# **Supporting Information**

## Iron-catalysed reductive coupling for the synthesis of polyfluorinated

#### compounds

Yu-Qiu Guan,<sup>a,c</sup> Tian-Zhang Wang,<sup>c</sup> Jia-Fan Qiao,<sup>c</sup> Zhangpei Chen,<sup>a\*</sup> Zhushuang Bai,<sup>b\*</sup>

and Yu-Feng Liang<sup>c\*</sup>

<sup>a</sup>Center for Molecular Science and Engineering, College of Sciences, Northeastern University, Shenyang 110819, China, E-mail: chenzhangpei@mail.neu.edu.cn

<sup>b</sup>School of Parmacy and Pharmaceutical Sciencce & Institute of Materia Media, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China, E-mail: baizhushuang@163.com <sup>c</sup>School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China, E-mail:

yfliang@sdu.edu.cn

# **Table of Contents**

| 1. General remarks                         | S2  |
|--------------------------------------------|-----|
| 2. General procedure                       |     |
| 3. Optimization of the reaction conditions |     |
| 4. Characterization data for all products  |     |
| 5. Mechanistic studies                     |     |
| 6. NMR Spectra for all the products        | S31 |

## 1. General remarks

<sup>1</sup>H NMR, <sup>13</sup>C NMR data were obtained on AVANCE III Bruker 500 MHz nuclear resonance spectrometers unless otherwise noted. Chemical shifts (in ppm) were referenced to tetramethylsilane (TMS) ( $\delta = 0.00$  ppm) in CDCl<sub>3</sub> or dimethyl sulfoxide  $(\delta = 2.50 \text{ ppm})$  in DMSO-d<sub>6</sub> as an internal standard. The data of <sup>1</sup>H NMR was reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multipletand br = broad), coupling constant (J values) in Hz and integration. <sup>13</sup>C NMR spectra were obtained by the same NMR spectrometers and were calibrated with CDCl<sub>3</sub> ( $\delta$  = 77.16 ppm) or DMSO-d<sub>6</sub> ( $\delta$  = 39.50 ppm). Flash chromatography was performed using 300-400 mesh silica gel with the indicated eluent according to standard techniques. Analytical thin-layer chromatography (TLC) was performed on pre-coated, glassbacked silica gel plates. Analysis of crude reaction mixture was done on an Agilent 7890 GC System with an Agilent 5975 Mass Selective Detector. Visualization of the developed chromatogram was performed by UV absorbance (254 nm) unless otherwise noted. High-resolution mass spectral (HRMS) data were recorded on Bruker APEX IV Fourier transform ion cyclotron resonance mass spectrometer using electrospray ionization (ESI) mode.

# 2. General procedure



General procedure for the synthesis of trifluoromethyl-substituted alkene 1:  $^{1, 2}$  To a Schlenk tube equipped with stir bar, arylboronic acid (1.0 equiv., 3 mmol) and Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (3 mol%, 0.09 mmol, 63.2 mg) were added. The vessel was evacuated and filled with argon (three times), and then aqueous K<sub>2</sub>CO<sub>3</sub> (2.0 M, 6 mL) and THF (9 mL) were added. After addition of 2-bromo-3,3,3-trifluoro-1-propene (1.5 equiv., 4.5mmol, 0.47 mL), the solution was stirred at 60 °C with heating mantle for 12 hours

(TLC tracking detection). The solvent was quenched with water, diluted with EtOAc (10 mL) and washed with brine (15 mL) The aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated in vacuum and the residue was purified by column chromatography to afford the corresponding trifluoromethyl alkene.



General procedure for the Fe-catalysed reductive cross-coupling of Product 3: To a 10 mL Schlenk tube was added sequentially  $Fe(OTf)_3$  (10.07 mg, 0.02 mmol), 1,10phenanthroline (6.80 mg, 0.04 mmol), Mn power (32.90 mg, 0.6 mmol). The vessel was evacuated and filled with argon (three times), DMF (0.20 mL) was added via syringe and the mixture was stirred at room temperature for 10 min. The trifluoromethylsubstituted alkene 1 (0.20 mmol) was added, followed by the bromodifluoroacetate 2 (0.40 mmol) in one portion. DMF (0.30 mL) was subsequently added via syringe. The resulting solution was stirred for 12 h at 50 °C. After this time, the crude reaction mixture was diluted with ethyl acetate (5 mL) and washed with water (2.0 mL × 3). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated. The residue was purified by flash chromatography.



**General procedure for the Product 5**: To a 25mL round-bottomed flask ethyl 4-([1,1'biphenyl]-4-yl)-2,2,5,5-tetrafluoropent-4-enoate **3aa** (1.0 mmol) was added, followed by methanol 10 mL in one portion. NaBH<sub>4</sub> (1.5 mmol) was subsequently added. The resulting solution was stirred for 5 h at room temperature. After this time, the crude reaction mixture was concentrated in vacuum and the residue was purified by column chromatography to afford the corresponding product.



General procedure for the Product 6: To a 10 mL Schlenk tube was added ethyl 4-([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoropent-4-enoate **3aa** (0.2 mmol). The vessel was evacuated and filled with argon (three times), THF (0.50 mL) was added via syringe and the mixture was stirred at room temperature for 10 min. The phenylmagnesium bromide (0.3 mmol) was added under 0 °C. The resulting solution was stirred for 12 h at room temperature. After this time, the crude reaction mixture was diluted with ethyl acetate (5 mL) and washed with water (2.0 mL × 3). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated. The residue was purified by flash chromatography.



General procedure for the Product 7:<sup>3</sup> To a 10 mL Schlenk tube was added ethyl 4-([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoropent-4-enoate **3aa** (0.2 mmol), S-phenyl 4methylbenzenesulfonothioate (0.24 mmol), NiBr<sub>2</sub> (2.2 mg, 0.01 mmol), 4,4'-dimethyl-2,2'-bipyridine (2.2 mg, 0.012 mmol) and Mn powder (22.0 mg, 0.4 mmol). DMF (0.5 mL) was added via syringe. The resulting solution was stirred for 12 h at 40 °C. After this time, the crude reaction mixture was diluted with ethyl acetate (100 mL) and washed with water (20 mL × 3). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated. The residue was purified by flash chromatography.



General procedure for the Product 8:<sup>4</sup> A solution of 1*H*-imidazole (1.0 mmol) in DMF (1 mL) was added dropwise to a mixture of ethyl 4-([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoropent-4-enoate **3aa** (1.2 mmol) and K<sub>3</sub>PO<sub>4</sub> (424.0 mg, 2.0 mmol) in DMF (1 mL) via syring and then stirred at room temperature for 12 h (monitored by TLC). After completion of the reaction, the mixture was quenched with H<sub>2</sub>O (20 mL). The aqueous phase was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 10 mL). The organic layer was dried over MgSO<sub>4</sub> and filtered, and the filtrate was concentrated in vacuo. The crude product was purified by column chromatography on silica gel using a hexane/dichloromethane (10:1) mixture as eluent to afford the pure target compound.

## 3. Optimization of the reaction conditions

| Ph CF <sub>3</sub> + | O<br>F<br>F<br>F<br>F<br>F<br>Cat.] 10 m<br>dtbpy 20 m<br>Mn 3.0 equ<br>50 °C, DM | pol%<br>pol%<br>iv.<br>IF<br>Ph<br>F<br>F<br>F |
|----------------------|-----------------------------------------------------------------------------------|------------------------------------------------|
| entry                | [Cat.]                                                                            | yield                                          |
| 1                    | NiCl <sub>2</sub>                                                                 | 16 %                                           |
| 2                    | NiBr <sub>2</sub>                                                                 | 12 %                                           |
| 3                    | Nil <sub>2</sub>                                                                  | 3 %                                            |
| 4                    | NiBr <sub>2</sub> -DME                                                            | 31 %                                           |
| 5                    | NiBr <sub>2</sub> -bpy                                                            | 6 %                                            |
| 6                    | Ni(acac) <sub>2</sub>                                                             | 3 %                                            |
| 7                    | CoCl <sub>2</sub>                                                                 | 20 %                                           |
| 8                    | CrCl <sub>3</sub>                                                                 | 13 %                                           |
| 9                    | Fe(OTf) <sub>3</sub>                                                              | 45 %                                           |
| 10                   | FeCl <sub>3</sub>                                                                 | 41 %                                           |
| 11                   | FeCl <sub>2</sub>                                                                 | 45 %                                           |
| 12                   | Fe(acac) <sub>3</sub>                                                             | 37 %                                           |
| 13                   | dppf                                                                              | 20 %                                           |
| 14                   | Fe(OTf) <sub>3</sub>                                                              | 49 %                                           |
| 15                   | none                                                                              | n.d.                                           |

