Supplementary Information

Construction of Metallo-Triangles with Cis-TPE Motif and

Fluorescence Properties

Junjuan Shi,^{a,§} Meng Li,^{a,§} Haoyue Su,^a Qixia Bai,^b Ningxu Han,^a Xin-Qi Hao,^c Fang Fang,^d Zhe

Zhang, ^b Ping Shan Wang,^b Benhua Ma,^{*a} and Ming Wang^{*a}

^aState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University No. 2699 Qianjin Street, Changchun, Jilin 130012, China.

^bInstitute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education Guangzhou University

Guangzhou, Guangdong 510006, China.

^cCollege of Chemistry and Green Catalysis Center, Zhengzhou University Zhengzhou 450001, China.

^dInstrumental Analysis Center, Shenzhen University Shenzhen, Guangdong 518055, China.

*Corresponding Authors:

Emails: mingwang358@jlu.edu.cn, mabh@jlu.edu.cn

1. Experimental Section

All reagents were purchased from Bidepharm, Macklin Reagent, and Energy Chemical. And they were used as received unless noted otherwise. Column chromatography was conducted using SiO₂ (VWR, 40-60 μm, 60 Å) and the separated products were visualized by UV light.

Nuclear magnetic resonance (NMR). NMR spectra data were recorded at 25 °C on Bruker 600 MHz, 500 MHz and Qone AS 400-MHz nuclear magnetic resonance instruments using CDCl₃ and CD₃CN as the solvents.

Electrospray ionization-mass spectrometry (ESI-MS) and travelling wave ion mobility-mass spectrometry (TWIM-MS). Both spectra were collected on a Waters Synapt G2 mass spectrometer, using solutions of 0.01 mg sample in 1 mL acetonitrile for the complexes. The TWIM-MS experiments were performed under the following conditions: ESI capillary voltage, 1-3 kV; sample cone voltage, 20-30 V; extraction cone voltage, 3 V; source temperature 100 °C; desolvation temperature, 200 °C; cone gas flow, 10 L/h; desolvation gas flow, 600 L/h (N₂); source gas control, 0 mL/min; trap gas control, 2 mL/min; helium cell gas control, 100 mL/min; ion mobility (IM) cell gas control, 30 mL/min; sample flow rate, 5 μ L/min; IM traveling wave height, 25 V; and IM traveling wave velocity, 1000 m/s.

Ultraviolet visible (UV-Vis) spectrophotometer. All UV-Vis spectra of solution samples were recorded on a PerkinElmer Lambda 365 spectrophotometer at room temperature. All UV-Vis spectra of solid samples were recorded on a PerkinElmer Lambda 1050+ spectrophotometer at room temperature.

Fluorescence spectrophotometer. All emission spectra of solution samples were recorded on a Shimadzu RF-5301pc spectrophotometer. All emission spectra of solid samples and emission quantum yields were determined by FLS980 Spectrometer (Edinburgh Instruments Ltd., Livingston, United Kingdom). Emission quantum yield was measured via an integrating light sphere. Solutions were placed in 1 cm path length quartz cells.

2. Synthetic route, NMR and ESI-MS analysis

Scheme S1. (a) the tedious synthetic route and (b) our synthetic route. **Ligand LA**: The synthetic procedure was reported in reference.^[1]

Compound 3: The mixture of 4-Bromoiodobenzene (17.0 mmol, 4.8 g), compound **2** (9 mmol, 3.0 g) and Pd(PPh₃)₂Cl₂ (0.11 mmol, 80.0 mg) in 200 mL Schlenk flask was degassed three times. Then 50 mL toluene, 25 mL 1 M Na₂CO₃ aqueous solution and 11 mL t-BuOH was added in N₂. The resultant mixture kept at 85 °C for 8 h. After cooling to the room temperature, the solution was extracted by CHCl₃ three times and the solvent was removed under reduced pressure. The crude product was purified by column chromatography on silica gel (CHCl₃/EtOH=200/1) to give compound **3** as white solid (3.5 g, 64.1%).¹H NMR (500 MHz, CDCl₃) δ 8.77 (s, 2H, tpy- $H^{3',5'}$), 8.74 (d, *J* = 3.7 Hz, 2H, tpy- $H^{6,6''}$), 8.67 (d, *J* = 7.8 Hz, 2H, tpy- $H^{3,3''}$), 7.97 (d, *J* = 8.0 Hz, 2H, Ph- H^{D}), 7.87 (t, *J* = 7.3 Hz, 2H, tpy- $H^{4,4''}$), 7.67 (d, *J* = 8.0 Hz, 2H, Ph- H^{E}), 7.57 (d, *J* = 8.2 Hz, 2H, Ph- H^{F}), 7.50 (d, *J* = 8.2 Hz, 2H, Ph- H^{G}), 7.38 – 7.32 (m, 2H tpy- $H^{5,5'''}$). ¹³C NMR (125 MHz, CDCl₃) δ 156.31, 156.10, 149.62, 149.25, 140.63, 139.40, 137.77, 136.99, 132.08, 128.78, 127.94, 127.47, 123.97, 122.03, 121.49, 118.76.

