Acyl azide modification of ubiquitin C-terminus enables DUBs capture

Xiao Hua,^a[#] Yanyan Guo,^a[#] Yu Wang,^a Guo-Chao Chu,^c Pincheng Li,^b Jing Shi,^{a*}

*E-mail: <u>shijing@ustc.edu.cn</u>

^a Department of Chemistry, Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China.

^b School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.

^c Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.

Supplementary Information

1. General	S3
1.1 Reagents	S3
1.2 HPLC, Mass spectrometry and FPLC	S3
1.3 Circular dichroism (CD) analysis	S3
1.4 SDS-PAGE and Immunoblotting	S3
2.Construction of protein expression plasmids	S3
3. Protein expression and purification	S4
3.1 Expression and purification of Ub76C and avi-UbG76C	S4
3.2 Expression and purification of DUBs	
4. Preparation of protein-hydrazides	S5
4.1 Preparation of Ub ₁₋₇₅ -NHNH ₂	S5
4.2 Preparation of (biotin)avi-Ub ₁₋₇₅ -NHNH ₂	S5
5. General cell culture procedure	S5
6. Labeling of DUBs with Ub probes	
6.1 Labeling of DUBs with Ub probes in buffers	S5
6.2 Labeling of DUBs with Ub probes in cell lysates	S6
7. Pulldown and Mass Spectrometry Analysis	S6
8. Supplemental Figures and Tables	

1 General

1.1 Reagents

Yeast extract, Tryptone, HEPES and MES were purchased from Sigma-Aldrich. HCl, NaOH, NaCl and Tris were purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai). Sodium nitrite (NaNO₂) was purchased from Beijing Chemical Works Co., Ltd (Beijing). Tris (2-carboxyethyl) phosphine hydrochloride (TCEP HCl) and Sodium 2-mercaptoethanesulfonate (Mesna) were purchased from Adamas-beta, Titan Scientific Co., Ltd (Shanghai). Acetonitrile (HPLC grade) was purchased from J. T. Baker (Phillipsburg, NJ, USA). Ni-NTA resin was purchased from GE Healthcare. Chemically competent BL21 (DE3) cells were purchased from TransGen Biotech ltd (Beijing).

1.2 HPLC, Mass spectrometry and FPLC

Analysis by RP-HPLC (SHIMADZU, Prominence LC 20AT) was performed with an analytical column (Welch XB-C18, 4.6×250 mm, 5 μ m, 120 Å, flow rate 1.0 mL/min). Analysis was monitored at 214 nm and 254 nm wavelengths. Solvents were sonicated for 30 minutes before use. Analysis condition: a linear gradient of 20%-70% acetonitrile (with 0.08% v/v TFA) in water (with 0.1% v/v TFA) over 30 min.

Tandem MS samples in Fig. 1c is the product of in gel trypsin digestion according to routine procedures. In particular, it's worth noting that iodoacetamide modified Cys would have the same MS value as the thioester bond on Cys residue, therefore we conducted the alkylation of Cys side chain using iodoacetic acid instead of iodoacetamide. Iodoacetic acid modified Cys has about 1 Da MS value more than thioester bond modification, therefore we can distinguish them without using an isotope-labeled iodoacetamide reagent. Mass spectrometry was performed on an Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific). Protein samples in 0.1% formic acid were loaded onto a self-packed PicoTip column (New Objective, Woburn, MA) (360 μ m od, 75 μ m id, 15 μ m tip), packed with 7–10 cm of reverse phase C18 material (ODS-A C18 5- μ m beads from YMC America, Allentown, PA), rinsed for 5 min with 0.1% formic acid, and then eluted with a linear gradient from 2% to 35% B for 150 min (A = 0.1% formic acid, B = 0.1% formic acid in acetonitrile, flow rate ~200 nL/min) into the mass spectrometer.

FPLC was run on an AKTA (GE Healthcare Life Science) using a column of Superdex[™] 75 Increase 10/300 GL. Aqueous buffer (20 mM Tris, 150 mM NaCl, pH=7.4) was filtered with 0.22 µm filter paper, sonicated for 30 min and precooled for 10 min before use. The purification process was monitored at 280 nm.