Table S1. Optimization of the catalysts

## Table S2. Optimization of the ligands



Table S3. Optimization of reaction temperature

| Ph    | +FFF  | 0 mol%<br>20 mol%<br>equiv.<br>DMF Ph |
|-------|-------|---------------------------------------|
| entry | Temp. | yield                                 |
| 1     | r.t.  | 57 %                                  |
| 2     | 35 °C | 60 %                                  |
| 3     | 50 °C | 92 %                                  |

| Ph CF <sub>3</sub> | +FFFFFFFFFFFFFFFFFFFF           | Ph    |
|--------------------|---------------------------------|-------|
| entry              | reductant                       | yield |
| 1                  | Mn                              | 92 %  |
| 2                  | Zn                              | 56 %  |
| 3                  | B <sub>2</sub> pin <sub>2</sub> | trace |

#### Table S4. Optimization of the reducing agents

#### Table S5. Optimization of the solvents

| Ph CF <sub>3</sub> | + 0 F Br F (OTf) <sub>3</sub> 10 mol%<br><u>1, 10-phen 20 mol%</u><br>Mn 3.0 equiv.<br>50 °C, solvent | Ph    |
|--------------------|-------------------------------------------------------------------------------------------------------|-------|
| 1a                 | 2a                                                                                                    | 3aa   |
| entry              | solvent                                                                                               | yield |
| 1                  | DMF                                                                                                   | 92 %  |
| 2                  | DMA                                                                                                   | 87 %  |
| 3                  | DMSO                                                                                                  | 88 %  |
| 4                  | dioxane                                                                                               | 25 %  |
| 5                  | toluene                                                                                               | n.d.  |
| 6                  | MeCN                                                                                                  | 33 %  |
| 7                  | THF                                                                                                   | 35 %  |
| 8                  | DCE                                                                                                   | 7 %   |
| 9 <sup>a</sup>     | DMF                                                                                                   | 65 %  |

Reaction conditions: **1a** (0.20 mmol), **2a** (0.40 mmol), catalyst (10 mol%), ligand (20 mol%), reducing agent (0.60 mmol), solvent (0.5 mL) for 12 h. Isolated yields. <sup>*a*</sup> chlorodifluoroacetic ester was used instead of **2a**.

# 4. Characterization data for all products



Ethyl 4-([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoropent-4-enoate (3aa). The

representative procedure was followed using 4-(3,3,3-trifluoroprop-1-en-2-yl)-1,1'biphenyl (1a) (49.65 mg, 0.20 mmol) and ethyl 2-bromo-2,2-difluoroacetate (2a) (81.19 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 50 : 1) yielded **3aa** (64.8 mg, 92 %) as a white solid; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.51 – 7.50 (m, 2H), 7.50 – 7.48 (m, 2H), 7.36 – 7.33 (m, 2H), 7.29 – 7.26 (m, 3H), 3.94 (q, *J* = 7.0 Hz, 2H), 3.18 – 3.12 (m, 2H), 1.10 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  163.39 (t, *J* = 26.2 Hz), 155.37 (t, *J* = 232.0 Hz), 140.71, 140.28, 131.00, 128.87, 128.82, 127.55, 127.10, 126.97, 114.49 (t, *J* = 198.0 Hz), 84.60 (t, *J* = 16.3 Hz), 62.95, 33.92 (t, *J* = 20.5 Hz), 13.62; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -86.19, -104.17; HRMS (ESI) m/z ([M+ H]<sup>+</sup>) Calcd. for C<sub>19</sub>H<sub>17</sub>F<sub>4</sub>O<sub>2</sub> 353.1159, found: 353.1156.



Ethyl 2,2,5,5-tetrafluoro-4-(*p*-tolyl)pent-4-enoate (3ba). The representative procedure was followed using 1-methyl-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene (1b) (37.24 mg, 0.20 mmol) and ethyl 2-bromo-2,2-difluoroacetate (2a) (81.19 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 100 : 1) yielded 3ba (53.9 mg, 90 %) as a colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.12 – 7.07 (m, 4H), 3.94 (q, *J* = 7.2 Hz, 2H), 3.14 – 3.07 (m, 2H), 2.26 (s, 3H), 1.11 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  163.41 (t, *J* = 40.1 Hz), 155.21 (t, *J* = 362.5 Hz), 137.73, 129.14, 129.04, 128.32, 114.52 (t, *J* = 313.8 Hz), 84.63 (t, *J* = 24.5 Hz), 62.88, 34.02 (t, *J* = 31.8 Hz), 21.08, 13.60; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -87.16, -104.25; HRMS (ESI) m/z ([M+H]<sup>+</sup>) Calcd. for C<sub>14</sub>H<sub>15</sub>F<sub>4</sub>O<sub>2</sub> 291.1003, found: 291.1001.



Ethyl 4-(4-[tert-butyl]phenyl)-2,2,5,5-tetrafluoropent-4-enoate (3ca). The

representative procedure was followed using 1-(*tert*-butyl)-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene (1c) (45.65 mg, 0.20 mmol) and ethyl 2-bromo-2,2-difluoroacetate (2a) (81.19 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 100 : 1) yielded **3ca** (67.7 mg, 87 %) as a colorless oil; <sup>1</sup>H NMR (**500 MHz, CDCl**<sub>3</sub>)  $\delta$  7.31 – 7.28 (m, 2H), 7.16 – 7.14 (m, 2H), 3.84 (q, *J* = 9.0 Hz, 2H), 3.15 – 3.08 (m, 2H), 1.23 (s, 9H), 1.08 – 1.04 (t, *J* = 9.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  163.39 (t, *J* = 40.0 Hz), 155.30 (t, *J* = 362.8 Hz), 150.88, 128.93, 128.14, 125.37, 114.49 (t, *J* = 313.2 Hz), 84.53 (t, *J* = 24.8 Hz), 62.82, 34.54, 34.00 (t, *J* = 33.0 Hz), 37.18, 13.58; <sup>19</sup>F NMR (**377 MHz, CDCl**<sub>3</sub>)  $\delta$  -86.96 , -104.35; HRMS (ESI) m/z ([M+ Na]<sup>+</sup>) Calcd. for C<sub>17</sub>H<sub>20</sub>F<sub>4</sub>O<sub>2</sub>Na 355.1292, found: 355.1293.



Ethyl 2,2,5,5-tetrafluoro-4-(naphthalen-2-yl)pent-4-enoate (3da). The representative procedure was followed using 2-(3,3,3-trifluoroprop-1-en-2-yl)naphthalene (1d) (44.44 mg, 0.20 mmol) and ethyl 2-bromo-2,2-difluoroacetate (2a) (81.19 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 50 : 1) yielded 3da (47.0 mg, 72%) as a white solid; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.71 – 7.65 (m, 4H), 7.37 – 7.28 (m, 3H), 3.78 (q, *J* = 7.0 Hz, 2H), 3.23 – 3.20 (m, 2H), 0.96 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  163.36 (t, *J* = 25.6 Hz), 155.52 (t, *J* = 232.6 Hz), 133.05, 132.62, 129.43, 128.13, 127.89, 127.82, 127.55, 126.47, 126.44, 125.94, 114.52 (t, *J* = 201.1 Hz), 84.99 (t, *J* = 16.0 Hz), 62.85, 34.06 (t, *J* = 20.0 Hz), 13.42; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -86.39, -104.10; HRMS (ESI) m/z ([M+H]<sup>+</sup>) Calcd. for C<sub>17</sub>H<sub>15</sub>F<sub>4</sub>O<sub>2</sub> 327.1003, found: 327.1002.



Ethyl 2,2,5,5-tetrafluoro-4-(naphthalen-1-yl)pent-4-enoate (3ea). The representative procedure was followed using 1-(3,3,3-trifluoroprop-1-en-2-yl)naphthalene (1e) (44.44 mg, 0.20 mmol) and ethyl 2-bromo-2,2-difluoroacetate (2a) (81.19 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 50 : 1) yielded 3ea (45.7 mg, 70%) as a white solid; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.78 – 7.71 (m, 3H), 7.46 –7.30 (m, 4H), 3.83 – 3.71 (m, 2H), 3.29 – 3.16 (m, 2H), 0.91 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  163.21 (t, *J* = 32.3 Hz), 155.34 (t, *J* = 287.6 Hz), 133.76, 131.18, 129.42, 128.96, 128.66, 128.09, 126.62, 126.06, 125.22, 124.44, 114.52 (t, *J* = 250.8 Hz), 82.73 (t, *J* = 23.8 Hz), 62.80, 35.00 (t, *J* = 27.9 Hz), 13.37; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -86.58, -104.24, -113.55; HRMS (ESI) m/z ([M+H]<sup>+</sup>) Calcd. for C<sub>17</sub>H<sub>15</sub>F<sub>4</sub>O<sub>2</sub> 327.1003, found: 327.1001.



