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Table S1: Comparison with recent literature reports

S.No Journal | Design Detection Method | LOD | Response | Response | Selectiv
strategy | ity
1. This work Pyrazine based | Non eznzymatic, 4 nM Non Selective
Supramolecular | increased n-m stacking. ‘turn on’ eznzymatic, For
assemblies No External cholesterol
chromogenic
substrate
2. ACS Appl. fluorescence % Blocking of FRET in | 4.89 nM Enzymatic Non
Nano Mater. | resonance N-CQD composites ‘turn on’ detection, selective ,
2021, 4, energy transfer by H,0, produced detect
13612—-1362 | (FRET)- from the reaction of External biothiols,
4 based cholesterol  oxidase chromogenic Acet.yl
ﬂuo'rescence in the presence of substrate, cholinester
“switch-off—on” cholesterol ase, and
of N-CQD ( ’ Chlorpyrif
donor) and act ) 0s
as ,blocking of of FRET
MnO, induces fluorescence
nanowires recovery
(acceptor)
3. ACS Appl. citric acid s CA-RhPtNPs Selective
Nano Mater. | functionalized exhibited enhanced Absorbance Enzymatic For
2021, 4, rhodium—platin peroxidase-like based detection, cholesterol
8282-8291 um activity that 25.7 uM | detection
nanoparticles catalyzed the External
reaction between chromogenic
3,3',5,5'- substrate
tetramethylbenzidine
(TMB) and hydrogen
peroxide (H,02) due
to the synergistic
effects of Rh and Pt.
Enzyme
4. ACS Appl. Gold Electrochemical - Non- Non
Mater. Nanoparticles % new oxidation and 0.024- enzymatic selective ,
Interfaces on TiO, reduction peak for 1.2 mM Detect
2021, 13, Nanotubes both cholesterol and (cyclic H,0, and
3653-3668 H,0, volatametric cholesterol
potential
change)
5. ACS Appl. ZIF-8 < Pd@ZIF 8 mimics Enzymatic Non
Nano framework, the peroxidase enzyme ‘turn on’ detection selective ,
Mater. 2021 | Pd nanoclusters activity 0.092 Detect
,4,9132— < TMB Converted to uM Concentation | glucose
9142 TMBDI , Thiamine of H,0, and
to (non-fluorescent) produced cholesterol
Thiochrome realted to
(fluorescent) by concentration
H202 of
cholesterol,
External
chromogenic
substrate
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6. ACS metal-free +« Phathalocyanine Enzymatic, Selective
Sustainable | 2(3),9(10),16(17 derivative mimics 0.1-0.9 Colorimetric, | For
Chem. Eng. | ), with enhanced mM Concentratio | cholesterol
2020, 8, 23(24)- peroxidase activity n of H,0,

9404-9414 | octamethoxypht | <  Enzyme Cholesterol indirectly
halocyanine oxidase that used to
(Pc(OH)8) catalyses conversion measure
of cholesterol to cholesterol,
cholest-en-3-one and External
H,0, chromogenic
«  H,0, oxidises dye substrate
TMB to ox TMB

7. ACS Appl. Plasmonic 5.50uM Enzymatic Non
Mater. nanohybrid % Cholesterol oxidase detection, selective ,
Interfaces system producing H,0, External Detect
2019, /1, (Bio@AgNPs) % The generated H,0, chromogenic | glucose,
272332724 will cause etching of substrate cholesterol
2 AgNP charestrictic and H,O,

SPR Band observed

8. ACS Appl. LiErF4:0.5%Tm 1.6 uM
Mater. 3+@LiYF4 % Generation of H,O, in ‘turn on’ Enzymatic
Interfaces upconversion the Presence of detection,

2022, /4, nanoparticle O,/cholesterol by
428-438 fabricated with cholesterol oxidase External
poly(methyl (ChOx). chromogenic
methacrylate) « Oxidation of TMB substrate,
(PMMA) Which causes
photonic quenching of
crystals (OPCs) fluorescence of
nanoparticle Turing
from red to blue.

