amino)methyl)phenol (3r)

Yellow oil (30.9 mg, 64% yield);

¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, *J* = 8.0 Hz, 0.08H) (C4), 7.42 – 7.35 (m, 2H), 7.34 – 7.28 (m, 3H), 7.16 (t, *J* = 7.4 Hz, 1H), 6.94 (d, *J* = 7.3 Hz, 1H), 6.83 (d, *J* = 8.1 Hz, 0.81H) (C2), 6.77 (t, *J* = 7.4 Hz, 0.81H) (C2), 6.60 (d, *J* = 8.5 Hz, 0.04H) (C4), 6.53 (t, *J* = 7.6 Hz, 0.06H) (C4), 3.80 (dt, *J* = 13.8, 6.8 Hz, 2H), 3.63 (d, *J* = 13.4 Hz, 1H), [2.24 (d, *J* = 6.9 Hz, 0.15H) (C4), 2.20 (d, *J* = 3.8 Hz, 2.79H) (C2)], [1.51 (d, *J* = 6.9 Hz, 2.71H) (C2), 1.47 (d, *J* = 6.6 Hz, 0.17H) (C4)] ppm; ¹³C NMR (126 MHz, CDCl₃) δ [158.00 (C2), 157.26 (C4)], [140.46 (C2), 137.79 (C4)], 128.56 (C4), 128.52 (C2), 128.45 (C2), 128.40 (C2), 127.99 (C4), 127.96 (C2), 127.88 (C4), 127.77 (C4), 127.59 (C2), 121.90 (C2), 120.57 (C4), 118.98 (C2), 118.40 (C4), 115.93 (C2), [62.93 (C4), 62.47 (C2)], [58.05 (C4), 57.98 (C2)], [37.19 (C4), 37.10 (C2)], [17.80 (C4), 17.17 (C2)] ppm; HRMS (ESI, m/z): calcd for C₁₆H₂₀NO⁺ [M+H]⁺ 242.1545, found: 242.1550.

2-(morpholinomethyl)phenol (3s)^[8]

¹H NMR (400 MHz, CDCl₃) δ 10.60 (s, 1H), 7.17 (dd, *J* = 11.2, 4.3 Hz, 1H), 6.98 (d, *J* = 7.3

Hz, 1H), 6.85 – 6.76 (m, 2H), 3.75 (s, 4H), 3.70 (s, 2H), 2.56 (s, 4H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 157.41, 128.91, 128.73, 120.58, 119.22, 116.01, 66.70,

61.76, 52.81 ppm;

HRMS (ESI, m/z): calcd for C₁₁H₁₆NO₂⁺ [M+H]⁺ 194.1170, found: 194.1175.

4-(3-((Benzyl(methyl)amino)methyl)-4-hydroxyphenyl)butan-2-one (5a)

Yellow oil (50.5 mg, 85% yield);

¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.34 (m, 2H), 7.34 – 7.26 (m, 3H), 7.00 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.82 (dd, *J* = 20.5, 5.0 Hz, 2H), 3.74 (s, 2H), 3.61 (s, 2H), 2.85 – 2.79 (m, 2H), 2.77 – 2.70 (m, 2H), 2.25 (d, *J* = 8.2 Hz, 3H), 2.15 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 208.25, 155.95, 136.75, 131.35, 129.27, 128.50, 128.40, 128.32, 127.59, 121.69, 115.97, 61.37, 60.79, 45.47, 41.20, 30.05, 28.88 ppm; HRMS (ESI, m/z): calcd for C₁₉H₂₄NO₂⁺ [M+H]⁺ 298.1796, found: 298.1789.

4-Allyl-2-((benzyl(methyl)amino)methyl)-6-methoxyphenol (5b)

Yellow oil (43.4 mg, 73% yield);

¹H NMR (500 MHz, CDCl₃) δ 7.35 – 7.30 (m, 4H), 7.30 – 7.26 (m, 1H), 6.64 (d, *J* = 1.4 Hz, 1H), 6.44 (d, *J* = 0.5 Hz, 1H), 5.95 (ddt, *J* = 16.8, 10.0, 6.7 Hz, 1H), 5.11 – 5.02 (m, 2H), 3.87 (s, 3H), 3.73 (s, 2H), 3.62 (s, 2H), 3.29 (d, *J* = 6.7 Hz, 2H), 2.23 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 147.72, 145.15, 137.81, 136.79, 130.26, 129.18, 128.50, 127.54, 121.66, 120.24, 115.35, 111.28, 61.63, 60.63, 55.77, 41.09, 39.76 ppm; HRMS (ESI, m/z): calcd for C₁₉H₂₄NO₂⁺ [M+H]⁺ 298.1802, found: 298.1805.