Ethyl 2,2,5,5-tetrafluoro-4-(3-hydroxyphenyl)pent-4-enoate (3fa). The representative procedure was followed using 3-(3,3,3-trifluoroprop-1-en-2-yl)phenol (1f) (37.63 mg, 0.20 mmol) and ethyl 2-bromo-2,2-difluoroacetate (2a) (81.19 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 10 : 1) yielded 3fa (43.8 mg, 75%) as a yellow oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.21 (m, 1H), 6.86 – 6.84 (m, 1H), 6.78 – 6.77 (m, 2H), 5.79 (s, 1H), 4.04 (q, *J* = 7.0 Hz, 2H), 3.20 – 3.14 (m, 2H), 1.20 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 163.74 (t, *J* = 25.7 Hz), 155.66, 155.32 (t, *J* = 232.6 Hz), 133.54, 129.71, 120.81, 115.69, 115.05,114.43 (t, *J* = 201.1 Hz), 84.56 (t, *J* = 16.2 Hz), 63.19, 33.93 (t, *J* = 20.6 Hz), 13.54; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>) δ -85.89, -104.23; HRMS (ESI) m/z ([M+ H]<sup>+</sup>) Calcd. for C<sub>13</sub>H<sub>13</sub>F<sub>4</sub>O<sub>3</sub> 293.0795, found: 293.0794.



Ethyl 2,2,5,5-tetrafluoro-4-(2-methoxyphenyl)pent-4-enoate (3ga). The representative procedure was followed using 1-methoxy-2-(3,3,3-trifluoroprop-1-en-2-yl)benzene (1g) (40.44 mg, 0.20 mmol) and ethyl 2-bromo-2,2-difluoroacetate (2a) (81.19 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 10 : 1) yielded 3ga (47.8 mg, 78%) as a colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.25 – 7.20 (m, 1H), 7.09 – 7.06 (m, 1H), 6.88 – 6.86 (m, 1H), 6.84 – 6.80 (m, 1H), 3.93 (q, *J* = 9.0 Hz, 2H), 3.75 (s, 3H), 3.18 – 3.09 (m, 2H), 1.10 (t, *J* = 9.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  163.46 (t, *J* = 40.0 Hz), 157.18, 155.06 (t, *J* = 359.4 Hz), 131.55, 129.79, 120.44, 117.31, 114.81(t, *J* = 179.0 Hz), 110.73, 82.34 (t, *J* = 34.1 Hz), 62.72, 55.36, 33.11 (t, *J* = 31.5 Hz), 13.63; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -86.09, -89.20, -103.97.; HRMS (ESI) m/z ([M+ H]<sup>+</sup>) Calcd. for C<sub>14</sub>H<sub>15</sub>F<sub>4</sub>O<sub>3</sub> 307.0952, found: 307.0954.



Ethyl 2,2,5,5-tetrafluoro-4-(3-methoxyphenyl)pent-4-enoate (3ha). The representative procedure was followed using 1-methoxy-3-(3,3,3-trifluoroprop-1-en-2-yl)benzene (1h) (40.44 mg, 0.20 mmol) and ethyl 2-bromo-2,2-difluoroacetate (2a) (81.19 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 10 : 1) yielded 3ha (49.0 mg, 80%) as a colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.29 – 7.25 (m, 1H), 6.89 – 6.83 (m, 3H), 4.03 (q, *J* = 7.0 Hz, 2H), 3.80 (s, 3H), 3.22 – 3.15 (m, 2H), 1.20 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  163.37 (t, *J* = 32.0 Hz), 159.51, 155.30 (t, *J* = 290.5 Hz), 133.41, 129.44, 120.83, 114.54 (t, *J* = 248.1 Hz), 114.40, 113.29, 84.76 (t, *J* = 19.9 Hz), 62.93, 55.23, 34.02 (t, *J* = 26.5 Hz), 13.62; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -85.93, -86.41, -104.30; HRMS (ESI) m/z ([M+ H]<sup>+</sup>)

Calcd. for C<sub>14</sub>H<sub>15</sub>F<sub>4</sub>O<sub>3</sub> 307.0952, found: 307.0947.



Ethyl 2,2,5,5-tetrafluoro-4-(4-methoxyphenyl)pent-4-enoate (3ia). The representative procedure was followed using 1-methoxy-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene (1i) (40.44 mg, 0.20 mmol) and ethyl 2-bromo-2,2-difluoroacetate (2a) (81.19 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 10 : 1) yielded 3ia (51.2 mg, 80%) as a colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.22 – 7.20 (m, 2H), 6.89 – 6.88 (m, 2H), 4.04 (q, *J* = 7.0 Hz, 2H), 3.80 (s, 3H), 3.19 – 3.13 (m, 2H), 1.20 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  163.42 (t, *J* = 31.9 Hz), 159.16, 155.19 (t, *J* = 289.6 Hz), 129.69, 124.14, 114.54 (t, *J* = 251.6 Hz), 113.90, 84.33 (t, *J* = 20.4 Hz), 62.89, 55.22, 34.11 (t, *J* = 24.8 Hz), 13.64; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -89.59, -106.17; HRMS (ESI) m/z ([M+ H]<sup>+</sup>) Calcd. for C<sub>14</sub>H<sub>15</sub>F<sub>4</sub>O<sub>3</sub> 307.0952, found: 307.0950.



Ethyl 4-(3,5-dimethoxyphenyl)-2,2,5,5-tetrafluoropent-4-enoate (3ja). The representative procedure was followed using 1,3-dimethoxy-5-(3,3,3-trifluoroprop-1-en-2-yl)benzene (1j) (46.44 mg, 0.20 mmol) and ethyl 2-bromo-2,2-difluoroacetate (2a) (81.19 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 5 : 1) yielded 3ja (57.2 mg, 85 %) as a white solid.; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.36 – 6.35 (m, 2H), 6.33 – 6.31 (m, 1H), 4.00 (q, *J* = 9.0 Hz, 2H), 3.71 (s, 6H), 3.13 – 3.06 (m, 2H), 1.14 (t, *J* = 9.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  163.40 (t, *J* = 40.5 Hz), 160.68, 155.31 (t, *J* = 362.9 Hz), 134.01, 114.41 (t, *J* = 315.1 Hz), 106.81, 99.86,

84.85 (t, J = 19.8 Hz), 62.96, 55.34, 34.06 (t, J = 32.8 Hz), 13.62; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -85.34, -86.27, -104.29; HRMS (ESI) m/z ([M+H]<sup>+</sup>) Calcd. for C<sub>15</sub>H<sub>17</sub>F<sub>4</sub>O<sub>4</sub> 337.1057, found: 337.1056.



**Ethyl 2,2,5,5-tetrafluoro-4-(4-[trifluoromethyl]phenyl)pent-4-enoate (3ka).** The representative procedure was followed using 1-(trifluoromethyl)-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene (**1k**) (48.03 mg, 0.20 mmol) and ethyl 2-bromo-2,2-difluoroacetate (**2a**) (81.19 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 20 : 1) yielded **3ka** (44.7 mg, 65 %) as a white solid.; <sup>1</sup>H NMR (**500** MHz, CDCl<sub>3</sub>)  $\delta$  7.57 – 7.55 (m, 2H), 7.37 – 7.35 (m, 2H), 4.03 (q, *J* = 7.0 Hz, 2H), 3.18 – 3.12 (m, 2H), 1.15 (t, *J* = 7.0 Hz, 3H).; <sup>13</sup>C NMR (**125** MHz, CDCl<sub>3</sub>)  $\delta$  163.30 (t, *J* = 32.0 Hz), 155.55 (t, *J* = 292.0 Hz), 136.06, 129.91 (t, *J* = 33.8 Hz), 128.88, 125.46, 124.93 (t, *J* = 270.4 Hz), 114.28 (t, *J* = 251.4 Hz), 84.31 (t, *J* = 23.1 Hz), 63.12, 33.73 (t, *J* = 24.3 Hz), 13.67; <sup>19</sup>F NMR (**377** MHz, CDCl<sub>3</sub>)  $\delta$  -62.80, -84.77, -104.30; HRMS (ESI) m/z ([M+ H]<sup>+</sup>) Calcd. for C<sub>14</sub>H<sub>12</sub>F<sub>7</sub>O<sub>2</sub> 345.0720, found: 345.0721.



