Supplementary Information for:

Supermolecule-assisted synthesis of perovskite nanorods with high PLQY for standard blue emission

ChuyingYe ${ }^{\text {a }}$, Yong Wang ${ }^{\text {b }}$ and Yin Xiao ${ }^{*}$
${ }^{\text {a }}$ School of Chemical Engineering and Technology, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China
${ }^{\mathrm{b}}$ School of Science, Tianjin University, Tianjin 300350, China

E-mail addresses: xiaovin@tiu.edu.cn

Materials

Lead(II) bromide ($\mathrm{PbBr}_{2}, 99 \%$), oleic acid (OAc, 85\%), oleylamine (OAM, 80~90\%), $\mathrm{N}, \mathrm{N}-$ dimethylformamide (DMF, anhydrous, 99.8\%), octylamine (OA, 99\%), octadecene (ODE, 90\%), β-cyclodextrin (β-CD, 99%), α-cyclodextrin (α-CD, 99%), and γ-cyclodextrin (γ-CD, 99%) were purchased from Aladdin. Toluene (AR) was purchased from Tianjin Yuanli Chemical Co., LTD. Methyl acetate (MeOAc, 99\%, AR) was purchased from Macklin.

Synthesis of $\mathrm{CsPbBr}_{3} \mathbf{N C}$

CsPbBr 3 NC was synthesized by ligand-assisted reprecipitation method as reported before. The precursor solution was formed by mixing oleylamine (OAM), dried oleic acid (OAc), $\mathrm{CsBr}, \mathrm{PbBr}_{2}$ and DMF at room temperature. Then the precursor solution was swiftly injected into toluene. The $\mathrm{CsPbBr}_{3} \mathrm{NC}$ was separated via centrifugation at 4000 rpm for 5 min followed by 12500 rpm for 5 min.

Synthesis of CD@CsPbBr ${ }_{3}$ NRs

Firstly, the precursor solution was formed by mixing oleylamine (OAM), dried oleic acid (OAc), $\mathrm{CsBr}, \mathrm{PbBr}_{2}$ and DMF at room temperature and stirred until dissolved. Then, proportional CD was added to precursor solution. The clear solution precursor solution was injected to toluene to grow CsPbBr_{3} NRs. The crude nanoparticles were separated by centrifugation 12500 rpm for 5 min and then CsPbBr_{3} NRs was injected into toluene and centrifuge at 4000 rpm for 5 min in the follow purification process.

Instruments

The UV-vis absorption spectra were recorded on a MAPADA UV-1800PC spectrophotometer. The PL spectra and PLQYs were recorded by a Horiba Fluorolog system (Horiba-F4600) with a Xe lamp as the excitation source and a Quanta-Phi integrating sphere. The X-Ray diffraction spectra were measured with the XRD Bruker D8-focus with $\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.5406 \AA$) radiation source. The transmission electron microscopy images of the NCs and NRs were recorded on a TEM (JEM-200F) at 200 kV . The samples for measurements were suspended on carbon-coated Cu grids. The XPS spectra and elemental composition was detected by a PHI 5000 Versa Probe X-ray photoelectron spectroscope (ULVAC-PHI, America).

Table of Contents

Table S1- The summary of PLQY, average lifetime ($\tau_{\text {ave }}$), radiative recombination lifetime (τ_{r}), nonradiative recombination lifetime (τ_{nr}), radiative (k_{r}) and nonradiative (k_{nr}) decay rates of the $\mathrm{CsPbBr}_{3} \mathrm{NC}$ and NRs.

Table S2•The element contents of $\mathrm{CsPbBr}_{3} \mathrm{NC}$ and β - $\mathrm{CD} @ \mathrm{CsPbBr}_{3}$ NR with $\mathbf{1 : 4}$ mole ratio of β-CD and PbBr_{2} according to XPS.

Table S3•The summarized diameter and length of NRs.
Figure S1•TEM image, UV-vis absorption and PL spectra of $\mathrm{CsPbBr}_{3} \mathrm{NC}$.
Figure S2•XPS spectra with elements Cs 3d, C 1s and Br 3d of CsPbBr_{3} NC and $\boldsymbol{\beta}$ $\mathbf{C D} @ \mathrm{CsPbBr}_{3} \mathrm{NR}$.

Figure S 3 - TEM of CsPbBr_{3} NCs and NRs with various CD and $\mathrm{CD}: \mathrm{Pb}^{2+}$ ratio.
Figure S4•Time dependence of PL of colloidal nanostructures in toluene at ambient atmosphere of $\mathrm{CsPbBr}_{3} \mathrm{NC}, \alpha-\mathrm{CD} @ \mathrm{CsPbBr}_{3} \mathrm{NR}$ and $\gamma-\mathrm{CD} @ \mathrm{CsPbBr}_{3} \mathrm{NR}$.