1.3 Circular dichroism (CD) analysis

Protein samples were diluted in H_2O to a final concentration of ~ 0.1 mg/mL. Samples were measured on a Pistar p-180 spectrometer from 190 nm to 280 nm at room temperature in a quartz cell with 0.2 cm path length. Each protein sample was measured for three times.

1.4 SDS-PAGE and Immunoblotting

For SDS-PAGE, samples were loaded onto 4-20% SDS-PAGE gels with MOPS buffer and electrophoresed for 8 min at 90 V followed with 60 min at 120 V. All pictures of protein gels were taken on Chemi DocTM XRS+system (Bio-Rad).

For immunoblotting, protein samples were separated by SDS-PAGE and transferred to polyvinylidene difluoride membranes (PVDF, Bio-Rad, 300 mA 1.5 h). Then the membranes were incubated with 5% (m/v) of skim milk powder dissolved in TBS buffer (20 mM Tris-HCl, 137 mM NaCl, pH=7.6) for 2 h at room temperature. After three times washing with TBST buffer (20 mM Tri-HCl, 137 mM NaCl, 0.1% Tween-20, pH=7.6) for 10

min at room temperature. The membranes were followed incubated with primary antibodies for 2 h at room temperature. Then washed with TBST buffer for four times again and incubated with secondary antibodies for another 2 h at room temperature. Finally, the membranes were washed with TBST buffer for four times and chemiluminescence solution (ECL) was used for protein detection.

Anti-biotin (AB53494) and anti-OTUB1 (AB175200) was purchased from Abcam. Anti-β-actin antibody was purchased from Cell Signaling Technology (4970). Goat anti-Rabbit IgG (HRP) secondary antibody (D111018) and goat anti-mouse IgG (HRP) secondary antibody (D110087) were purchased from Sangon Biotech (Shanghai) Co., Ltd (Shanghai).

2. Construction of protein expression plasmids

The following genes were codon optimized and synthesized by Genscript (Nanjing).

<u>Ub76C</u>: The Ub76C mutant was cloned into pET-22b vector.

Amino Acid sequence:

MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLR LRGC

avi-Ub76C: The avi-Ub76C mutant was cloned into pET-22b vector.

Amino Acid sequence:

GSGLNDIFEAQKIEWHEMQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRT LSDYNIQKESTLHLVLRLRGC

UCHL1: UCHL1 was cloned into pET-28a vector with NdeI and XhoI as restriction site.

Amino Acid sequence:

MQLKPMEINPEMLNKVLSRLGVAGQWRFVDVLGLEEESLGSVPAPACALLLLFPLTAQHENFRKKQIEEL KGQEVSPKVYFMKQTIGNSCGTIGLIHAVANNQDKLGFEDGSVLKQFLSETEKMSPEDRAKCFEKNEAIQ AAHDAVAQEGQCRVDDKVNFHFILFNNVDGHLYELDGRMPFPVNHGASSEDTLLKDAAKVCREFTERE QGEVRFSAVALCKAA

OTUB1: OTUB1 was cloned into pET-28a vector with NdeI and XhoI as restriction site.

Amino Acid sequence:

MAAEEPQQQKQEPLGSDSEGVNCLAYDEAIMAQQDRIQQEIAVQNPLVSERLELSVLYKEYAEDDNIYQ QKIKDLHKKYSYIRKTRPDGNCFYRAFGFSHLEALLDDSKELQRFKAVSAKSKEDLVSQGFTEFTIEDFHN TFMDLIEQVEKQTSVADLLASFNDQSTSDYLVVYLRLLTSGYLQRESKFFEHFIEGGRTVKEFCQQEVEPM CKESDHIHIIALAQALSVSIQVEYMDRGEGGTTNPHIFPEGSEPKVYLLYRPGHYDILYK

<u>USP7 catalytic domain:</u> USP7catalytic domain (208-560) was cloned into pET-28a vector with *Nde*I and *Xho*I as restriction site.