Ethyl 2,2,5,5-tetrafluoro-4-(4-[trifluoromethoxy]phenyl)pent-4-enoate (3la). The representative procedure was followed using 1-(trifluoromethoxy)-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene (1l) (51.23 mg, 0.20 mmol) and ethyl 2-bromo-2,2-difluoroacetate (2a) (81.19 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 20 : 1) yielded 3la (45.4 mg, 63 %) as a yellow solid.; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.27 – 7.25 (m, 2H), 7.15 – 7.13 (m, 2H), 3.99 (q, *J* = 9.0 Hz, 2H), 3.15 – 3.08 (m, 2H), 1.13 (t, *J* = 9.0 Hz, 3H).; <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$ 

163.29 (t, J = 40.1 Hz), 155.43 (t, J = 363.8 Hz), 148.66, 130.87, 130.08, 121.68, 119.12 (t, J = 280.9 Hz), 114.33 (t, J = 313.8 Hz), 84.15 (t, J = 25.3 Hz), 63.05, 33.96 (t, J = 32.0 Hz), 13.63; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -57.92, -85.76, -104.33; HRMS (ESI) m/z ([M+H]<sup>+</sup>) Calcd. for C<sub>14</sub>H<sub>12</sub>F<sub>7</sub>O<sub>3</sub> 361.0669, found: 361.0671.



**Ethyl 4-(4-cyanophenyl)-2,2,5,5-tetrafluoropent-4-enoate (3ma).** The representative procedure was followed using 4-(3,3,3-trifluoroprop-1-en-2-yl)benzonitrile (**1m**) (39.43 mg, 0.20 mmol) and ethyl 2-bromo-2,2-difluoroacetate (**2a**) (81.19 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 10 : 1) yielded **3ma** (45.2 mg, 75 %) as a yellow solid.; <sup>1</sup>H NMR (**500 MHz, CDCl**<sub>3</sub>)  $\delta$  7.68 – 7.66 (m, 2H), 7.45 – 7.43 (m, 2H), 4.15 (q, *J* = 9.0 Hz, 2H), 3.25 – 3.18 (m, 2H), 1.27 (t, *J* = 9.0 Hz, 3H); <sup>13</sup>C NMR (**125 MHz, CDCl**<sub>3</sub>)  $\delta$  163.17 (t, *J* = 39.4 Hz), 155.60 (t, *J* = 367.8 Hz), 132.26, 131.77, 129.13, 118.31, 114.20 (t, *J* = 311.9 Hz), 111.71, 84.34 (t, *J* = 41.3 Hz), 63.21, 33.42 (t, *J* = 28.8 Hz), 13.75; <sup>19</sup>F NMR (**377 MHz, CDCl**<sub>3</sub>)  $\delta$  -83.23, -83.60, -104.31; HRMS (ESI) m/z ([M+ H]<sup>+</sup>) Calcd. for C<sub>14</sub>H<sub>12</sub>F<sub>4</sub>NO<sub>2</sub> 302.0799, found: 302.0796.



Ethyl 2,2,5,5-tetrafluoro-4-(4-[methylsulfonyl]phenyl)pent-4-enoate (3na). The representative procedure was followed using 1-(methylsulfonyl)-4-(3,3,3-trifluoroprop-1-en-2-yl)benzene (1n) (50.05 mg, 0.20 mmol) and ethyl 2-bromo-2,2-difluoroacetate (2a) (81.19 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 5 : 1) yielded 3na (48.2 mg, 68 %) as a yellow solid.; <sup>1</sup>H NMR (500

**MHz, CDCl3**)  $\delta$  7.95 – 7.94 (m, 2H), 7.53 – 7.52 (m, 2H), 4.18 (q, J = 9.0 Hz, 2H), 3.27 – 3.20 (m, 2H), 3.07 (s, 3H), 1.27 (t, J = 9.0 Hz, 3H); <sup>13</sup>**C NMR (125 MHz, CDCl3)**  $\delta$  163.13 (t, J = 31.8 Hz), 155.60 (t, J = 293.0 Hz), 139.80, 129.35, 127.57, 127.05, 114.17 (t, J = 251.0 Hz), 84.20 (t, J = 21.8 Hz), 63.20, 44.43, 33.72 (t, J = 25.3 Hz), 13.71; <sup>19</sup>**F NMR (377 MHz, CDCl3)**  $\delta$  -83.25, -83.70, -104.17; **HRMS** (ESI) m/z ([M+ H]<sup>+</sup>) Calcd. for C<sub>14</sub>H<sub>15</sub>F<sub>4</sub>O<sub>4</sub>S 355.0622, found: 355.0624.



Methyl 4-(5-ethoxy-1,1,4,4-tetrafluoro-5-oxopent-1-en-2-yl)benzoate (3oa). The representative procedure was followed using methyl 4-(3,3,3-trifluoroprop-1-en-2-yl)benzoate (1o) (46.04 mg, 0.20 mmol) and ethyl 2-bromo-2,2-difluoroacetate (2a) (81.19 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 10 : 1) yielded 3oa (46.8 mg, 70 %) as a white solid.; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 – 7.95 (m, 2H), 7.33 – 7.30 (m, 2H), 4.00 (q, *J* = 9.0 Hz, 2H), 3.85 (s, 3H), 3.19 – 3.12 (m, 2H), 1.15 (t, *J* = 9.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  166.50, 163.25 (t, *J* = 32.0 Hz), 155.47 (t, *J* = 292.4 Hz), 136.93, 129.91, 129.68, 128.40, 114.29 (t, *J* = 251.9 Hz), 84.56 (t, *J* = 21.1 Hz), 63.18, 52.24, 33.63 (t, *J* = 25.4 Hz), 13.67; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -84.55, -104.30; HRMS (ESI) m/z ([M+ H]<sup>+</sup>) Calcd. for C<sub>15</sub>H<sub>15</sub>F<sub>4</sub>O<sub>4</sub> 355.0901, found: 335.0899.



**Ethyl 2,2,5,5-tetrafluoro-4-(4-[methylthio]phenyl)pent-4-enoate (3pa).** The representative procedure was followed using methyl(4-[3,3,3-trifluoroprop-1-en-2-yl]phenyl)sulfane (**1p**) (43.65 mg, 0.20 mmol) and ethyl 2-bromo-2,2-difluoroacetate

(2a) (81.19 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 30 : 1) yielded **3pa** (60.6 mg, 94 %) as a yellow solid.; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.23 – 7.21 (m, 4H), 4.04 (q, J = 9.0 Hz, 2H), 3.22 – 3.14 (m, 2H), 2.48 (s, 3H), 1.21 (t, J = 9.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  163.36 (t, J = 40.5 Hz), 155.25 (t, J = 363.0 Hz), 138.57, 128.82, 128.79, 126.19, 114.44 (t, J = 314.1 Hz), 84.37 (t, J = 25.0 Hz), 62.96, 33.85 (t, J = 32.0 Hz), 15.47, 13.65; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -86.47, -104.28; HRMS (ESI) m/z ([M+ H]<sup>+</sup>) Calcd. for C<sub>14</sub>H<sub>15</sub>F<sub>4</sub>O<sub>2</sub>S 323.0722, found: 323.0715.



**Ethyl 4-(3-acetylphenyl)-2,2,5,5-tetrafluoropent-4-enoate (3qa).** The representative procedure was followed using 1-(3-[3,3,3-trifluoroprop-1-en-2-yl]phenyl)ethan-1-one (**1q**) (42.84 mg, 0.20 mmol) and ethyl 2-bromo-2,2-difluoroacetate (**2a**) (81.19 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 30 : 1) yielded **3qa** (51.9 mg, 79 %) as a white solid.; **<sup>1</sup>H NMR (500 MHz, CDCl3**)  $\delta$  7.92 – 7.88 (m, 2H), 7.53 – 7.45 (m, 2H), 4.08 (q, *J* = 9.0 Hz, 2H), 3.29 – 3.20 (m, 2H), 2.61 (s, 3H), 1.21 (t, *J* = 9.0 Hz, 3H); <sup>13</sup>C NMR (**125 MHz, CDCl3**)  $\delta$  197.38, 163.17 (t, *J* = 39.9 Hz), 155.40 (t, *J* = 363.8 Hz), 137.27, 133.05, 132.80, 128.76, 128.10, 127.78, 114.32 (t, *J* = 318.9 Hz), 84.35 (t, *J* = 25.3 Hz), 62.95, 33.76 (t, *J* = 31.6 Hz), 26.45, 13.53; <sup>19</sup>F NMR (**377 MHz, CDCl3**)  $\delta$  -85.89, -104.26; HRMS (ESI) m/z ([M+H]<sup>+</sup>) Calcd. for C<sub>15</sub>H<sub>15</sub>F<sub>4</sub>O<sub>3</sub> 319.0952, found: 319.0949.



