Supporting information for

Real-space visualization of sequential debromination of polybrominated benzenes on Ag(111)

Lina Shang, Wenze Gao, Faming Kang, Zhaoyu Zhang, Chi Zhang* and Wei Xu*

Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China.

Experimental and Theoretical Methods

All STM experiments were carried out in an ultra-high vacuum (UHV) chamber with a base pressure of 1×10^{-10} mbar. The whole system was equipped with a variable-temperature, fast scanning "Aarhus-type" STM using electrochemically etched W tips purchased from SPECS^{1, 2}, a molecular evaporator, and standard facilities for sample preparation. The Ag(111) surface was cleaned by several cycles of 1.5 eV Ar⁺ sputtering and annealing at 780 K. After thoroughly degassing, the three polyhalogenated aromatics, namely, 1,2,3-TBB, 1,3,5-TBB, and 1,2,4,5-TBB molecules, were deposited onto the Ag(111) surface from a molecular evaporator separately. The sample was thereafter transferred within the UHV chamber to the STM head. All the STM measurements were performed in a typical temperature range of 100 - 150 K, and the typical scanning parameters were $V_t = \pm 700 - 1000 \text{ mV}$ and $I_t = 0.5 - 1.2 \text{ nA}$. STM images were further smoothed to eliminate noise. All the calculations were performed based on periodic density functional theory (DFT) by using the Vienna ab initio simulation package (VASP) code^{3, 4}. The projector-augmented wave method was used to describe the interaction between ions and electrons^{5, 6}, and the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation of the exchange-correlation functional was employed⁷. Van der Waals (vdW) corrections to the PBE density functional were also included using the DFT-D3 method reported by Grimme⁸. The atomic structures were relaxed until the forces on all unconstrained atoms were ≤ 0.03 eV/Å. The simulated STM images were obtained by using the Tersoff-Hamann method⁹, in which the local density of states (LDOS) is used to approximate the tunneling current. DFT calculations on the monomer and two kinds of organometallic dimers from 1,2,3-TBB were performed including Ag(111) substrate. The Ag(111) substrate was modelled by a four-layered slab separated by a ~15 Å vacuum region for the structural models, where the bottom two layers were fixed. As for the situations of 1,3,5-TBB and 1,2,4,5-TBB, the structural models were optimized in gas phase.

Additional Data

Figure S1. Large-scale STM images of (a) 1,2,3-TBB monomers, (b, c) organometallic dimers obtained upon deposition at (a) \sim 120 K, (b) \sim 220 K, and (c) 300 K. The white contours indicate individual motifs, respectively.

Figure S2. (a)-(c) DFT optimized structural models of the (a) monomer and (b), (c) two kinds of organometallic dimers from 1,2,3-TBB on Ag(111). (d)-(f) Corresponding STM simulations based on the structural models.

Figure S3. (a) Large-scale STM image showing the coexistence of monomers and dimers after deposition of 1,3,5-TBB onto Ag(111) at 300 K. (b) Typical zoomed-in high-resolution STM image showing the details of the disordered phase involved, which is dominantly made up of monomers and organometallic dimers coexisting with some impurities.

Figure S4. Statistics showing the proportion of doubly- (debr2) and triply-dehalogenated (debr3) 1,3,5-TBB involved in the structural phases obtained after annealing at ~400 K and ~415 K.

Figure S5. Large-scale STM image of organometallic (a) dimer 1 and (b) dimer 2 of 1,2,4,5-TBB obtained upon annealing at ~200 K. (c) Large-scale STM image of organometallic trimers of 1,2,4,5-TBB obtained upon annealing at ~250K. Individual motifs (i.e., organometallic dimers and trimers) involved in the debromination process are highlighted in green.

References

- E. Laegsgaard, L. Österlund, P. Thostrup, P. B. Rasmussen, I. Stensgaard and F. Besenbacher, *Rev. Sci. Instrum.*, 2001, 72, 3537-3542.
- 2. F. Besenbacher, Rep. Prog. Phys., 1996, 59, 1737-1802.
- 3. G. Kresse and J. Hafner, *Phys. Rev. B*, 1993, 48, 13115-13118.
- 4. G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169-11186.
- 5. P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953-17979.
- 6. G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758-1775.
- 7. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- 8. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 9. J. Tersoff and D. R. Hamann, *Phys. Rev. B*, 1985, **31**, 805-813.