Amino Acid sequence:

KKHTGYVGLKNQGATCYMNSLLQTLFFTNQLRKAVYMMPTEGDDSSKSVPLALQRVFYELQHSDKPVG TKKLTKSFGWETLDSFMQHDVQELCRVLLDNVENKMKGTCVEGTIPKLFRGKMVSYIQCKEVDYRSDR REDYYDIQLSIKGKKNIFESFVDYVAVEQLDGDNKYDAGEHGLQEAEKGVKFLTLPPVLHLQLMRFMYD PQTDQNIKINDRFEFPEQLPLDEFLQKTDPKDPANYILHAVLVHSGDNHGGHYVVYLNPKGDGKWCKFD DDVVSRCTKEEAIEHNYGGHDDDLSVRHCTNAYMLVYIRESKLSEVLQAVTDHDIPQQLVERLQEEKRIE

Protein expression and purification Expression and purification of Ub76C and avi-UbG76C

The plasmids containing UbG76C and avi-UbG76C gene were transformed into E. coli BL21 (DE3) cells respectively. The E. coli was grown in LB containing 0.1mg/mL ampicillin at 37 °C to an OD600 of 0.8. IPTG with a final concentration of 0.4 mM was added to LB medium and then shook it for 4 hours at 37 °C. Cell precipitation was harvested at 4000 rpm at 8 °C for 10 minutes, then cells were resuspended in lysis buffer (20 mM Tris, 150 mM NaCl, pH=7.4) and lysed by ultra-sonication in ice bath. Perchloric acid was then added to lysis buffer to 0.7% (V/V) with vigorous stirring. The suspension was centrifuged at 11000 rpm at 8 °C for 30 min, and then the supernatant was filtrated with 0.22 μ m filter paper followed by dialyzed into dialysis buffer (50 mM Tris-HCl, pH=7.4) to 15 mg/mL for hydrazinolysis reaction.

3.2 Expression and purification of DUBs

DUBs (UCHL1, OTUB1, USP7 catalytic domain) plasmids were transformed into E. coli BL21 (DE3) cells. The E. coli was grown in LB containing 0.1mg/mL Kanamycin at 37 °C to an OD600 of 0.8. IPTG with a final concentration of 0.4 mM was added to LB medium and then shook it for 12 hours at 16 °C. Cell precipitation was harvested at 4000 rpm at 8 °C for 10 minutes, then cells were resuspended in lysis buffer (20 mM Tris, 150 mM NaCl, pH=7.4) and lysed by ultra-sonication in ice bath. The suspension was centrifuged at 8 °C for 30 minutes at 11000 rpm, and the supernatant was obtained. All DUBs were fused to N terminal His6 tag and purified with Ni-NTA column. Mix the supernatant with Ni-NTA column at 4 °C for 1 h. The column was washed with washing buffer (20 mM Tris-HCl, 150 mM NaCl, 40 mM imidazole, pH=7.4) and then eluted with elution buffer (20 mM Tris-HCl, 150 mM NaCl, 250 mM imidazole, pH=7.4). After the centrifugation the DUBs were further purified using FPLC with SuperdexTM 75 Increase 10/300 GL in aqueous buffer (20 mM Tris, 150 mM NaCl, pH=7.4). Purified DUBs were stored at -80 °C until use.

4. Preparation of protein-hydrazides 4.1 Preparation of Ub₁₋₇₅-NHNH₂

 Ub_{1-75} -NHNH₂ was prepared through reported hydrazinolysis strategy. The purified UbG76C mutant was concentrated to 15 mg/mL. Then the hydrazinolysis reagent (Mesna: 100 mg/mL, NH₂NH₂-HCl: 50 mg/mL, TCEP: 5 mg/mL) was added. The hydrazinolysis reaction (final pH=7.0) was carried out at 50 °C under N₂ protection for 36 h. The raw material could be completely transformed into Ub₁₋₇₅-NHNH₂. Subsequently, Ub₁₋₇₅-NHNH₂ was dialyzed into 20mM MES, 100mM NaCl, pH=6.0 buffer for refolding. About 30 mg of Ub₁₋₇₅-NHNH₂ can be obtained from per liter expression.