Ethyl 4-(benzo[d][1,3]dioxol-5-yl)-2,2,5,5-tetrafluoropent-4-enoate (3ra). The

representative procedure was followed using 5-(3,3,3-trifluoroprop-1-en-2yl)benzo[d][1,3]dioxole (1r) (43.23 mg, 0.20 mmol) and ethyl 2-bromo-2,2difluoroacetate (2a) (81.19 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 50 : 1) yielded 3ra (53.2 mg, 83 %) as a white solid.; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.73 – 6.66 (m, 3H), 5.89 (s, 2H), 4.04 (q, *J* = 9.0 Hz, 2H), 3.10 – 3.02 (m, 2H), 1.17 (t, *J* = 9.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  163.38 (t, *J* = 32.0 Hz), 155.24 (t, *J* = 289.9 Hz), 147.70, 147.21, 125.64, 122.22, 114.46 (t, *J* = 251.1 Hz), 109.02, 108.26, 101.25, 84.58 (t, *J* = 20.8 Hz), 62.97, 34.24 (t, *J* = 25.5 Hz), 13.68; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -86.80, -87.25, -104.22; HRMS (ESI) m/z ([M+ H]<sup>+</sup>) Calcd. for C<sub>14</sub>H<sub>13</sub>F<sub>4</sub>O<sub>4</sub> 321.0744, found: 321.0746.



**Ethyl 4-(3-aminophenyl)-2,2,5,5-tetrafluoropent-4-enoate (3sa).** The representative procedure was followed using 3-(3,3,3-trifluoroprop-1-en-2-yl)aniline (**1s**) (37.43 mg, 0.20 mmol) and ethyl 2-bromo-2,2-difluoroacetate (**2a**) (81.19 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 5 : 1) yielded **3sa** (51.3 mg, 88 %) as a yellow oil.; <sup>1</sup>H NMR (**500 MHz, CDCl3**)  $\delta$  7.07 – 7.03 (m, 1H), 6.60 – 6.58 (m, 1H), 6.54 – 6.52 (m, 2H), 3.97 (q, *J* = 9.0 Hz, 2H), 3.81 – 3.16 (m, 2H), 3.13 – 3.04 (m, 2H), 1.13 (t, *J* = 9.0 Hz, 3H); <sup>13</sup>C NMR (**125 MHz, CDCl3**)  $\delta$  163.43 (t, *J* = 32.0 Hz), 155.21 (t, *J* = 290.1 Hz), 146.45 133.05, 129.32, 118.60, 115.14, 114.60, 114.43 (t, *J* = 251.3 Hz), 84.83 (t, *J* = 19.9 Hz), 62.93, 34.02 (t, *J* = 25.5 Hz), 13.64; <sup>19</sup>F NMR (**377 MHz, CDCl3**)  $\delta$  -86.21, -86.91, -104.35; HRMS (ESI) m/z ([M+ H]<sup>+</sup>) Calcd. for C<sub>13</sub>H<sub>14</sub>F<sub>4</sub>NO<sub>2</sub> 292.0955, found: 292.0951.



Ethyl 4-(4-[dimethylcarbamoyl]phenyl)-2,2,5,5-tetrafluoropent-4-enoate (3ta). The representative procedure was followed using *N*,*N*-dimethyl-4-(3,3,3-trifluoroprop-1-en-2-yl)benzamide (1t) (48.65 mg, 0.20 mmol) and ethyl 2-bromo-2,2difluoroacetate (2a) (81.19 mg, 0.4 mmol). Isolation by column chromatography (DCM : MeOH = 50 : 1) yielded 3ta (59.7 mg, 86 %) as a yellow oil.; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 – 7.34 (m, 2H), 7.30 – 7.26 (m, 2H), 4.04 (q, *J* = 9.0 Hz, 2H), 3.17 – 3.09 (m, 2H), 3.03 (s, 3H), 2.91 (s, 3H), 1.17 (t, *J* = 9.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  170.83, 163.27 (t, *J* = 39.9 Hz), 155.38(t, *J* = 364.3 Hz), 135.75, 133.51, 128.37, 127.25, 114.33 (t, *J* = 314.3 Hz), 84.46 (t, *J* = 25.3 Hz), 63.01, 39.44, 35.27, 33.71 (t, *J* = 29.0 Hz), 13.66; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -85.45, -104.28; HRMS (ESI) m/z ([M+ H]<sup>+</sup>) Calcd. for C<sub>16</sub>H<sub>18</sub>F<sub>4</sub>NO<sub>3</sub> 348.1217, found: 348.1216.



Ethyl 4-(dibenzo[*b,d*]thiophen-3-yl)-2,2,5,5-tetrafluoropent-4-enoate (3ua). The representative procedure was followed using 3-(3,3,3-trifluoroprop-1-en-2-yl)dibenzo[b,d]thiophene (1u) (55.66 mg, 0.20 mmol) and ethyl 2-bromo-2,2-difluoroacetate (2a) (81.19 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 30 : 1) yielded 3ua (61.2 mg, 80 %) as a white solid.; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.09 – 8.04 (m, 2H), 7.79 – 7.77 (m, 1H), 7.42 – 7.40 (m, 3H), 7.29 – 7.27 (m, 1H), 3.92 (q, *J* = 9.0 Hz, 2H), 3.32 – 3.25 (m, 2H), 1.00 (t, *J* = 9.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  163.20 (t, *J* = 39.9 Hz), 155.41 (t, *J* = 362.8 Hz), 139.47, 138.92, 136.12, 135.53, 128.14, 127.09, 126.84, 124.73, 124.60, 122.75, 121.78, 121.54, 114.45 (t, *J* = 308.6 Hz), 83.69 (t, *J* = 27.8 Hz), 62.95, 33.01 (t, *J* = 31.9 Hz),

13.52; <sup>19</sup>**F NMR (377 MHz, CDCl<sub>3</sub>)**  $\delta$  -81.56, -86.31, -104.15; **HRMS** (ESI) m/z ([M+H]<sup>+</sup>) Calcd. for C<sub>19</sub>H<sub>15</sub>F<sub>4</sub>O<sub>2</sub>S 383.0723, found: 383.0726.



**Ethyl 2,2,5,5-tetrafluoro-4-(quinolin-3-yl)pent-4-enoate (3va).** The representative procedure was followed using 3-(3,3,3-trifluoroprop-1-en-2-yl)quinoline (**1v**) (44.64 mg, 0.20 mmol) and ethyl 2-bromo-2,2-difluoroacetate (**2a**) (81.19 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 20 : 1) yielded **3va** (50.4 mg, 77 %) as a yellow oil.; **<sup>1</sup>H NMR (500 MHz, CDCl3)**  $\delta$  8.87 – 8.86 (m, 1H), 8.12 – 8.09 (m, 2H), 7.84 – 7.82 (m, 1H), 7.76 – 7.73 (m, 1H), 7.60 – 7.57 (m, 1H), 4.07 (q, *J* = 7.5 Hz, 2H), 3.36 – 3.29 (m, 2H), 1.19 (t, *J* = 7.5 Hz, 3H); <sup>13</sup>C NMR (**125 MHz, CDCl3**)  $\delta$  163.25 (t, *J* = 32.1 Hz), 155.88 (t, *J* = 292.1 Hz), 149.86, 147.12, 135.55, 130.10, 129.14, 127.82, 127.38, 127.28, 125.53, 114.33 (t, *J* = 252.2 Hz), 82.70 (t, *J* = 33.4 Hz), 63.18, 33.75 (t, *J* = 23.4 Hz), 13.65; <sup>19</sup>F NMR (**377 MHz, CDCl3**)  $\delta$  -84.71, -84.78, -104.11; **HRMS** (ESI) m/z ([M+ H]<sup>+</sup>) Calcd. for C<sub>16</sub>H<sub>14</sub>F<sub>4</sub>NO<sub>2</sub> 328.0955, found: 328.0958.



Ethyl (*E*)-2,2,7,7-tetrafluoro-6-phenylhepta-4,6-dienoate (3wa). The representative procedure was followed using (*Z*)-(1,1,1-trifluoropenta-2,4-dien-2-yl)benzene (1w) (39.64 mg, 0.20 mmol) and ethyl 2-bromo-2,2-difluoroacetate (2a) (81.19 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 50 : 1) yielded 3wa (39.3 mg, 65 %) as a colorless oil.; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.33 – 7.30 (m, 2H), 7.29 – 7.27 (m, 1H), 7.16 – 7.15 (m, 2H), 6.40 – 6.36 (m, 1H), 5.23 – 5.17 (m, 1H), 4.22 (q, *J* = 9.0 Hz, 2H), 2.83 – 2.76 (m, 2H), 1.22 (t, *J* = 9.0 Hz, 3H); <sup>13</sup>C NMR (125

**MHz, CDCl3**)  $\delta$  163.71 (t, J = 32.3 Hz), 153.85 (t, J = 291.3 Hz), 130.60, 129.98, 128.81, 128.63, 128.54, 128.13, 115.03 (t, J = 250.0 Hz), 95.34 (t, J = 16.1 Hz), 62.83, 38.40 (t, J = 24.3 Hz), 13.85; <sup>19</sup>F NMR (377 MHz, CDCl3)  $\delta$  -88.65, -89.05, -105.37; HRMS (ESI) m/z ([M+ Na]<sup>+</sup>) Calcd. for C<sub>15</sub>H<sub>14</sub>F<sub>4</sub>O<sub>2</sub>Na 325.0822, found: 325.0829.