9. J. Mater. B-cyclodextrin < Porous MOF, Selective
Chem. C, (b-CMCD) was | % encapsulated Rh6G ‘turn on’ Non- for
2019, grafted onto the in Hydrophobhic and enzymatic, cholesterol
7, 12674 LMOF, prouous cavity of | 0.092 Porosity and

Cyclodextrin  based | uM hydrophobic
MOF, effect
% Displacement of Dye (Displacemt
by cholesterol ),
External
chromogenic
substrate

10. ACS Omega | Inner filter ¢  The inner filter effect | 3.6 nM Enzymatic Non
2019, 4, effect based between N,Co-CDs ‘turn-on’ detection, selective
9333-9342 | detection and DAP result in Detect

between ratiometric response. External cholesterol
nitrogen, cobalt | %+ DAP is generated chromogenic | and uric
co-doped From substrate, acid
carbon dots Orthophenylene

(N,Co-CDs) diamine after reaction

with 2,3- with H,O, produced

diaminophenazi as enzyme catalysed

ne (DAP) oxidation product of

cholesterol and uric
acid by
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Instruments and experimental procedures:

Instruments

All the reagents and solvent for synthesis were purchased from Aldrich and used without
further purification. For the photophysical studies the HPLC grade dried DMSO was used as a
solvent. The UV-vis spectra was recorded using with SHIMADZU UV-2450
spectrophotometer, with quartz cuvette (path length =1 cm), with cell holder thermostated at
25° C. The fluorescence spectrum was recorded using HORIBA Fluromax-4 systems. The
time-resolved fluorescence spectra were recorded with a HORIBA time-resolved fluorescence
spectrometer. The dynamic light scattering (DLS) measurements were made using a light
scattering apparatus (Zetasizer, Nanoseries, Nano-ZS, Malvern Instruments). The HR-TEM
mages was recorded from High Resolution Transmission Electron Microscope (HR-TEM) -
JEOL Jem 2100 Plus. The CV measurements was performed using Autolab PGSTAT302N
Metrohm workstation using a glass cell with a three-electrode assembly comprising a
platinum counter electrode and a glassy carbon electrode as the working electrode. Ag/AgCl
was used as the reference electrode. The 'H and '3C NMR experiments were recorded by
using Bruker AVANCE IITHD 500 MHz and JEOL 400MHz spectrophotometer in CDCl; and
DMSO -d¢ as solvent and tetramethylsilane, SiMe, as internal standard. Data are reported as
follows: chemical shifts in ppm, multiplicity (s= singlet, br= broad, t= triplet, multiplet= m,
J= coupling constant represented in Hz. The column chromatography for purification was

done using silica gel (60-120 mesh).
UV-Vis and Fluorescence studies:

For the UV-vis and fluorescence titration the 10 M stock of QxPyA was prepared in the
DMSO. The cholesterol stock was prepared by dissolving 4 mg cholesterol in 1ml ethanol and
further serial diluted in distilled water for setting appropriate concentration. The 10 pM
concentration of QxPyA was for each titration. The other interfering analyte (glucose,
galactose, sucrose, mannose, fructose, urea, uric acid, ascorbic acid, glutathione, cysteine,
alanine, dopamine, creatinine, serine, arginine, valine, histidine, tryptophan, phenylalanine,
glutamic acid, Na*, K*,Ca?* and Mg?*"ions) the standard solution (1M stock) was prepared and
appropriate concentration 0-6.0 mM were added to record the spectra. In titration
experiments, each time a 3 ml solution of QxPyA (30 ul probe in 2970 ul distilled water) was

filled in a quartz cuvette (path length, 1 cm) and spectra were recorded after the addition of
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appropriate analyte.For the detection of cholesterol in the human serum samples, the samples
were pretreated with ethanol for deproteinization.! Before detection, the serum samples were
diluted ten times with ethanol. Further, the calibration method was use to find the
concentration.?