2-((Benzyl(methyl)amino)methyl)-6-isopropyl-3-methylphenol (5c)

Yellow oil (34.5 mg, 61% yield);

¹H NMR (400 MHz, CDCl₃) *δ* 11.85 (s, 1H), 7.39-7.30 (m, 5H), 7.05-7.03 (d, *J* = 7.8 Hz, 1H), 6.67-6.65 (d, *J* = 7.8 Hz, 1H), 3.81 (s, 2H), 3.62 (s, 2H), 3.39-3.32 (m, 1H), 2.26 (s, 6H), 1.26 (s, 3H), 1.25 (s, 3H) ppm;

¹³C NMR (100 MHz, CDCl₃) δ 155.36, 133.55, 129.38, 129.00, 128.60, 128.55, 128.41,

127.65, 124.74, 120.84, 119.36, 61.24, 40.98, 26.38, 22.72, 19.67 ppm;

HRMS (ESI, m/z): calcd for $C_{19}H_{26}NO^+$ [M+H]⁺ 284.2003, found: 284.2007.

(3-((Benzyl(methyl)amino)methyl)-2-hydroxy-4-methoxyphenyl)(phenyl)methanone (5d)

Yellow oil (28.9 mg, 40% yield);

¹H NMR (400 MHz, CDCl₃) δ 12.70 (s), 7.67 – 7.63 (m), 7.61 – 7.56 (m), 7.52 – 7.46 (m), 7.24 (d, *J* = 4.7 Hz), 6.50 (s), 3.86 (s), 3.54 (s), 3.47 (s), 2.17 (s) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 200.05, 165.61, 164.47, 138.31, 135.40, 131.46, 128.93, 128.53, 128.30, 128.16, 127.61, 127.13, 127.01, 112.41, 99.29, 61.57, 55.78, 54.20, 41.94 ppm;

HRMS (ESI, m/z): calcd for $C_{23}H_{24}NO_3^+$ [M+H]⁺ 362.1756, found: 362.1760.

8-((Benzyl(methyl)amino)methyl)-7-hydroxy-2-phenyl-4H-chromen-4-one (5e)

Yellow solid (207.9 mg, 56% yield); m.p.: 159-160 °C;

¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, *J* = 8.8 Hz, 1H), 7.87 – 7.81 (m, 2H), 7.57 – 7.50 (m, 3H), 7.40 – 7.28 (m, 5H), 6.91 (d, *J* = 8.8 Hz, 1H), 6.74 (s, 1H), 5.29 (s, 1H), 4.19 (s, 2H), 3.75 (s, 2H), 2.38 (s, 3H) ppm;

¹³C NMR (126 MHz, CDCl₃) δ 177.91, 164.03, 162.19, 155.06, 135.72, 132.10, 131.33, 129.43, 129.06, 128.72, 128.01, 126.15, 125.99, 116.56, 115.49, 107.90, 107.31, 61.41, 53.21, 41.51 ppm;

HRMS (ESI, m/z): calcd for $C_{24}H_{22}NO_3^+$ [M+H]⁺ 372.1589, found: 362.1595.

(3*R*,4*S*)-4-(3-((benzyl(methyl)amino)methyl)-4-hydroxyphenyl)-1-(4-fluorophenyl)-3-((*S*)-3-(4-fluorophenyl)-3-hydroxypropyl)azetidin-2-one (5f)

White solid (47.9 mg, 44% yield); m.p.: 186-187 °C;

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.28 (m, 6H), 7.22 (d, *J* = 7.0 Hz, 2H), 7.09 – 6.99 (m, 4H), 6.95 (s, 1H), 6.87 (d, *J* = 8.3 Hz, 1H), 6.79 (t, *J* = 8.6 Hz, 2H), 6.50 (s, 1H), 4.67 – 4.57 (m, 2H), 3.65 (d, *J* = 14.0 Hz, 1H), 3.54 (d, *J* = 13.9 Hz, 1H), 3.42 (s, 2H), 2.44 – 2.31 (m, 2H), 2.21 – 2.14 (m, 1H), 2.10 (s, 3H), 2.07 – 2.00 (m, 1H), 1.76 – 1.63 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 170.82, 163.34, 160.90, 160.49, 158.07, 157.77, 138.29, 138.26, 136.61, 133.08, 131.48, 129.27, 128.59, 127.71, 127.47, 127.39, 126.37, 121.75, 121.67, 116.53, 115.52, 115.30, 115.21, 115.00, 81.89, 79.34, 61.21, 60.51, 53.38, 41.11, 32.67, 27.23 ppm;

¹⁹F NMR (CDCl₃, 376 MHz) *δ* -115.17, -117.62 ppm;

HRMS (ESI, m/z): calcd for $C_{33}H_{33}F_2N_2O_3^+$ [M+H]⁺ 543.2454, found: 543.2462.