Ligand LB: A mixture of compound **1** (0.36 mmol, 156.5 mg), compound **3** (1.09 mmol, 502.9 mg), Cs₂CO₃ (1.09 mmol, 353.9 mg) and Pd(PPh₃)₄ (0.02 mmol, 14.6 mg) in 100 mL Schlenk flask was degassed three times. Then 15 mL dioxane and 3 mL H₂O were added under N₂. The resultant mixture was kept at 70 °C for 48 h. After cooling to the room temperature, the solution was extracted by CHCl₃ three times and the solvent was removed under reduced pressure. The crude product was purified by column chromatography on silica gel (CHCl₃/EtOH=50/1) to give ligand LB as white solid (255 mg, 75%). ¹H NMR (500 MHz, CDCl₃) δ 8.79 (s, 4H, tpy- $H^{3'.5'}$), 8.74 (d, J = 4.5 Hz, 4H, tpy- $H^{6.6''}$), 8.68 (d, J = 8.0 Hz, 4H, tpy- $H^{3,3''}$), 7.98 (d, J = 8.3 Hz, 4H, Ph- H^{G}), 7.89 (t, J = 7.7 Hz, 4H, tpy- $H^{4,4''}$), 7.74 (d, J = 8.3 Hz, 4H, Ph- H^{F}), 7.49 (d, J = 8.3 Hz, 4H, Ph- H^{E}), 7.38 – 7.35 (m, 4H, tpy- $H^{5.5''}$), 7.21 (d, J = 8.3 Hz, 4H, Ph- H^{D}), 7.14 (m, 6H, Ph- H^{A} and Ph- H^{B}), 7.11 (dd, J = 7.4, 2.0 Hz, 4H, Ph- H^{C}). ¹³C NMR (125 MHz, CDCl₃) δ 156.41, 156.07, 149.92, 149.25, 143.90, 143.42, 143.33, 141.41, 140.91, 138.35, 137.26, 137.05, 132.09, 131.62, 127.88, 127.82, 127.48, 126.71, 126.52, 123.96, 121.55, 118.84.

Triangle SA

SA: To a solution of ligand **LA** (34.7 μmol, 27.6 mg) CHCl₃ (8.0 mL), a solution of Zn(NO₃)₂•6H₂O (34.7 μmol, 10.3 mg) in MeOH (8.0 mL) was added, then the mixture was kept in 50 °C for 12 h. After cooling to room temperature, excess NH₄PF₆ (around 300 mg) was added to generate a yellow precipitate (34.1 mg, 90%).¹H NMR (500 MHz, CD₃CN) δ 8.90 (s, 4H, tpy- $H^{3',5'}$), 8.65 (d, J = 8.1 Hz, 4H, tpy- $H^{3,3''}$), 8.05 (m, 8H, tpy- $H^{4,4''}$, Ph- H^{E}), 7.78 (d, J = 4.7 Hz, 4H, tpy- $H^{6,6''}$), 7.51 (d, J = 8.4 Hz, 4H, Ph- H^{D}), 7.32 (dd, J = 7.0, 5.2 Hz, 4H, tpy- $H^{5,5''}$), 7.29 – 7.22 (m, 10H, Ph- H^{A} , Ph- H^{B} , and Ph- H^{C}). ¹³C NMR (125 MHz, CD₃CN) δ 156.56, 150.70, 148.89, 148.77, 147.42, 143.94, 142.39, 142.09, 135.43, 133.17, 131.94, 129.05, 128.58, 128.42, 128.13, 124.12, 122.23.ESI-MS (m/z): calcd. for [M-3PF₆]³⁺ 1004.5, found 1004.5; calcd. for [M-4PF₆]⁴⁺ 717.1, found 717.1; calcd. for [M-5PF₆]⁵⁺ 544.5, found 544.5; calcd. for [M-6PF₆]⁶⁺ 429.6, found 429.6.