Calculation for Quantum Yield:
The quantum yield was calculated using integrated sphere.
Powder X-Ray Diffraction (PXRD) Sample Preparation Details:

The 10mg compound QxPyA was dissolved in 99% H,0 in DMSO, the mixture was stirred at
room temperature for 4-6 hrs. The aqueous solution was slowly evaporated and precipitate
were filtrated and dried for PXRD analysis. For the PXRD analysis in presence of 2M
cholesterol (386.5 mg dissolved in 500 pl ethanol) was added to the 99% H,O in DMSO
solution of compound QxPyA. The QxPyA:Cholesterol mixture was stirred at room
temperature for 4-6 hrs, after the evaporation of aqueous solution the precipitates were filtered

and dried for further analysis.
Synthetic route and characterisation of QxPyA:

To the solution of 2,3-bis(4-bromophenyl)quinoxaline 1 (0.30 g, 0.68 mmol) and 2,2’-
dipyridylamino 2 (0.27 g, 2.5 mmol) and K,CO; (0.28 g, 0.2 mmol) in 4 ml of dry
nitrobenzene was stirred under nitrogen for 30 min. The reaction mixture was degassed three
times followed by addition of Cul (0.27 g, 0.03 mmol) and 18-crown-6 in catalytic amount
under inert atmosphere. The reaction mixture was refluxed at 200 °C for 48 hrs under
nitrogen. After completion of the reaction (TLC), the reaction mixture was treated with water.
The aqueous layer was extracted with ethyl acetate (3 X 10 mL). The combined organic layer
was dried over anhydrous sodium sulphate and then distilled under reduced pressure to give a
solid residue. The desired product was isolated by column chromatography using ethyl
acetate/hexane (95/5) as an eluent and finally the product was recrystallized from hexane to
give pure compound in 63% yield as light brown solid, m.p. 250-252°'C. The 'H NMR (500
MHz, CDCl,), & (ppm) = 8.33 (br, 4H), 8.17-8.15 (m, 2H), 7.77-7.76 (m, 2H),7.60 (d, J=10
Hz, 4H), 7.55 (t, /=15 Hz, 4H), 7.17 (d, J=10 Hz, 4H), 7.00 (d, J =5 Hz, 4H), 6.96 (t, J=15
Hz, 4H).13C NMR (125 MHz, CDCl;) 6 (ppm) = 158.0, 152.71, 148.70, 145.87, 141.18,
137.77, 135.59, 131.25, 129.96, 129.15, 126.05 118.67, 117.55. HRMS: (m/z) [M+H]"
calculated for [C4HyNg]" is 621.2509 found: 621.2518.
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Synthetic route and characterisation of QxP

Nitrobenzene,2000C,N2,48 hrs
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Scheme. S1 The synthetic route for QxP

Synthesis of QxP: To the solution of 2,3-bis(4-bromophenyl) quinoxaline 1 (0.30 g, 0.68
mmol) and diphenylamine 3 ( 0.28 g,2.5 mmol) and K,COj; ( 0.30g, 0.2 mmol) in 4 ml of dry
nitrobenzene was stirred under nitrogen for 30 min. The reaction mixture was degassed three
times followed by addition of Cul (0.27 g, 0.03 mmol) and 18-crown-6 in catalytic amount
under inert atmosphere. The reaction mixture was refluxed at 200°C for 48 h under nitrogen.
After completion of the reaction (TLC), the reaction mixture was treated with water. The
combined organic layer was dried over anhydrous sodium sulphate and then distilled under
reduced pressure to give a solid residue. The desired product was isolated by column
chromatography using Chloroform/hexane (45/55) as an eluent and finally the product was
recrystallized from hexane and ethyl acetate to give pure compound in 55% yield as yellow
solid. The 'TH NMR (400 MHz in CDCl3) 6 (ppm) = 8.14-8.12 (m, 2H), 7.74-7.71 (m, 2H),
7.45 (d, J/=8Hz, 4H), 7.29-7.25 (m, 8H), 7.14 (d, J=8 Hz, 8H), 7.09-7.03 (m, 8H). 3C NMR
(100 MHz, CDCl;3) & (ppm) = 153.22, 148.51, 147.31, 141.08, 132.54, 130.78, 129.57,
129.36, 129.01, 124.97, 123.45, 122.18. The characterisation data corroborate with literature
report.3
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.Synthetic route and characterisation of QxTPY:

K,CO;,Pd(0)

dioxane, reflux

Scheme S2. The synthetic route for QxTPY

The QxTPY synthetic procedure and characterisation is reported in literature.*

Synthesis of QxTPY: To a solution of 2,3-bis(4-bromophenyl) quinoxaline 1 ( 0.4 g, 0.90
mmol) and 4-(2,2°,6°,2” -terpyridine-4’-yl)phenyl boronic acid 4 (0.73 g, 2.07 mmol) in
anhydrous dioxane (20 mL), 2 mL aqueous solution of K,COj3 (0.99 g, 7.2 mmol) was added
followed by the addition of [Pd(PPhs)s] (0.51 g, 0.45 mmol) as a catalyst under nitrogen
atmosphere. The reaction mixture was refluxed overnight and dioxane was then removed
under vacuum. The residue so obtained was treated with water and extracted with ethyl
acetate three times, dried over anhydrous sodium sulphate. The solvent was removed under
reduced pressure and compound was purified by column chromatography using ethylacetate/
hexane (80/20) as an eluent to give 80% yield of the derivative QxTPY as white solid; 'H
NMR (500 MHz, CDCl;) 6 (ppm) = 8.80 (s, 4H), 8.75 (d, J =5 Hz, 4H), 8.69 (d, J =5 Hz,
4H), 8.23 (d, J = 10 Hz, 2H), 8.03 (d, J = 5 Hz, 4H), 7.91-7.88 (m, 4H), 7.84-7.78 (m, 8H),
7.74 (d, J = 10 Hz, 4H), 7.67 (d, J = 5 Hz, 2H), 7.39-7.35 (m, 4H), 3C NMR (100 MHz,
CDCl) 6 (ppm) = 156.33, 156.10, 149.26, 141.40, 140.90, 137.04, 130.57, 129.34, 128.55,
127.91, 127.70, 127.20, 123.96, 121.49, 118.79.
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+105|Cpd 1: G40 H28 N8: + FBF Spectrum (0.161-0.344 min) VAK-Bl.d Sublract

m/z 621.2518

/ \
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3 ){ [)
m/z 622.255 QxPyA
2- Molecular Formula
1 | m/z 623.257
' 643.2326
0 ([C40H28N8]+Na)+

622 624 626 628 630 632 634 636 638 640 642 644 646 648 650 652 654 656 658 660
Counts vs. Mass-to-Charge (m/z)

Peak List
m/z Zz |Abund Formula lon
621.2518] 1 459506.53|C40H28N8 (M+H)+
622.255] 1 212445|C40H28N3 (M+H)+
623.257| 1 47731.11|C40H28N8 (M+H)+
624.2591| 1 6107.88|C40H28N3 (M+H)+
625.2647] 1 862.36|C40H28N8 (M+H)+
643.2326| 1 4188.72|C40H28N8 (M+Na)+
644.2351] 1 2043.18|C40H28N8 (M+Na)+
645.2418| 1 648.25|C40H28N8 (M+Na)+
659.2078] 1 2443.57|C40H28N3 {(M+K)+
660.2119| 1 1205.07|C40H28N3 (M+K)+
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Fig S8 Cyclic voltammogram of QxPyA under N, saturated ACN. The potential was scanned at 100
mVS -! using glassy carbon (working); Ag/AgCl (reference) and platinum wire (counter) electrode with
(0.1M) tetrabutyl ammonium hexaflourophosphate (TBAPF) as supporting electrolyte in ACN.
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Fig. S9 (a) The absorption spectra and (b) fluorescence spectra of QxPyA (10 uM) in various solvent of different
polarity at room temperature at A., = 375 nm (c) Inset showing the fluorescence of QxPyA in different solvent

upon illumination under UV lamp.
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Fig. S10 The fluorescence spectra of QxPyA (10 uM) showing change in emission intensity upon increasing