Methyl 4-([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoropent-4-enoate (3ab). The representative procedure was followed using 4-(3,3,3-trifluoroprop-1-en-2-yl)-1,1'- biphenyl (1a) (49.65 mg, 0.20 mmol) and methyl 2-bromo-2,2-difluoroacetate (2b) (75.58 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 50 : 1) yielded 3ab (49.4 mg, 73 %) as a white solid.; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.61 – 7.58 (m, 4H), 7.47 – 7.43 (m, 2H), 7.38 – 7.36 (m, 3H), 3.58 (s, 3H), 3.29 – 3.20 (m, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  163.83 (t, *J* = 32.4 Hz), 155.39 (t, *J* = 291.0 Hz), 140.69, 140.23, 135.35, 132.05, 130.87, 128.84, 127.59, 127.11, 126.98, 114.44 (t, *J* = 254.3 Hz), 84.47 (t, *J* = 19.4 Hz), 53.18; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -86.15, -104.41; HRMS (ESI) m/z ([M+H]<sup>+</sup>) Calcd. for C<sub>18</sub>H<sub>15</sub>F<sub>4</sub>O<sub>2</sub> 339.1003, found: 339.1002.



Butyl 4-([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoropent-4-enoate (3ac). The representative procedure was followed using 4-(3,3,3-trifluoroprop-1-en-2-yl)-1,1'-biphenyl (1a) (49.65 mg, 0.20 mmol) and butyl 2-bromo-2,2-difluoroacetate (2c) (92.42 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 50 : 1) yielded 3ac (67.7 mg, 89 %) as a white solid.; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.60 – 7.57 (m, 4H), 7.45 – 7.42 (m, 2H), 7.38 – 7.35 (m, 3H), 3.97 (t, *J* = 7.0 Hz, 2H), 3.26 – 3.20 (m, 2H), 1.57 – 1.52 (m, 2H), 1.35 – 1.27 (m, 2H), 0.88 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C

**NMR (125 MHz, CDCl<sub>3</sub>)**  $\delta$  163.50 (t, J = 32.1 Hz), 155.37 (t, J = 290.8 Hz), 140.67, 140.26, 131.03, 128.85, 128.82, 127.55, 127.11, 126.97, 114.52 (t, J = 241.3 Hz), 84.56 (t, J = 19.8 Hz), 66.77, 33.94 (t, J = 24.1 Hz), 30.07, 18.84, 13.54; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -86.12, -104.15; HRMS (ESI) m/z ([M+ H]<sup>+</sup>) Calcd. for C<sub>21</sub>H<sub>21</sub>F<sub>4</sub>O<sub>2</sub> 381.1472, found: 381.1475.



*tert*-pentyl 4-([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoropent-4-enoate (3ad). The representative procedure was followed using 4-(3,3,3-trifluoroprop-1-en-2-yl)-1,1'-biphenyl (1a) (49.65 mg, 0.20 mmol) and *tert*-pentyl 2-bromo-2,2-difluoroacetate (2d) (98.02 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 30 : 1) yielded 3ad (48.1 mg, 61 %) as a white solid.; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.51 – 7.49 (m, 4H), 7.38 – 7.35 (m, 2H), 7.32 – 7.28 (m, 3H), 3.15 – 3.09 (m, 2H), 1.65 (q, *J* = 7.5 Hz, 2H), 1.27 (s, 6H), 0.78 (t, *J* = 7.5 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  162.25 (t, *J* = 31.4 Hz), 155.30 (t, *J* = 290.6 Hz), 140.70, 140.42, 131.28, 128.86, 128.80, 127.48, 127.19, 127.02, 114.47 (t, *J* = 242.3 Hz), 87.38, 84.80 (t, *J* = 19.8 Hz), 33.68 (t, *J* = 26.1 Hz), 33.28, 24.77, 8.04; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -85.86, -86.50, -103.38; HRMS (ESI) m/z ([M+ Na]<sup>+</sup>) Calcd. for C<sub>22</sub>H<sub>22</sub>F<sub>4</sub>O<sub>2</sub>Na 417.1488, found: 417.1489.



2-methyl-1-phenylpropan-2-yl 4-([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoropent-4enoate (3ae). The representative procedure was followed using 4-(3,3,3-trifluoroprop-1-en-2-yl)-1,1'-biphenyl (1a) (49.65 mg, 0.20 mmol) and 2-methyl-1-phenylpropan-2yl 2-bromo-2,2-difluoroacetate (2e) (122.85 mg, 0.4 mmol). Isolation by column

chromatography (hexane : EtOAc = 20 : 1) yielded **3ae** (48.4 mg, 58 %) as a white solid.; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.47 – 7.41 (m, 4H), 7.36 – 7.33 (m, 2H), 7.27 – 7.25 (m, 1H), 7.24 – 7.16 (m, 5H), 7.08 – 7.06 (m, 2H), 3.09 – 3.03 (m, 2H), 2.84 (s, 2H), 1.24 (s, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  162.26 (t, *J* = 31.6 Hz), 155.33 (t, *J* = 290.8 Hz), 140.62, 140.36, 136.15, 130.65, 128.84, 128.81, 128.78, 128.04, 127.47, 127.15, 126.98, 126.79, 114.35 (t, *J* = 250.8 Hz), 86.34, 84.66 (t, *J* = 19.5 Hz), 46.97, 36.63 (t, *J* = 25.4 Hz), 24.86; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -85.85, -86.41, -103.73; HRMS (ESI) m/z ([M+ Na]<sup>+</sup>) Calcd. for C<sub>27</sub>H<sub>24</sub>F<sub>4</sub>O<sub>2</sub>Na 479.1605, found: 479.1604.



**4-([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoro-1-morpholinopent-4-en-1-one** (3af). The representative procedure was followed using 4-(3,3,3-trifluoroprop-1-en-2-yl)-1,1'-biphenyl (1a) (49.65 mg, 0.20 mmol) and 2-bromo-2,2-difluoro-1-morpholinoethan-1-one (2f) (97.62 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 10 : 1) yielded 3af (63.7 mg, 81 %) as a white solid.; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.60 – 7.58 (m, 4H), 7.45 – 7.40 (m, 4H), 7.36 – 7.33 (m, 1H), 3.69 – 3.58 (m, 8H), 3.41 – 3.33 (m, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  161.47 (t, *J* = 28.6 Hz), 155.29 (t, *J* = 290.4 Hz), 140.32, 140.31, 132.17, 128.76, 128.57, 127.43, 127.05, 126.96, 117.89 (t, *J* = 255.1 Hz), 84.83 (t, *J* = 19.8 Hz), 66.62, 66.57, 46.34, 43.29, 33.43 (t, *J* = 22.8 Hz); <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -86.36, – 98.73; HRMS (ESI) m/z ([M+ H]<sup>+</sup>) Calcd. for C<sub>21</sub>H<sub>20</sub>F<sub>4</sub>NO<sub>2</sub> 394.1425, found: 394.1429.



4-([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoro-1-(pyrrolidin-1-yl)pent-4-en-1-one

(3ag). The representative procedure was followed using 4-(3,3,3-trifluoroprop-1-en-2yl)-1,1'-biphenyl (1a) (49.65 mg, 0.20 mmol) and 2-bromo-2,2-difluoro-1-(pyrrolidin-1-yl)ethan-1-one (2g) (91.22 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 30 : 1) yielded 3ag (57.4 mg, 76 %) as a white solid.; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.60 – 7.57 (m, 4H), 7.45 – 7.41 (m, 4H), 7.36 – 7.33 (m, 1H), 3.60 – 3.56 (m, 2H), 3.41 – 3.31 (m, 4H), 1.86 (q, *J* = 7.0 Hz, 2H), 1.76 (q, *J* = 7.0 Hz, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  161.60 (t, *J* = 29.0 Hz), 155.26 (t, *J* = 290.4 Hz), 140.30, 140.26, 131.86, 128.76, 128.58, 127.42, 126.98, 126.94, 117.30 (t, *J* = 254.0 Hz), 84.98 (t, *J* = 20.9 Hz), 47.37, 46.45, 33.15 (t, *J* = 24.3 Hz), 26.36, 23.12; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -86.50, -102.03; HRMS (ESI) m/z ([M+ H]<sup>+</sup>) Calcd. for C<sub>21</sub>H<sub>20</sub>F<sub>4</sub>NO 378.1476, found: 378.1472.