Table S1. The summary of PLQY, average lifetime ($\tau_{\text {ave }}$), radiative (τ_{r}) and nonradiative (τ_{nr}) recombination lifetime, radiative $\left(\mathrm{k}_{\mathrm{r}}\right)$ and nonradiative $\left(\mathrm{k}_{\mathrm{nr}}\right)$ decay rates, slow $\left(\tau_{1}\right)$ and fast $\left(\tau_{2}\right)$ decay lifetime and their weighting factors (f_{1} and f_{2}) of the $\mathrm{CsPbBr}_{3} \mathrm{NC}$ and CsPbBr_{3} NRs with different kinds of CD and various $\mathrm{CD}: \mathrm{Pb}^{2+}$ ratios in the precursor solution.

	f_{1}	f_{2}	$\tau_{1}(\mathrm{~ns})$	$\tau_{2}(\mathrm{~ns})$	$\tau_{\mathrm{r}}(\mathrm{ns})$	$\tau_{\mathrm{nr}}(\mathrm{ns})$	$\tau_{\text {avg }}$	$\mathrm{QY}(\%)$	k_{r}	k_{nr}
CsPbBr	0.13	0.87	24.7	2.8	9.4	14.4	5.7	60.5	0.106	0.069
$\beta-\mathrm{CD}: \mathrm{PbBr}_{2}=1: 5$	0.06	0.94	13.2	3.3	5.2	15.7	3.9	75.2	0.192	0.063
$\beta-\mathrm{CD}: \mathrm{PbBr}_{2}=1: 4$	0.05	0.95	12.3	3.8	4.7	42.4	4.2	90.1	0.213	0.024
$\beta-\mathrm{CD}: \mathrm{PbBr}_{2}=1: 3$	0.06	0.94	10.8	3.4	6.5	9.2	3.8	58.8	0.154	0.109
$\alpha-\mathrm{CD}: \mathrm{PbBr}_{2}=1: 5$	0.05	0.95	13.7	3.5	9.5	6.6	3.9	40.9	0.105	0.152
$\alpha-\mathrm{CD}: \mathrm{PbBr}_{2}=1: 4$	0.05	0.95	12.9	3.4	9.4	7.0	3.9	42.5	0.106	0.143
$\alpha-\mathrm{CD}: \mathrm{PbBr}_{2}=1: 3$	0.04	0.96	14.8	3.8	10.4	7.0	4.2	40.3	0.096	0.143
$\gamma-\mathrm{CD}: \mathrm{PbBr}_{2}=1: 5$	0.03	0.97	9.7	3.2	4.3	23.2	3.6	84.5	0.233	0.043
$\gamma-\mathrm{CD}: \operatorname{PbBr}_{2}=1: 4$	0.04	0.96	14.3	3.3	4.3	27.8	3.7	86.7	0.233	0.034
$\gamma-\mathrm{CD}: \operatorname{PbBr}_{2}=1: 3$	0.05	0.95	14.7	3.0	4.8	14.1	3.6	74.5	0.208	0.071

The decay transients can be fitted using a biexponential decay function ${ }^{1,2}$ given by Eq. (1):

$$
\begin{equation*}
I(t)=A_{1} \exp \left(-t / \tau_{1}\right)+A_{2} \exp \left(-t / \tau_{2}\right) \tag{1}
\end{equation*}
$$

The average lifetimes $\left(\tau_{\text {avg }}\right)$ is calculated according to Eq. (2), where τ_{i} and f_{i} are the lifetime and lifetime weighted fractional intensity of each component of the multi exponential fit:

$$
\begin{equation*}
\tau_{a v g}=\Sigma f_{i} \times \tau_{i} \tag{2}
\end{equation*}
$$

The radiative recombination lifetime $\left(\tau_{\mathrm{r}}\right)$, nonradiative recombination lifetime $\left(\tau_{\mathrm{nr}}\right)$, radiative decay rate $\left(\mathrm{k}_{\mathrm{r}}\right)$ and nonradiative decay rate $\left(\mathrm{k}_{\mathrm{nr}}\right)$ are given by Eq. (3):

$$
\begin{equation*}
Q Y=k_{r} /\left(k_{r}+k_{n r}\right)=1 / \tau_{r}\left(1 / \tau_{r}+1 / \tau_{n r}\right)=\tau_{n r} /\left(\tau_{n r}+\tau_{r}\right) \tag{3}
\end{equation*}
$$

Table S2. The XPS measured element contents of $\mathrm{CsPbBr}_{3} \mathrm{NC}$ and $\beta-\mathrm{CD} @ \mathrm{CsPbBr}_{3} \mathrm{NR}$ with $1: 4$ mole ratio of $\beta-\mathrm{CD}$ and PbBr_{2}. The error is the standard deviations of the mean of three batches.