4.2 Preparation of (biotin)avi-Ub₁₋₇₅-NHNH₂

The purified avi-UbG76C mutant was concentrated to 10 mg/mL. First, the biotin tag was installed by BirA enzyme. A final concentration of 5 mM magnesium chloride, 2 mM ATP, 0.45 mM D-Biotin, and 1 µM BirA enzyme were added. (biotin) avi-UbG76C was obtained by 1 h reaction at 37 °C and monitored by HPLC and ESI MS (Fig. S2). Then N-S migrates hydrazine to prepare (biotin) avi-Ub₁₋₇₅-NHNH₂. The (biotin)avi-Ub₁₋₇₅-NHNH₂ was dialyzed into 20 mM MES, 100 mM NaCl, pH=6.0 buffer for refolding. About 24 mg of (biotin)avi-Ub₁₋₇₅-NHNH₂ can be obtained from per liter expression.

5. General cell culture procedure

HeLa cells (CCL-2TM) were purchased from ATCC® and grown in DMEM supplemented with 10% FBS, 100 units/mL penicillin and 0.1 mg/mL streptomycin in a 37 °C incubator at 5% CO₂. To detach cells from culture flasks, the media was aspirated and the flask was washed with cold PBS before cells treated with 0.25% Trypsin and returned to 37 °C incubator for 1 min. Trypsin was quenched by adding the supplemented media. The cell suspension was collected and the cells were pelleted (5 min at 145xg). Media was then aspired and the cell pellet was resuspended in fresh media.

6. Labeling of DUBs with Ub probes

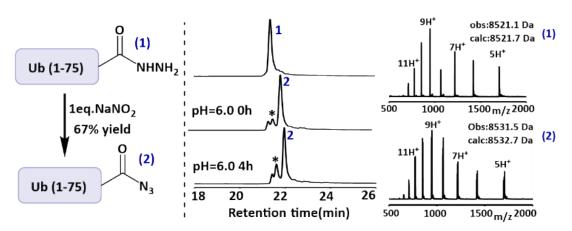
6.1 Labeling of DUBs with Ub probes in buffers

1mM Ub₁₋₇₅NHNH₂ and (biotin)avi-Ub₁₋₇₅NHNH₂ were oxidized with NaNO₂ respectively at pH=3.0 in ice water bath for 20 min respectively, then the reaction pH was adjusted to 6.0. The in situ generated Ub acyl azide probe was diluted to 16 μ M in aqueous buffer (20 mM Tris, 150 mM NaCl, pH=7.4), and 8 μ M purified DUB was added to incubate for another 1 h on ice. Then the reaction was quenched with 4 × loading buffer without DTT and analyzed by SDS-PAGE.

For iodacetamide treatment, 1 mM iodacetamide was pre-incubated with UCHL1 for 30 minutes, then the UCHL1 was diluted to 8 μ M in aqueous buffer and reacted with Ub₁₋₇₅-N₃ for another 30 min. The reaction was quenched with 4 × loading buffer without DTT and analyzed by SDS-PAGE.

For DTT treatment, 16 μ M Ub₁₋₇₅-N₃ was incubated with 8 μ M UCHL1 for 30 min on ice, then 5 mM DTT was added and incubated for another 10 min. The reaction was quenched with 4 \times loading buffer without DTT and analyzed by SDS-PAGE.

6.2 Labeling of DUBs with Ub probes in cell lysates


Hela cells were lysed with NP-40 lysate (P0013F, Beyotime) supplemented with 1 mM PMSF and incubated on ice for approximately 30 min. Subsequently, the cell debris was removed by centrifugation at 11000 rpm at 4 °C for 10 min. Total protein concentration was determined using Bradford assay (Sangon Biotech). Finally Hela cell lysates were diluted to 3mg/mL and stored at -80 °C until use. Ub₇₅-N₃ and (biotin)avi-Ub₇₅-N₃ were obtained as described above. Then the probe was diluted to 16 μ M in 120 μ g cell lysates and incubated at 4 °C for 1 h. Immunoblot analysis was performed with anti-OTUB1 antibodies.