**4-([1,1'-biphenyl]-4-yl)**-*N*,*N*-diethyl-2,2,5,5-tetrafluoropent-4-enamide (3ah). The representative procedure was followed using 4-(3,3,3-trifluoroprop-1-en-2-yl)-1,1'-biphenyl (1a) (49.65 mg, 0.20 mmol) and 2-bromo-*N*,*N*-diethyl-2,2-difluoroacetamide (2h) (92.02 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 20 : 1) yielded 3ah (54.6 mg, 76 %) as a white solid.; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.52 – 7.50 (m, 4H), 7.37 – 7.33 (m, 4H), 7.28 – 7.25 (m, 1H), 3.37 (q, *J* = 7.0 Hz, 2H), 3.33 – 3.28 (m, 2H), 3.26 (q, *J* = 7.0 Hz, 2H), 1.08 (t, *J* = 7.0 Hz, 3H), 1.03 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  162.28 (t, *J* = 28.4 Hz), 155.27 (t, *J* = 289.9 Hz), 140.41, 140.20, 132.27, 128.75, 128.60, 127.38, 127.02, 126.97, 118.04 (t, *J* = 252.6 Hz), 85.13 (t, *J* = 18.6 Hz), 41.71, 41.47, 33.58 (t, *J* = 23.5 Hz), 14.17, 12.16; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -86.55, -99.39; HRMS (ESI) m/z ([M+ H]<sup>+</sup>) Calcd. for C<sub>21</sub>H<sub>22</sub>F<sub>4</sub>NO 380.1632, found: 380.1637.



Diethyl (3-([1,1'-biphenyl]-4-yl)-1,1,4,4-tetrafluorobut-3-en-1-yl)phosphonate (3ai). The representative procedure was followed using 4-(3,3,3-trifluoroprop-1-en-2yl)-1,1'-biphenyl (**1a**) (49.65 0.20 mmol) and diethyl mg, (bromodifluoromethyl)phosphonate (2i) (106.80 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 20 : 1) yielded **3ai** (66.6 mg, 80 %) as a yellow solid.; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.60 – 7.58 (m, 4H), 7.44 – 7.41 (m, 4H), 7.36 -7.33 (m, 1H), 4.27 - 4.23 (m, 4H), 3.26 - 3.19 (m, 2H), 1.38 - 1.35 (m, 6H);  ${}^{13}C$ **NMR (125 MHz, CDCl<sub>3</sub>)**  $\delta$  155.32 (t, J = 290.4 Hz), 140.40, 140.33, 131.98, 128.76, 128.59, 127.42, 127.06, 126.99, 84.31 (t, J = 21.1 Hz), 64.67, 64.62, 32.80 (q, J = 21.0 Hz), 16.34; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>) δ -85.64, -86.01, -110.61; <sup>31</sup>P NMR (162 **MHz, CDCl<sub>3</sub>**)  $\delta$  6.45 (t, J = 84.4 Hz); **HRMS** (ESI) m/z ([M+ H]<sup>+</sup>) Calcd. for C<sub>20</sub>H<sub>22</sub>F<sub>4</sub>O<sub>3</sub>P 417.1237, found: 417.1239.



Ethyl 4-([1,1'-biphenyl]-4-yl)-2,5,5-trifluoropent-4-enoate (3aj). The representative procedure was followed using 4-(3,3,3-trifluoroprop-1-en-2-yl)-1,1'-biphenyl (1a) (49.65 mg, 0.20 mmol) and ethyl 2-bromo-2-fluoroacetate (2j) (74.00 mg, 0.4 mmol). Isolation by column chromatography (hexane : EtOAc = 50 : 1) yielded 3aj (38.8 mg, 58 %) as a white solid.; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.54 – 7.50 (m, 4H), 7.39 – 7.33 (m, 4H), 7.28 (m, 1H), 4.86 – 4.74 (m, 1H), 4.08 – 4.00 (m, 2H), 3.00 – 2.93 (m, 2H), 1.16 (m, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  167.92 (d, *J* = 23.25 Hz), 153.74 (t, *J* = 289.0 Hz), 139.65, 139.32, 129.99, 127.85, 127.82, 126.52, 126.27, 125.99, 86.13 (t, *J* = 19.06 Hz), 84.68, 60.72, 30.35 (d, *J* = 22.63 Hz), 12.97; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -87.76, -191.04; HRMS (ESI) m/z ([M+ H]<sup>+</sup>) Calcd. for C<sub>19</sub>H<sub>18</sub>F<sub>3</sub>O<sub>2</sub>



**4-([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoropent-4-en-1-ol (5).** The representative procedure was followed using ethyl 4-([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoropent-4-enoate (**3aa**) (352.33 mg, 1.0 mmol) and NaBH<sub>4</sub> (56.75 mg, 1.5 mmol). Isolation by column chromatography (hexane : EtOAc = 5 : 1) yielded **5** (285.29 mg, 92 %) as a white solid.; <sup>1</sup>H NMR (**500 MHz, CDCl**<sub>3</sub>)  $\delta$  7.51 – 7.49 (m, 4H), 7.36 – 7.32 (m, 4H), 7.27 – 7.24 (m, 1H), 3.58 – 3.53(m, 2H), 3.04 – 2.97 (m, 2H), 1.91 (s, 1H); <sup>13</sup>C NMR (**125 MHz, CDCl**<sub>3</sub>)  $\delta$  155.21 (t, *J* = 290.2 Hz), 140.46, 140.25, 131.86, 128.79, 128.56, 127.50, 127.18, 126.97, 121.92 (t, *J* = 242.9 Hz), 85.50 (t, *J* = 20.9 Hz), 63.63 (t, *J* = 31.1 Hz), 32.19 (t, *J* = 25.6 Hz); <sup>19</sup>F NMR (**377 MHz, CDCl**<sub>3</sub>)  $\delta$  -86.48, -87.03, -106.07; **HRMS** (ESI) m/z ([M+H]<sup>+</sup>) Calcd. for C<sub>17</sub>H<sub>15</sub>F<sub>4</sub>O 311.1054, found: 311.1056.



**4-([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoro-1-phenylpent-4-en-1-one** (6). The representative procedure was followed using ethyl 4-([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoropent-4-enoate (**3aa**) (49.65 mg, 0.20 mmol) and phenylmagnesium bromide (0.30 mmol). Isolation by column chromatography (hexane : EtOAc = 10 : 1) yielded 7 (54.6 mg, 71 %) as a white solid.; <sup>1</sup>H NMR (**500** MHz, CDCl<sub>3</sub>)  $\delta$  7.58 – 7.53 (m, 6H), 7.44 – 7.41 (m, 2H), 7.35 – 7.28 (m, 6H), 3.41 – 3.35 (m, 2H); <sup>13</sup>C NMR (**125** MHz, CDCl<sub>3</sub>)  $\delta$  155.14 (t, *J* = 289.9 Hz), 141.18, 140.48, 140.00, 132.70, 128.74, 128.43, 128.14, 128.10, 127.92, 127.38, 127.35, 126.98, 126.97, 124.56 (t, *J* = 253.9 Hz) 79.91 (t, *J* = 25.1 Hz), 31.72 (t, *J* = 23.1 Hz); <sup>19</sup>F NMR (**377** MHz, CDCl<sub>3</sub>)  $\delta$  - 86.91, -87.03, -104.97; HRMS (ESI) m/z ([M+ H]<sup>+</sup>) Calcd. for C<sub>23</sub>H<sub>17</sub>F<sub>4</sub>O 385.1210,

found: 385.1212.



**Ethyl (***E***)-4-([1,1'-biphenyl]-4-yl)-2,2,5-trifluoro-5-(phenylthio)pent-4-enoate (7).** The representative procedure was followed using ethyl 4-([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoropent-4-enoate (**3aa**) (49.65 mg, 0.20 mmol) and S-phenyl 4methylbenzenesulfonothioate (63.44 mg, 0.24 mmol). Isolation by column chromatography (hexane : EtOAc = 20 : 1) yielded **6** (50.4 mg, 57 %) as a yellow solid.; **<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)** δ 7.53 – 7.50 (m, 4H), 7.39 – 7.34 (m, 2H), 7.32 – 7.25 (m, 6H), 7.22 – 7.15 (m, 2H), 3.98 (q, *J* = 7.0 Hz, 2H), 3.41 – 3.35 (m, 2H), 1.12 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (**125 MHz, CDCl<sub>3</sub>**) δ 163.45 (t, *J* = 31.9 Hz), 154.73 (t, *J* = 96.8 Hz), 152.31, 140.96, 140.35, 135.36, 134.17, 131.41, 129.87, 129.45, 129.02, 128.80 (t, *J* = 28.0 Hz), 127.56, 127.02, 126.88, 114.27 (t, *J* = 248.5 Hz), 62.95, 29.69, 13.69; <sup>19</sup>F NMR (**377 MHz, CDCl<sub>3</sub>**) δ -84.10, -103.00; **HRMS** (ESI) m/z ([M+ H]<sup>+</sup>) Calcd. for C<sub>25</sub>H<sub>22</sub>F<sub>3</sub>O<sub>2</sub>S 443.1287, found: 443.1289.