(8*R*,9*S*,13*S*,14*S*)-2-((Benzyl(methyl)amino)methyl)-3-hydroxy-13-methyl-6,7,8,9,11,1 2,13,14,15,16-decahydro-17*H*-cyclopenta[a]phenanthren-17-one (5g)

White solid (44.1 mg, 55% yield); m.p.: 179-181 °C;

¹H NMR (500 MHz, CDCl₃) δ 10.92 (s, 1H), 7.41 – 7.27 (m, 5H), 6.94 (s, 1H), 6.63 (s, 1H), 3.81 – 3.67 (m, 2H), 3.67 – 3.56 (m, 2H), 2.94 – 2.84 (m, 2H), 2.53 (dd, *J* = 19.0, 8.7 Hz, 1H), 2.41 (dd, *J* = 10.1, 5.7 Hz, 1H), 2.31 – 2.21 (m, 4H), 2.21 – 2.11 (m, 1H), 2.08 (ddd, *J* = 11.6, 8.9, 5.6 Hz, 1H), 2.05 – 1.95 (m, 2H), 1.70 – 1.57 (m, 2H), 1.54 (dt, *J* = 15.5, 9.2 Hz, 3H), 1.46 – 1.38 (m, 1H), 0.93 (d, *J* = 4.3 Hz, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 155.51, 136.95, 136.92, 130.28, 129.25, 128.47, 127.52, 125.34, 119.35, 115.87, 61.37, 61.02, 50.36, 47.94, 43.88, 41.19, 38.34, 35.81, 31.54, 29.21, 26.53, 25.97, 21.52, 13.81 ppm;

HRMS (ESI, m/z): calcd for C₂₇H₃₄NO₂⁺ [M+H]⁺ 404.2579, found: 404.2576.

2-((Benzyl(methyl)amino)methyl)-4-(2-(dimethylamino)-1-(1-hydroxycyclohexyl)ethy l)phenol (5h)

Yellow oil (35.9 mg, 45% yield);

¹H NMR (400 MHz, CDCl₃) *δ* 7.36-7.28 (m, 5H), 6.93-6.90 (m, 1H), 6.76-6.73 (m, 2H), 3.71 (s, 2H), 3.59 (s, 2H), 3.32-3.26 (t, *J* = 12.5 Hz, 1H), 2.92-2.88 (m, 1H), 2.33 (s, 6H), 2.27 (s, 1H), 2.25 (s, 3H), 1.76-1.59 (m, 3H), 1.56-1.49 (m, 3H), 1.37-1.24 (m, 2H), 1.01-0.81 (m, 2H) ppm;

¹³C NMR (100 MHz, CDCl₃) δ 156.39, 136.66, 131.05, 129.31, 129.21, 128.51, 128.26, 127.62, 121.18, 115.44, 77.32, 77.00, 76.68, 74.17, 61.30, 61.19, 60.75, 51.59, 45.32, 41.33, 37.95, 31.06, 25.92, 21.54, 21.29 ppm;

HRMS (ESI, m/z): calcd for $C_{25}H_{37}N_2O_2^+$ [M+H]⁺ 397.2844, found: 397.2836.

Methyl

(S)-3-(3-((benzyl(methyl)amino)methyl)-4-hydroxyphenyl)-2-((tert-butoxycarbonyl)a mino)propanoate (5i)

White solid (45.4 mg, 53% yield); m.p.: 39-40 °C;

¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.25 (m, 5H), 6.91 (d, *J* = 7.6 Hz, 1H), 6.81 – 6.71 (m, 2H), 4.93 (d, *J* = 8.1 Hz, 1H), 4.51 (d, *J* = 7.4 Hz, 1H), 3.73 – 3.66 (m, 5H), 3.58 (s, 2H), 2.97 (qd, *J* = 14.0, 6.1 Hz, 2H), 2.22 (d, *J* = 4.9 Hz, 3H), 1.41 (d, *J* = 6.1 Hz, 9H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 172.39, 156.68, 154.99, 136.59, 129.46, 129.25, 129.20, 128.47, 127.57, 126.27, 121.76, 115.99, 79.66, 61.27, 60.63, 54.51, 51.96, 41.12, 37.40, 28.18 ppm;

HRMS (ESI, m/z): calcd for $C_{24}H_{33}N_2O_5^+$ [M+H]⁺ 429.2378, found: 429.2384.