7. Pulldown and Mass Spectrometry Analysis

Hela cells were lysated with NP-40 buffer and diluted to 3mg/mL. 1 mM (biotin)avi-Ub1-75-NHNH2 and 1 eq. NaNO2 were reacted in 20 mM MES, 100 mM NaCl, pH=3.0 buffer in ice water bath for 20 min to generated probe 2 in situ, subsequently the pH was adjusted to 6.0. Then the in situ generated Ub acyl azide probe was diluted to 16 μ M in Hela cell lysates and incubated for another 1 h on ice. Streptavidin agarose beads (Promega) were incubated for 3h at 4 °C. Next, Magnetic beads were treated with 1 × binding buffer (25 mM Tris, 150 mM NaCl, 0.5% V/V NP-40, pH=7.6), 2 × 0.5% SDS in PBS, 2 × 1 M NaCl in PBS, 2 × Tris-buffered saline and 10 × 50 mM NH₄HCO₃ at pH=8.0 in sequence. The enriched proteins were eluted with 10mM DTT in 2 × loading buffer. Then the samples were resolved by SDS-PAGE and analyzed by LFQ mass spectrometry. Each pull-down experiment was performed in three replicates.

Whole proteomic analysis was performed using LFQ MS. The processing procedures for protein samples have been basically described. Briefly, gel bands of protein samples were digested, followed by disulfide reduction with 25 mM DTT and alkylation with 55 mM iodoacetamide. Sequencing-grade modified trypsin was used for ingel digestion at 37 °C overnight in 50 mM NH₄HCO₃ buffer. The peptide was extracted twice with 1% TFA in a

1:1 acetonitrile /H₂O (v/v) solution for 30 min and then centrifuged to reduce volume. For LC-MS/MS analysis, peptides were separated by gradient elution using an Easy-NLC 1000 system at a flow rate of 0.300 μ L/min for 120 min, directly connected to a Thermo Orbitrap Fusion mass spectrometer. Proteins were identified from their MS spectra for peak detection and quantification using MaxQuant (version 1.5.5.1), supported by the Andromeda search engine and searched in the UniProt human database.

8. Supplemental Figures and Tables

Fig. S1 Analytical RP-HPLC (214 nm) and ESI-MS (Electro Spray Ionization-Mass Spectroscopy) trace for the stability of Ub₁₋₇₅-N₃. The asterisk indicates the hydrolysis product from acyl azide to carboxylic acid.

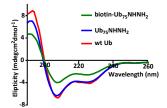


Fig. S2 CD spectra of wildtype Ub in pH=7.4, $Ub_{1.75}NHNH_2$ in pH=6.0 and (biotin)avi-Ub_{1.75}NHNH₂ in pH=6.0.

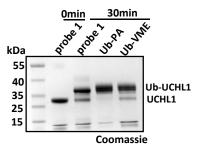


Fig. S3. SDS-PAGE analysis of labelling of UCHL1 by Ub_{1-75} -N₃ (probe 1) with Ub propargylamide (Ub-PA) and Ub vinyl methyl esters (Ub-VME). 8 μ M UCHL1 was incubated with 16 μ M probe 1, Ub-PA and Ub-VME respectively for 30min. Then the reaction was quenched with 4 × loading buffer without DTT and analyzed by SDS-PAGE.

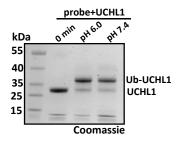


Fig. S4 SDS-PAGE analysis of labelling of UCHL1 by Ub_{1-75} -N₃ in different pH. 1 mM Ub_{1-75} NHNH₂ and 1 eq. NaNO₂ were reacted in 20 mM MES, 100 mM NaCl, pH=3.0 buffer in ice water bath for 20 min, subsequently the pH was adjusted to 6.0 and 7.4 respectively, and UCHL1 was added to incubate for another 0.5 h. Then the reaction was quenched with 4 × loading buffer without DTT and analyzed by SDS-PAGE.