Triangle SB

SB: To a solution of ligand **LB** (18.0 µmol, 17.0 mg) CHCl₃ (5.0 mL), a solution of Zn(NO₃)₂•6H₂O (18.0 µmol, 5.34 mg) in MeOH (5.0 mL) was added, then the mixture was kept in 50 °C for 12 h. After cooling to room temperature, excess NH₄PF₆ (around 150 mg) was added to generate a yellow precipitate (20.1 mg, 91%).¹H NMR (500 MHz, CD₃CN) δ 9.00 (s, 4H, tpy- $H^{3',5'}$), 8.72 (d, *J* = 8.1 Hz, 4H, tpy- $H^{3,3''}$), 8.27 (d, *J* = 8.4 Hz, 4H, Ph- H^{G}), 8.15 (td, *J* = 7.9, 1.4 Hz, 4H, tpy- $H^{4,4''}$), 8.01 (d, *J* = 8.4 Hz, 4H, tpy- $H^{6,6''}$), 7.69 (d, *J* = 8.3 Hz, 4H, Ph- H^{E}), 7.38 (dd, *J* = 7.3, 5.3 Hz, 4H, tpy- $H^{5,5''}$), 7.31 (d, *J* = 8.2 Hz, 4H, Ph- H^{D}), 7.25 – 7.16 (m, 10H, Ph- H^{A} , Ph- H^{B} , and Ph- H^{C}). ¹³C NMR (125 MHz, CD₃CN) δ 156.62, 150.79, 148.95, 148.85, 144.87, 144.46, 143.83, 142.17, 142.04, 138.45, 135.87, 132.75, 131.94, 129.58, 128.88, 128.74, 128.44, 127.79, 127.43, 124.17, 122.21. ESI-MS (*m*/*z*): calcd. for [M-3PF₆⁻]³⁺ 1156.6, found 1156.9; calcd. for [M-4PF₆⁻]⁴⁺ 831.2, found 831.2; calcd. for [M-5PF₆⁻]⁵⁺ 635.9, found 635.9; calcd. for [M-6PF₆⁻]⁶⁺ 505.8, found 505.8.

Figure S1. ¹H NMR (500 MHz, CDCl₃, 300 K) spectrum of compound 3.

175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 Chemical Shift (ppm)

Figure S2. ¹³C NMR (125 MHz, CDCl₃, 300 K) spectrum of compound 3.

Figure S3. ¹H NMR (500 MHz, CDCl₃, 300 K) spectrum of LB.

Figure S4. ¹³C NMR (125 MHz, CDCl₃, 300 K) spectrum of LB.

Figure S5. 2D COSY NMR (500 MHz, CDCl₃, 300 K) spectrum of LB.

Figure S7. ¹³C NMR (125 MHz, CD₃CN, 300 K) spectrum of SA.

Figure S9. ¹H NMR (500 MHz, CD₃CN, 300 K) spectrum of SB.

Figure S10. ¹³C NMR (125 MHz, CD₃CN, 300 K) spectrum of SB.

Figure S11. 2D COSY NMR (500 MHz, CD₃CN, 300 K) spectrum of SB.

Figure S12. Measured (bottom) and calculated (top) isotope patterns for different charge states observed from **SA** (PF_6^- as counterion).

Figure S13. Measured (bottom) and calculated (top) isotope patterns for different charge states observed from **SB** (PF_6^- as counterion).

3. UV-vis and Fluorescence Spectra

Figure S14. UV-vis (A) and normalized PL intensity (B) of LA, LB, SA, and SB. Table S1. Absolute quantum yields of SA and SB in aggregation (different diethyl ether fractions, $c = 10^{-6}$ M) and solid states.

	Solid states						
	0%	10%	30%	50%	70%	90%	
SA	1.27%	1.56%	2.15%	2.28%	3.25%	28.18%	18.35%
SB	1.24%	1.40%	1.71%	1.92%	2.27%	10.88%	7.29%

Table S2. Quantum yields for SA and SB in different solvents.

${oldsymbol{\varPhi}}_F$	Acetone	CH ₃ NO ₂	CH ₃ CN	DMF	DMSO
SA	3.33%	0.61%	2.05%	1.60%	0.99%
SB	1.92%	0.37%	0.68%	0.84%	1.89%

Reference:

1. Ma, J.; Han, N.; Yu, H.; Li, J.; Shi, J.; Wang, S.; Zhang, H.; Wang, M., Small 2022, e2202167.