Methyl

((*S*)-3-(3-((benzyl(methyl)amino)methyl)-4-hydroxyphenyl)-2-((*tert*-butoxycarbonyl)a mino)propanoyl)-*L*-valinate (5j)

White solid (71.8 mg, 68% yield); m.p.: 51-52 °C;

¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.32 (m, 2H), 7.29 (d, *J* = 7.3 Hz, 3H), 6.99 (dd, *J* = 8.2, 1.7 Hz, 1H), 6.87 (s, 1H), 6.76 (d, *J* = 8.2 Hz, 1H), 6.34 (d, *J* = 6.1 Hz, 1H), 5.04 (s, 1H), 4.42 (dd, *J* = 8.5, 5.1 Hz, 1H), 4.27 (d, *J* = 6.2 Hz, 1H), 3.70 (d, *J* = 8.7 Hz, 2H), 3.65 (s, 3H), 3.59 (d, *J* = 3.4 Hz, 2H), 3.03 – 2.87 (m, 2H), 2.23 (s, 3H), 2.07 (dt, *J* = 9.0, 6.8 Hz, 1H), 1.41 (s, 9H), 0.85 (d, *J* = 6.9 Hz, 3H), 0.81 (d, *J* = 6.9 Hz, 3H) ppm;

¹³C NMR (126 MHz, CDCl₃) δ 171.74, 171.30, 156.78, 155.46, 136.72, 129.69, 129.45, 129.37, 128.61, 127.72, 126.98, 122.06, 116.24, 80.17, 61.48, 60.70, 57.23, 52.08, 41.25, 37.27, 31.32, 28.28, 18.83, 17.77 ppm;

HRMS (ESI, m/z): calcd for $C_{29}H_{42}N_3O_6^+$ [M+H]⁺ 528.3074, found: 528.3082.

4-((Benzyl(methyl)amino)methyl)-2,6-diisopropylphenol (5k)

Yellow oil (56.0 mg, 90% yield);

¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.26 (m), 7.05 (s), 3.55 (d, *J* = 2.3 Hz), 3.17 (dt, *J* = 13.7, 6.8 Hz), 2.23 (s), 1.27 (dd, *J* = 7.9, 5.8 Hz) ppm;

 ^{13}C NMR (100 MHz, CDCl_3) δ 149.11, 138.24, 133.50, 129.55, 129.23, 128.20, 127.08,

124.43, 61.49, 60.72, 41.66, 27.11, 22.78 ppm;

HRMS (ESI, m/z): calcd for $C_{21}H_{30}NO^+$ [M+H]⁺ 312.2322, found: 312.2329.

5. Procedure for Gram Scale Experiment

To a 100 mL round-bottom flask with a stirring bar, $Na_2CO_3 \cdot 1.5H_2O_2$ (30 mmol, 4.71 g), phenol **1a** (10 mmol, 0.94g), potassium (*N*-benzyl-*N*-methyl)methyltrifluoroborate **2a** (15 mmol, 3.62 g), H₂O (30 mL), toluene (5 mL) and I₂ (2 mmol, 0.51 g) were subsequently added. Then, the flask was heated at 100 °C for 24 h. When finished, the resulting mixture was extracted with ethyl acetate. The organic solution was evaporated under reduced pressure after drying over anhydrous Na_2SO_4 , and the residue was further purified by flash column chromatography on silica gel to afford **3a** (1.54 g, 68% yield).

6. Mechanistic Study

6.1 Free radical capture

To a 10 mL Schlenk tube with a stirring bar, Na₂CO₃·1.5H₂O₂ (0.6 mmol, 94.2 mg), phenol (**1a**) (0.2 mmol, 18.8 mg), potassium (*N*-benzyl-*N*-methyl)methyltrifluoroborate (**2a**) (0.3 mmol, 72.3 mg), 2,2,6,6-tetramethylpiperidinooxy (TEMPO) (0.4 mmol, 62.5 mg) or butylated hydroxytoluene (BHT) (0.4 mmol, 88.1 mg), H₂O (0.6 mL), toluene (0.1 mL) and I₂ (0.04 mmol, 10.2 mg) were subsequently added. Then, the Schlenk tube was sealed and heated at 100 °C for 24 h. The desired product **3a** was isolated in 32% or 18% yield, respectively.

