Supporting Information

Localized high-concentration electrolyte enabled by a novel ester

diluent for lithium metal batteries

Meng Zhu,^a Xiaojuan Jiao,^a Wenwei Wang,^a Haiwei Chen*^{ab} and Fengjiao Li*^a

^a Shenzhen Automotive Research Institute, Beijing Institute of Technology, Shenzhen 518118, China.

^b National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China.

*Corresponding author.

E-mail: chenhaiwei@szari.ac.cn; lifengjiao@szari.ac.cn

Experimental section

Materials Preparation

Lithium bis(fluorosulfonyl)imide (LiFSI, 99.9%) and dimethyl carbonate (DMC, 99.9%) were purchased from Huizhou City Avenue New Materials Technology Co., Ltd. The diluent, 2,2,2-trifluoroethyl trifluoromethanesulfonate (TFEOTf, 99%), was bought from Sinopharm Chemical Reagent Co., Ltd. All of the materials mentioned above were employed without further purification. Electrolytes were prepared in glovebox ($H_2O < 0.01$ ppm, $O_2 < 0.01$ ppm) filled with Ar. The cathode was prepared by blending LiNi_{0.6}Mn_{0.2}Co_{0.2}O₂, Super-P and polyvinylidene fluoride in a mass ratio of 93:5:2 with appropriate amount of N-methyl pyrrolidinone (all from Canrd) as a dispersant, immediately after which the slurry was coated on aluminum foil and then dried in a drying oven. Finally, the prepared electrode was cut into 12 mm diameter disks with an areal density of about 10.8 mg cm⁻².

Materials Characterizations

Deposited Li and SEI films, rinsed by DMC for at least 3 times and followed by vacuum drying, were measured on Apreo S (Thermo Scientific) at 2.0 kV to obtain SEM images. Raman spectra were collected by inVia Qontor (Renishaw) using 785 nm laser. XPS for cycled Li anode was tested by K-Alpha (Thermo Scientific). The viscosity and density for laboratory-made electrolytes were measured by Micro Viscometer EDXLovis 2000 M (Anton Paar) equipped with a densitometer. Contact angle tests were carried out on PP separator (Celgard 2400) with different electrolytes through OCA20 (Dataphysics) at 25 °C and the images were analyzed by software Image J.

Electrochemical Measurements

CR2025 coin cells were assembled in a glove box and tested on CT-4008Tn (Neware) for further examination on the electrochemical performances. For LillLi symmetric cells, EIS was measured on autolab PGSTAT302N (Metrohm) with frequency ranging from 10⁶ Hz to 0.1 Hz, and the applied voltage stayed 5 mV. LSV was conducted on the same instrument as EIS, ranging from 3 V to 6 V, with aluminum foil as positive electrode and Li chip as negative electrode, the scanning rate of which was 1 mV s⁻¹. 80 µl electrolyte was added into each CR2025 coin cell if no detailed explanation was mentioned. 1 C is equal to 180 mAh g⁻¹. Li||Cu and LilLi cells were assembled with regular stainless steel positive electrode shells, while other cells charged over 4 V were assembled with Al-clad ones (Canrd) to avoid the corrosion from electrolyte. For CE tests, Li||Cu cells were adopted following the procedures: (1) Depositing 5 mAh cm⁻² of Li onto Cu foil and stripping all Li to 1 V to exclude the uncertain factors from Cu substrate; (2) Depositing 5 mAh cm⁻² of Li onto Cu foil as Li reservoir, based on which cycling in the galvanostatic mode with 1 mAh cm⁻²; (3) After cycling, then stripping all Li to 1 V. All the current density concerned is 0.5 mA cm⁻². The CE was calculated by formula as followed:

$$CE_{avg} = \frac{nQ_C + Q_S}{nQ_C + Q_T}$$

where Q_T is the charge deposited for the second time, n represents the cycling numbers and Q_C refers to charge of each cycle in procedure (2), Q_S is the final stripping charge in procedure (3).