Ethyl (*Z*)-4-([1,1'-biphenyl]-4-yl)-2,2,5-trifluoro-5-(1*H*-pyrazol-1-yl)pent-4-enoate (8). The representative procedure was followed using ethyl 4-([1,1'-biphenyl]-4-yl)-2,2,5,5-tetrafluoropent-4-enoate (**3aa**) (297.9 mg, 1.20 mmol) and 1*H*-imidazole (68.1 mg, 1.0 mmol). Isolation by column chromatography (hexane : DCM = 3 : 1) yielded **8** (201.6 mg, 42 %) as a yellow solid.; <sup>1</sup>H NMR (**500 MHz, CDCl**<sub>3</sub>)  $\delta$  7.64 (s, 1H), 7.55 – 7.53 (m, 2H), 7.47 – 7.46 (m, 2H), 7.43 – 7.40 (m, 2H), 7.35 – 7.34 (m, 1H), 7.24 – 7.23 (m, 1H), 7.11 – 7.09 (m, 2H), 6.20 (s, 1H), 4.10 (q, *J* = 7.0 Hz, 2H), 3.53 – 3.47 S26

(m, 2H), 1.27 (t, J = 7.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  163.38 (t, J = 32.1 Hz), 148.71, 146.59, 142.28, 140.65 (t, J = 47.6 Hz), 139.97, 131.85, 131.20, 128.77, 128.64, 127.56, 127.04, 126.84, 114.43 (t, J = 251.8 Hz), 107.43, 63.07, 35.82 (t, J = 25.9 Hz), 13.69; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -88.00, -103.07; HRMS (ESI) m/z ([M+H]<sup>+</sup>) Calcd. for C<sub>22</sub>H<sub>20</sub>F<sub>3</sub>N<sub>2</sub>O<sub>2</sub> 401.1471, found: 401.1473.

# 5. Mechanistic studies



Ethyl 2,2-difluoro-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)acetate (9). The representative procedure was followed using 4-(3,3,3-trifluoroprop-1-en-2-yl)-1,1'biphenyl (1a) (49.65 mg, 0.20 mmol), ethyl 2-bromo-2,2-difluoroacetate (2a) (81.19 mg, 0.4 mmol) and TEMPO (62.5 mg, 0.4 mmol). Then we found that TEMPO can capture ester radical in 47% isolated yield. Isolation by column chromatography (hexane : DCM = 3 : 1) yielded 9 as a colorless liquid.; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  4.31 – 4.26 (q, *J* = 7.0 Hz, 2H), 1.52 – 1.47 (m, 6H), 1.32 – 1.28 (t, *J* = 7.0 Hz, 3H), 1.12 (s, 6H), 1.10 (s, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  160.73 (t, *J* = 42.1 Hz), 115.48 (t, *J* = 269.8 Hz), 63.00, 61.38, 40.19, 33.41, 20.75, 16.90, 13.92; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -73.46.





To a 10 mL Schlenk tube was added sequentially  $Fe(OTf)_3$  (10.07 mg, 0.02 mmol), 1,10-Phenanthroline (6.80 mg, 0.04 mmol), Mn power (32.90 mg, 0.6 mmol). The vessel was evacuated and filled with argon (three times), DMF (0.20 mL) was added via syringe and the mixture was stirred at room temperature for 10 min, ethyl 2-bromo-2,2-difluoroacetate (0.4 mmol, 81.2 mg) and 1,1-diphenylethylene (0.4 mmol, 72.0 mg) was added. The resulting solution was stirred for 12 h at room temperature. After this time, the crude reaction mixture was diluted with ethyl acetate (5 mL) and washed with water (2.0 mL × 3). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated. The residue was purified by flash chromatography.



### **References:**

- [1] B. M. Trost and L. Debien, J. Am. Chem. Soc., 2015, 137, 11606.
- [2] S. B. Lang, R. J. Wiles, C. B. Kelly and G. A. Molander, *Angew. Chem. Int. Ed.*, 2017, 56, 15073.
- [3] J. Li, W. Rao, S.-Y. Wang and S.-J. Ji, J. Org. Chem., 2019, 84, 11542.
- [4] Y. Xiong, X. Zhang, T. Huang and S. Cao, J. Org. Chem., 2014, 79, 6395.

# 6. NMR Spectra for all the products





S32





S34




























S47





## 









#### 1.16 1.15 1.15 1.13







![](_page_53_Figure_0.jpeg)

![](_page_54_Figure_0.jpeg)

![](_page_54_Figure_1.jpeg)

CDCI<sub>3</sub>

![](_page_54_Figure_3.jpeg)

![](_page_54_Figure_4.jpeg)

![](_page_54_Figure_5.jpeg)

<sup>13</sup>C NMR, 125 MHz CDCl<sub>3</sub>

![](_page_54_Figure_7.jpeg)

![](_page_55_Figure_0.jpeg)

![](_page_56_Figure_0.jpeg)

$$\begin{array}{c} 7,075\\ 7,056\\ 6,031\\ 6,573\\ 6,601\\ 6,578\\ 6,578\\ 6,578\\ 6,578\\ 6,578\\ 6,578\\ 6,578\\ 6,578\\ 6,578\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,523\\ 6,$$

![](_page_57_Figure_1.jpeg)

![](_page_57_Figure_2.jpeg)

![](_page_58_Figure_0.jpeg)

![](_page_59_Figure_0.jpeg)

# 

![](_page_60_Figure_1.jpeg)

![](_page_60_Figure_2.jpeg)

![](_page_60_Figure_3.jpeg)

![](_page_61_Figure_0.jpeg)

![](_page_62_Figure_0.jpeg)

7,332 7,332 7,319 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315

![](_page_63_Figure_1.jpeg)

<sup>1</sup>H NMR, 500 MHz CDCl<sub>3</sub>

![](_page_63_Figure_3.jpeg)

![](_page_64_Figure_0.jpeg)

![](_page_65_Figure_0.jpeg)

 $\begin{array}{c} 7,596\\ 7,591\\ 7,572\\ 7,574\\ 7,572\\ 7,572\\ 7,572\\ 7,572\\ 7,572\\ 7,572\\ 7,572\\ 7,572\\ 7,572\\ 7,572\\ 7,572\\ 7,572\\ 7,572\\ 7,572\\ 7,572\\ 7,572\\ 7,370\\ 7,572\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,372\\ 7,$ 

![](_page_66_Figure_1.jpeg)

![](_page_66_Figure_2.jpeg)

![](_page_66_Figure_3.jpeg)

![](_page_67_Figure_0.jpeg)

![](_page_68_Figure_0.jpeg)

 $\begin{array}{c} 7.470\\ 7.467\\ 7.456\\ 7.455\\ 7.451\\ 7.451\\ 7.451\\ 7.451\\ 7.453\\ 7.453\\ 7.413\\ 7.413\\ 7.413\\ 7.413\\ 7.413\\ 7.413\\ 7.413\\ 7.333\\ 7.260\\ 7.225\\ 7.225\\ 7.225\\ 7.225\\ 7.225\\ 7.225\\ 7.225\\ 7.225\\ 7.225\\ 7.225\\ 7.225\\ 7.225\\ 7.225\\ 7.225\\ 7.225\\ 7.225\\ 7.225\\ 7.225\\ 7.225\\ 7.225\\ 7.225\\ 7.225\\ 7.225\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.255\\ 7.$ 

![](_page_69_Figure_1.jpeg)

![](_page_69_Figure_3.jpeg)

![](_page_69_Figure_4.jpeg)

![](_page_69_Figure_5.jpeg)

![](_page_70_Figure_0.jpeg)

![](_page_71_Figure_0.jpeg)
## $\begin{array}{c} 7.591\\ 7.578\\ 7.578\\ 7.448\\ 7.448\\ 7.444\\ 7.444\\ 7.441\\ 7.424\\ 7.426\\ 7.426\\ 7.426\\ 7.356\\ 7.356\\ 7.356\\ 7.356\\ 7.356\\ 7.356\\ 7.356\\ 7.356\\ 7.356\\ 3.556\\ 3.356\\ 3.356\\ 3.356\\ 3.356\\ 3.356\\ 3.356\\ 3.356\\ 3.356\\ 3.356\\ 3.356\\ 3.356\\ 3.356\\ 3.356\\ 1.736\\ 3.356\\ 3.356\\ 3.356\\ 3.356\\ 1.252\\ 1.88\\ 1.88\\ 1.88\\ 1.88\\ 1.88\\ 1.88\\ 1.88\\ 1.88\\ 1.88\\ 1.88\\ 1.88\\ 1.88\\ 1.88\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1.756\\ 1$









S75







 $\begin{array}{c} 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\ 7.5 \\$ 













3.071 3.035 2.999

S81





## 



<sup>1</sup>H NMR, 500 MHz CDCI<sub>3</sub>





S83





CDCI<sub>3</sub>