To a 10 mL Schlenk tube with a stirring bar, Na₂CO₃·1.5H₂O₂ (0.6 mmol, 94.2 mg), butylated hydroxytoluene (BHT) (0.4 mmol, 88.1 mg), potassium (*N*-benzyl-*N*-methyl)methyltrifluoroborate (**2a**) (0.3 mmol, 72.3 mg), H₂O (0.6 mL), toluene (0.1 mL) and I₂ (0.04 mmol, 10.2 mg) were subsequently added. Then, the Schlenk tube was sealed and heated at 100 °C for 24 h. After finished, the resulting mixture was extracted with ethyl acetate and a partion of organic phase was analyzed by GC-MS.

Figure S1. GC-MS spectrum of aminomethyl radical species captured by BHT

To a 10 mL Schlenk tube with a stirring bar, Na₂CO₃·1.5H₂O₂ (0.6 mmol, 94.2 mg), butylated hydroxytoluene (BHT) (0.4 mmol, 88.1 mg), propofol (**4k**) (0.2 mmol, 35.7 mg) H₂O (0.6 mL), toluene (0.1 mL) and I₂ (0.04 mmol, 10.2 mg) were subsequently added.

Then, the Schlenk tube was sealed and heated at 100 °C for 24 h. After finished, the resulting mixture was extracted with ethyl acetate and a partion of organic phase was analyzed by GC-MS.

Figure S2. GC-MS spectrum of phenoxy radical species captured by BHT

6.2 Control experiments

To a 10 mL Schlenk tube with a stirring bar, $Na_2CO_3 \cdot 1.5H_2O_2$ (0.6 mmol, 94.2 mg), 1,3,5-trimethoxybenzene (**6**) (0.2 mmol, 33.6 mg), potassium (*N*-benzyl-*N*-methyl)methyltrifluoroborate (**2a**) (0.3 mmol, 72.3 mg), H₂O (0.6 mL), toluene (0.1 mL) and I₂ (0.04 mmol, 10.2 mg) were subsequently added. Then, the Schlenk tube was sealed and heated at 100 °C for 24 h. No desired product but retained starting materials were detected.

To a 10 mL Schlenk tube with a stirring bar, $Na_2CO_3 \cdot 1.5H_2O_2$ (0.6 mmol, 94.2 mg), sodium benzenolate (7) (0.2 mmol, 23.2 mg), potassium (*N*-benzyl-*N*-methyl)methyltrifluoroborate (2a) (0.3 mmol, 72.3 mg), H₂O (0.6 mL), toluene (0.1 mL) and I₂ (0.04 mmol, 10.2 mg) were subsequently added. Then, the Schlenk tube was sealed and heated at 100 °C for 24 h. No desired product was detected.

Figure S3. Possible process for the formation of para-aminomethylated product

Compared with the process of *ortho*-aminomethylation, homolysis of the O-I bond of **A** may occurr to give the phenoxy radical, and the coupling of *para*-site carbon radical species **E**' with intermediate **C** gives the intermediate **F**'. Finally, the *para*-aminomethylated product **3**' is obtained after an oxidative deprotonation process.

7. References

- [1] J. Raushel, D. L. Sandrock, K. V. Josyula, D. Pakyz, G. A. Molander, *J. Org. Chem.* **2011**, 76, 2762-2769.
- [2] J.-L. Dai, N.-Q. Shao, J. Zhang, R.-P. Jia, D.-H. Wang, J. Am. Chem. Soc. 2017, 139, 12390-12393.
- [3] E. Suárez-Picado, E. Quiñoá, R. Riguera, F. Freire, *Angew. Chem., Int. Ed.* 2020, 59, 4537-4543.
- [4] P. Kumar, A. K. Sharma, R. Singh, T. Guntreddi, K. N. Singh, *Adv. Synth. Catal.* 2018, 360, 1786-1789.
- [5] S. Kim, S. H. Hong, Adv. Synth. Catal. 2017, 359, 798-810.
- [6] B. Loubinoux, J. Miazimbakana, P. Gerardin, *Tetrahedron Lett.* **1989**, *30*, 1939-1942.
- [7] C. Cimarelli, G. Palmieri, E. Volpini, *Tetrahedron* **2001**, *57*, 6089-6096.
- [8] Z. Tang, D. Li, Y. Yue, D. Peng, L. Liu, Org. Biomol. Chem. 2021, 19, 5777-5781.