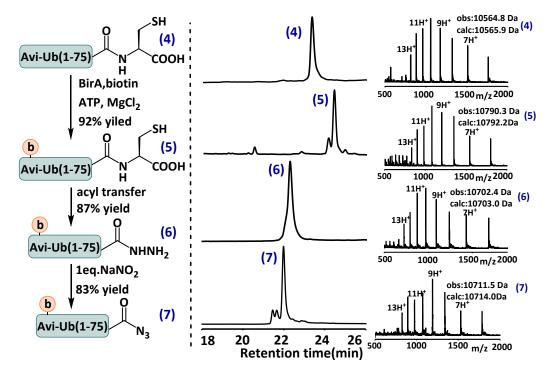


Fig. S5 Analytical RP-HPLC (214 nm) and ESI-MS trace for the preparation of (biotin)avi-Ub₁₋₇₅- N_3 .

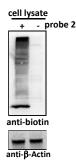


Fig.S6 Hela cell lysate Immunoblotting using probe 2 was performed with an anti-biotin antibody.

probe 2		Ub-PA
OTUDA		¥
OTUD4, USP13,	ATXN3,OTUB1,	UCHL1,
USP10, USP25,	UCHL5,USP5, OTUD6B,UCHL3	USP3, USP4,
USP48,	USP15,USP47, USP7,USP8,	USP14
OTUD7B,	03P7,03P8,	

Fig. S7 Venn diagram showing the overlap of significantly enriched DUBs by probe 2 and previous reported Ub-PA probe

	control			probe2		
Gene name	1	2	3	1	2	3
ATXN3	22.6005	22.9318	22.5806	27.0762	27.0626	26.5133
OTUB1	23.7319	22.4476	21.4131	31.1545	31.0145	31.0311
OTUD3	22.0334	22.7709	23.6154	21.8885	22.4986	22.8413
OTUD4	23.6127	21.7414	23.4148	27.9689	27.9615	27.8288
OTUD6B	23.6558	22.0669	22.0298	27.0716	26.8824	27.6126
OTUD7B	22.9793	22.5564	22.4769	26.3418	26.5287	26.0348
UCHL1	22.7233	23.5955	22.0881	23.9343	24.3191	23.0906
UCHL3	22.8933	26.4574	26.0797	27.4344	27.907	27.9498
UCHL5	23.0623	23.7188	23.1011	28.307	28.2967	28.2982
USP10	24.4176	22.2209	22.5912	25.6339	25.2754	25.8695
USP13	21.5889	22.2292	23.2566	28.2264	28.068	27.9011
USP15	23.0164	22.6255	23.051	26.2344	26.2299	25.6541
USP16	25.3456	24.7183	25.6224	26.2449	26.0794	26.3224
USP19	23.5532	23.5561	21.7266	22.8526	24.988	25.4274
USP22	23.6988	24.2799	22.8569	24.9121	23.4984	23.5823
USP24	24.1958	22.8162	21.4544	22.7037	24.3591	23.0317
USP25	23.1826	21.697	22.2039	25.8519	25.2473	25.5833
USP3	24.3813	22.5012	22.9543	22.5546	24.7885	22.8092
USP36	23.7087	22.4442	23.1628	22.5327	23.4122	23.0485
USP47	22.6398	22.3617	21.8831	24.547	25.2071	25.3229
USP48	24.8405	22.2694	21.9046	26.867	27.2078	26.8183
USP5	24.7655	23.3988	22.1467	29.7449	29.8271	29.7869
USP7	22.3309	24.0098	23.7354	27.3005	27.1823	27.7697
USP8	22.7659	21.242	22.8421	28.7216	28.9971	28.9034
USP9X	23.8034	22.0875	21.2141	22.5591	24.4754	22.0358
YOD1	23.5119	22.4362	22.0248	24.0613	21.6047	24.1483

Table S1. Label-free quantification (LFQ) intensity scores for DUBs captured in HeLa cell lysate proteome-wide profiling using 16 μ M probe 2 and streptavidin agarose beads were selected as control.