temperature from 25 °C-75 °C in acetonitrile at Aoy = 375 nm.
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Fig. S11 The time-resolved fluorescence spectra of QxPyA (10 uM) in DMSO and MeOH at A, =
377 nm.
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Fig. S12 The fluorescence spectra QxPyA (10 pM) upon varying % volume fraction of glycerol in DMSO (0 to
99, v/v) at Aex = 375 nm.
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Fig. S13 The absorption spectra of QxPyA (10 pM) upon varying % volume fraction of water in (f,) DMSO (0
to 99,v/v)
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Fig. S14 The fluorescence spectra of QxPyA (10 uM) upon varying water of fraction (f;,) in DMSO (0 to 99) at
Aex = 375 nm, (b) fluorescence emission spectra of QxPyA in 40% and 99% H,0 in DMSO.
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Fig. S15 (a) The SEM (scale 500 nm) of aggregates of QxPyA in 99% H,0 in DMSO (b) The DLS
studies of QxPyA(10 uM) in 99% H,0 in DMSO having particles of size ~48.5 nm and ~220 nm.
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Fig. S17 The absorption spectra of QxPyA (10 uM) upon addition of cholesterol (0-6.0mM) in 99% H,0 in
DMSO.
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Detection Limit Calculations of QxPyA for Cholesterol

The detection limit was calculated based on the fluorescence titration using strand calibration

method.? To determine the S/N ratio, the emission intensity of QxPyA without Cholesterol
was measured by 10 times and the standard deviation of blank measurements was determined.
The detection limit is then calculated with the following equation: DL = 3 x SD/S Where SD
is the standard deviation of the blank solution measured by 10 times; S is the slope of the
calibration curve. From the graph, we get slope (S) = 6 x10°, and SD value is 0.008 Thus
using the formula we get the Detection Limit (DL) = 4 nM
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Fig. S18 The fluorescence response of QxPyA (10.0 uM) to various concentrations of cholesterol in
99% H,0 in DMSO at A= 375 nm.
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Fig. S19a The fluorescence emission response for QxPyA(10.0 uM) in 99% H,0 in DMSO in presence of
cholesterol and various interfering analytes 1. QxPyA , 2.Trp, 3. Ala,4. Cys, 5. GSH, 6. Gul, 7.His, 8. Ser, 9. Val,
10. Phe,11. Arg, 12. Dopamine, 13. Cholesterol, 14 Creatinine, 15. Sucrose, 16.Fructose, 17. Mannose,18.
Glucose 19. Uera, 20. Uric acid, 21. Ascorbic acid, 22. Ca?*, 23. Mg?', 24. K*, 25.Na * (0 -6.0 mM)at A..= 375
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Fig. S19b The fluorescence emission response for QxPyA (10.0 uM) in 99% H,0 in DMSO in presence of

cholesterol and various competitive interfering analytes (0-6.0 mM)at A= 375 nm.
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Fig. S20 The The time-resolved fluorescence spectra curve of QxPyA (10 uM) upon addition of cholesterol
(6.0 mM) in 99% H,0 in DMSO at A, = 377 nm.
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Fig. S21 The DLS studies of QxPyA (10 pM) showing increase particle size to ~98.5 nm and ~458nm upon
addition of cholesterol in 99 % H,O in DMSO.
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Fig. S22 The 'H NMR Spectrum of QxPyA in DMSO-ds:D,0: CD;0D (9:0.2:0.8, v:v:v) upon
addition of cholesterol (6.0 mM dissolved in DMSO-ds:D,0: CD;0OD (9:0.2:0.8, viv:v).
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Fig. 823 The fluorescence spectra of QxP (10 pM) upon addition of cholesterol (0-6.0 mM) in 99%
H,O in DMSO at A= 400 nm.
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Fig. S24 The fluorescence spectra of QxCHO (10 uM) upon addition of cholesterol (0-6.0 mM) in
99% H,0 in DMSO at A, = 375 nm.
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Fig. S25 The fluorescence spectra of QxTPY (10 uM) upon addition of cholesterol (0-6.0 mM) in
99% H,0 in DMSO at A= 375 nm.
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Fig. S26 The fluorescence spectra of QxPyA for 200-fold dilution of human serum upon addition of
cholesterol 6.0 mM in 99% H,0 in DMSO at A= 375 nm.
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