8. NMR Spectra of Products

¹H NMR (500 MHz, CDCl₃) of **3a**

¹H NMR (400 MHz, CDCl₃) of 3c

 ^{13}C NMR (100 MHz, CDCl_3) of 3c

$^{19}\mathsf{F}$ NMR (471 MHz, CDCl_3) of 3c

¹H NMR (500 MHz, CDCl₃) of **3h**

¹H NMR (500 MHz, CDCl₃) of **3I**

 ^{13}C NMR (126 MHz, CDCl_3) of 3I

¹H NMR (400 MHz, CDCl₃) of **3m**

¹H NMR (400 MHz, CDCl₃) of 3n

 ^{13}C NMR (100 MHz, CDCl3) of 3n

¹H NMR (500 MHz, CDCl₃) of **3o**

¹³C NMR (126 MHz, CDCl₃) of **30**

¹H NMR (400 MHz, CDCl₃) of **3p**

7.33 7.34 7.35 7.35 7.34 7.35 7.35 7.35 7.35 7.36 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.37 7.38 6.87 6.87 6.87 6.87 6.87 6.87 6.87 6.87 6.87 6.87 6.87 6.87 6.87 6.87 6.73 6.74 6.75 6.75 6.75 6.75 6.75 7.114 7.14 7.15 7.16 7.17 7.16 7.17

¹H NMR (400 MHz, CDCl₃) of **3q**

¹H NMR (500 MHz, CDCl₃) of **3r**

7.7.62 7.7.62 7.7.7.23 7.7.7.33 6.6.95 6.6.95 6.6.95 6.6.77 6.6.69 6.6.77 6.6.77 7.7.16 6.6.77 6.6.73 6.6.69 6.6.69 6.6.65 6.6.65 6.6.65 6.6.65 6.6.65 6.6.55 6.55

80 70

60 50 40

30

20 10

0 -1

I0 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

¹H NMR (500 MHz, CDCl₃) of **5a**

¹³C NMR (126 MHz, CDCl₃) of **5a**

 ^1H NMR (400 MHz, CDCl₃) of 5c

 ^{13}C NMR (100 MHz, CDCl_3) of 5c

^1H NMR (400 MHz, CDCl₃) of 5d

 ^{13}C NMR (100 MHz, CDCl_3) of 5d

¹H NMR (400 MHz, CDCl₃) of **5f**

77.33 5.5.77.73 5.5.75 5

¹H NMR (400 MHz, CDCl₃) of **5h**

77.7.34 7.7.7.35 7.7.7.34 7.7.7.35 7.7.7.35 7.7.7.35 7.7.7.35 7.7.7.35 7.7.7.35 7.7.7.35 7.7.7.35 7.7.7.35 7.7.7.25 6.6.9 6.6.9 6.6.9 6.6.9 6.6.9 6.6.9 6.6.7 7.7.7.25 6.6.9 6.6.9 6.6.7 7.7.7.25 6.6.9 6.6.9 6.6.7 7.7.7.25 6.6.9 6.6.9 6.6.7 7.7.7.25 6.6.9 6.6.9 6.6.7 7.7.7.25 6.6.7 7.7.7.25 6.6.9 6.6.7 7.7.7.25 6.6.7 7.7.7.25 6.6.9 6.6.7 7.7.7.25 6.6.9 6.6.7 7.7.7.25 6.6.7 7.7.7.25 6.6.7 7.7.7.25 6.6.7 7.7.7.25 6.6.7 7.7.7.25 6.6.7 7.7.7.25 6.6.7 7.7.7.25 6.6.7 7.7.7.25 6.6.7 7.7.7.25 6.6.7 7.7.7.25 6.6.7 7.7.7.25 6.6.7 7.7.7.25 7.7.7.25 7.7.7.25 7.7.7.25 7.7.7.25 7.7.7.25 7.7.7.25 7.7.7.25 7.7.7.25 7.7.7.25 7.7.7.25 7.7.7.25 7.7.7.75 7.7.7.25 7.7.7.75 7.7.7.75 7.7.7.75 7.7.77 7.7.75 7.75 7.7

¹H NMR (500 MHz, CDCl₃) of **5**i

¹H NMR (500 MHz, CDCl₃) of **5j**

^{13}C NMR (100 MHz, CDCl_3) of 5k