Supplementary Figures

Fig. S1. Contact angle tests of (a) HCE of LiFSI-1.2DMC and (b) LHCE of LiFSI-1.2DMC-0.75TFEOTf on the separator celgard 2400.

Fig. S2. Optical photos of 20 μ l (a) dilute electrolyte 1M LiFSI-DMC, (b) HCE of LiFSI-

1.2DMC and (c) LHCE of LiFSI-1.2DMC-0.75TFEOTf on the surface of Li chip.

Fig. S3. Coulombic efficiency determined by Li||Cu half cells with LHCE of (a) LiFSI-1.2DMC-0.5TFEOTf and (b) LiFSI-1.2DMC-1TFEOTf.

Fig. S4. SEM images for SEI on Cu substrate after cycling for 10 cycles and top view of Li deposition topography with (a)(d) dilute electrolyte 1M LiFSI-DMC, (b)(e) HCE of LiFSI-1.2DMC and (c)(f) LHCE of LiFSI-1.2DMC-0.75TFEOTf. Insets are optical photos of dissembled Cu electrodes.

Fig. S5. EDX elemental mappings of deposited Li in electrolyte (a) 1M LiFSI-DMC, (b) LiFSI-

1.2DMC and (c) LiFSI-1.2DMC-0.75TFEOTf.

Fig. S6. CE of Li||Cu half cells cycling in LiFSI-1.2DMC-0.5TFEOTf and LiFSI-1.2DMC-1TFEOTf at 1 mA cm⁻² with areal capacity of 1 mAh cm⁻².

Fig. S7. The voltage curves of (a) LiFSI-1.2DMC-0.5TFEOTf and (b) LiFSI-1.2DMC-1TFEOTf by Li||Li symmetric cells at a current density of 1 mA cm⁻² with capacity of 1 mAh cm⁻².

Fig. S8. Cycling stability and CEs of Li $\|NMC622$ cells with LHCEs after two formation cycles

at 0.1 C (1 C=180 mAh g⁻¹).

Fig. S9. Rate capability of HCE and LHCEs.

Fig. S10. Depth profiling C 1s (a) and F 1s (b) XPS spectra for SEI on Li surface after 100 cycles in HCE of LiFSI-1.2DMC.

Supplementary Tables

Electrolyte	Molar ratio	Mass Ratio	Density g/cm ³	Molarity mol/L	Molality mol/kg	Viscosity (25°C) mPa s
1M LiFSI-DMC	1:11.8	1.87:10.69	1.17	0.93	0.94	1.80
LiFSI-1.2DMC	1:1.2	1.87:1.08	1.55	5.25	3.39	220.90
LiFSI-1.2DMC- 0.5TFEOTf	1:1.2:0.5	1.87:1.08:1.16	1.57	3.82	2.43	52.37
LiFSI-1.2DMC- 0.75TFEOTf	1:1.2:0.75	1.87:1.08:1.74	1.58	3.37	2.13	33.41
LiFSI-1.2DMC- 1TFEOTf	1:1.2:1	1.87:1.08:2.32	1.58	3.00	1.90	23.61

Table S1. Basic physical parameters of different electrolytes.

 Table S2. Excess Li calculation under different conditions (Assume Li could be consumed

 completely before capacity fading happens in Li||NMC cells).

CE of Li queling 9/	Cycling numbers with 90%	Requirements of excess Li	
CE of Li cycling %	capacity retention	based on cathode capacity %	
00.6	500	190	
99.0	1000	390	
00.4	500	290	
77.4	1000	590	
00.2	500	390	
99.2	1000	790	
00.0	500	490	
99.0	1000	990	

Element	Weight %	Atom %
С	5.65	7.69
Ν	9.64	11.24
0	55.22	56.38
F	27.62	23.74
S	1.87	0.95
Total	100.00	100.00

Table S3. Qualitative analysis of elements on deposited Li surface in LiFSI-1.2DMC-0.75TFEOTf through EDX elemental mapping.