Element	C 1 s	N 1 s	O 1 s	Br 3 d	Cs 3 d 5	Pb 4 f 7
CsPbBr_{3}	33.85 ± 3.35	1.47 ± 0.32	63.66 ± 5.08	0.51 ± 0.20	0.24 ± 0.18	0.27 ± 0.16
$\beta-\mathrm{CD} @ \mathrm{CsPbBr}_{3}$	24.20 ± 4.11	0.37 ± 0.25	74.11 ± 6.27	0.52 ± 0.29	0.31 ± 0.15	0.40 ± 0.20

Table S3. The summarized diameter and length of NRs. The error is the standard deviations of the mean of 100 NRs.

NRs	Length (nm)	Diameter (nm)
$\beta-\mathrm{CD}: \mathrm{PbBr}_{2}=1: 5$	17.8 ± 1.5	3.5 ± 0.2
$\beta-\mathrm{CD}: \mathrm{PbBr}_{2}=1: 4$	18.3 ± 1.7	3.6 ± 0.1
$\beta-\mathrm{CD}: \mathrm{PbBr}_{2}=1: 3$	20.1 ± 1.1	3.6 ± 0.1
$\alpha-\mathrm{CD}: \mathrm{PbBr}_{2}=1: 4$	22.1 ± 1.6	3.5 ± 0.1
$\gamma-\mathrm{CD}: \mathrm{PbBr}_{2}=1: 4$	17.8 ± 2.0	3.6 ± 0.2

Figure S1. (a) TEM image and (b) UV-vis absorption and PL spectra of $\mathrm{CsPbBr}_{3} \mathrm{NC}$.

Figure S2. XPS spectra with elements (a) Cs 3 d , (b) C 1 s and (c) Br 3 d of $\mathrm{CsPbBr}_{3} \mathrm{NC}$ and β $\mathrm{CD} @ \mathrm{CsPbBr}_{3}$ NR with 1:4 mole ratio of $\beta-\mathrm{CD}$ and PbBr_{2}.

Figure S3. TEM of (a) CsPbBr 3 NC , (b) $\beta-\mathrm{CD} @ \mathrm{CsPbBr}_{3} \mathrm{NR}$ with $1: 4$ ratio of $\beta-\mathrm{CD}: \mathrm{Pb}^{2+}$, (c) $\beta-\mathrm{CD} @ \mathrm{CsPbBr}_{3}$ NR with 1:5 ratio of $\beta-\mathrm{CD}: \mathrm{Pb}^{2+}$, (d) $\beta-\mathrm{CD} @ \mathrm{CsPbBr}_{3}$ NR with $1: 3$ ratio of $\beta-$ $\mathrm{CD}: \mathrm{Pb}^{2+}$, (e) $\alpha-\mathrm{CD} @ \mathrm{CsPbBr}_{3} \mathrm{NR}$ with 1:4 ratio of $\alpha-\mathrm{CD}: \mathrm{Pb}^{2+}$ and (f) $\gamma-\mathrm{CD} @ \mathrm{CsPbBr}_{3} \mathrm{NR}$ with $1: 4$ ratio of $\gamma-\mathrm{CD}: \mathrm{Pb}^{2+}$.

Figure S4. Time dependence of PL of colloidal nanostructures in toluene at ambient atmosphere (relative humidity; $30-40 \%$). (a) $\mathrm{CsPbBr}_{3} \mathrm{NC}$, (b) $\alpha-\mathrm{CD} @ \mathrm{CsPbBr}_{3}$ NR with $1: 4$ ratio of $\alpha-\mathrm{CD}$ and PbBr_{2} and (c) $\gamma-\mathrm{CD} @ \mathrm{CsPbBr}_{3} \mathrm{NR}$ with 1:4 ratio of $\gamma-\mathrm{CD}$ and PbBr_{2}.

Reference

1. C. Sun, Z. Gao, H. Liu, L. Wang, Y. Deng, P. Li, H. Li, Z.-H. Zhang, C. Fan and W. Bi, Chemistry of Materials, 2019, 31, 5116-5123.
2. S. Zhang, H. Liu, X. Li and S. Wang, Nano Energy, 2020, 77, 105302.
