
Supplementary Information

The Low-Rank Hankel reconstruction method

Fig. S1. Relationship between a Hankel matrix given by a signal in time domain (FID) and the number of 
exponential components. (a) FID signal x with blue and yellow curves illustrating it’s real and imaginary parts. 
(b) structure of the Hankel matrix obtained from the signal in (a). (c) the Fourier spectrum of the signal in (a). 
(d) the singular values of the Hankel matrix in (b).

Algorithm
The model of the proposed LRD method is defined as:
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where vector  stands for the variable that needs to be determined. Vector  is the 𝑥 ∈ 𝐶𝑁 × 1 𝑦 ∈ 𝐶𝑀 × 1

measurement data with coupling. Matrix  is defined as  which denotes the finite discrete form of Eq. 𝐶 𝑑𝑖𝑎𝑔(𝑐)
(2) presented in the main text of the manuscript. Operator  transforms a vector into a Hankel matrix. Matrix 𝑅

 (M N) represents the NUS schedule. Symbol  denotes the nuclear norm defined as the sum 𝑃 ∈ 𝑅𝑀 × 𝑁 ≤ ‖ ∙ ‖ ∗

of singular values. The regularization parameter  balances the nuclear norm and consistency. 𝜆
By introducing two variables  and , the augmented Lagrangian formulation of Eq. (A1) is written as:𝑍 𝐷
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where  denotes the inner product in complex matrices. It is defined as , where  〈 ⋅ , ⋅ 〉 〈𝐴,𝐵〉 = 𝑅(𝑡𝑟(�̅�𝐵)) �̅�
represents the conjugation of A, and the symbol  denotes the real part1.𝑅

Using alternating direction method of multipliers (ADMM)2, the problem in Eq. (A2) is divided into the 
following three sub-problems:
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The solution to Eq. (A3) is expressed as:

{𝑥𝑘 + 1 = (𝛽𝑅 ∗ 𝑅 + 𝜆𝐶𝐻𝑃𝐻𝑃𝐶) ‒ 1[𝛽𝑅 ∗ (𝑍𝑘 ‒
𝐷𝑘

𝛽 ) + 𝜆𝐶𝐻𝑃𝐻𝑦]
𝑍𝑘 + 1 = 𝑆1/𝛽(𝑅𝑥𝑘 +

𝐷𝑘

𝛽 )
𝐷𝑘 + 1 = 𝐷𝑘 + 𝜏(𝑅𝑥𝑘 + 1 ‒ 𝑍𝑘 + 1)

�,#(𝐴4)

where the subscripts k and k+1 denote the iteration steps. The superscripts H and * denote conjugation 
transposed and adjoint operator, respectively.  and  are two parameters.  is a singular thresholding 𝛽 𝜏 𝑆1/𝛽

operator defined as , where matrix X is with singular value decomposition 𝑆1/𝛽(𝑋) = 𝑈𝑑𝑖𝑎𝑔({𝜎𝑟 ‒ 1 𝛽} + )𝑉𝐻

 and 3.  denotes an operator that transforms a matrix into a vector 𝑋 = 𝑈𝑑𝑖𝑎𝑔({𝜎𝑟} 𝑅
𝑟 = 1)𝑉𝐻 𝑡 + = 𝑚𝑎𝑥(0,𝑡) 𝑅 ∗

by summarizing each skew diagonal.  is defined as an operator satisfying , where  is a 𝑅 ∗ 𝑅 𝑅 ∗ 𝑅 𝑥 = 𝑊𝑥 𝑊
diagonal matrix whose main diagonal is the number of times that an element of  appears in a Hankel matrix4.𝑥

The whole algorithm has been summarized as pseudo code in Table S1.    

Table S1. Pseudo code of the LRD algorithm 

Input: , , , ; Output:  𝑦 𝐶 𝑃 𝜆 �̂�

Initialization: , , , , 𝑘 = 1 𝛽 = 1 𝜏 = 1 𝑘𝑚𝑎𝑥 = 2000 𝑥1 = 𝑦

1)    While  and , do𝑘 < 𝑘𝑚𝑎𝑥 ‖𝑥𝑘 + 1 ‒ 𝑥𝑘‖2 ‖𝑥𝑘‖2 > 10 ‒ 5

2)       ;𝑥𝑘 + 1 = (𝛽𝑅 ∗ 𝑅 + 𝜆𝐶𝐻𝑃𝐻𝑃𝐶) ‒ 1[𝛽𝑅 ∗ (𝑍𝑘 ‒ 𝐷𝑘 𝛽) + 𝜆𝐶𝐻𝑃𝐻𝑦]
3)       ;𝑍𝑘 + 1 = 𝑆1/𝛽(𝑅𝑥𝑘 + 𝐷𝑘 𝛽)

4)       ;𝐷𝑘 + 1 = 𝐷𝑘 + 𝜏(𝑅𝑥𝑘 + 1 ‒ 𝑍𝑘 + 1)
5)       ;𝑘←𝑘 + 1
6)     End while

Output: �̂� = 𝑥𝑘 + 1

The Matlab code used in the work can be found at Github. 

https://github.com/TyQiu2/Low-Rank-Hankel-Decoupling



Experiment for the 2D 1H- 13C HMQC spectrum 
The sample used for the results presented in Fig. 2 was prepared as described before5. 
Fully-sampled methyl 2D 1H-13C HMQC with 200 complex points in the 13C dimension (46.5 ms acquisition time) 

was acquired at 298K on a 900 MHz Bruker AVANCE III-HD spectrometer equipped with 3mm cryo-TCI probe. 
The directly detected dimension of the region of the full reference 2D spectrum (from 1.1 to -0.8 1H ppm) was 
processed using the NMRPipe software6, and imported in MATLAB and qMDD7 for consecutive reconstruction 
and decoupling by LRD or CS-IRLS8. The NUS schedule satisfying Poisson gap9 with 40% is generated along the 
13C dimension. The parameter of Poisson distribution satisfies a sine-weighted function, changing as the location 
of sampled points.

The constant-time 2D 1H-13C CT-HMQC (presented in Fig. 2(b) in the main text) with 102 complex points in 
the 13C dimension (22.5 ms acquisition time) was acquired at 298K on a 900 MHz Bruker AVANCE III-HD 
spectrometer equipped with a 3mm cryo-TCI probe. 

1D traces of peaks in the 2D 1H- 13C HMQC spectrum 

Fig. S2. 1D traces of through peaks 1, 2, and 6 in the 2D 1H-13C HMQC spectra shown in Fig. 2 in the main text. 
Compared with CS and LRD, the CT decoupling scheme clearly weakens the intensities of peaks 1,2, and 6. 



Decoupling from NUS data
The results of our study demonstrate that the proposed LRD method is capable of successfully decoupling 

fully-sampled spectrums. It is well established that NUS provides a reliable way to enhance resolution. Here, we 
introduced NUS to our model and verified the effects of this combination on synthetic and experimental spectra, 
demonstrating that the proposed methodology can significantly improve resolution without any extra 
acquisition time.

Fig. S3. Decoupled synthetic spectra obtained by using the method presented within the present work. (a) 
denotes the fully-sampled reference spectrum. (b) stands for the J-coupled spectrum with J=35 Hz. (c) and (d) 
are decoupled spectra from fully-sampled and 25% NUS data, respectively. Black arrows indicate low intensity 
artefacts at the baseline and the partly weakened lowest peak. It should be noted that a 1D NUS schedule 
satisfying the Poisson gap9 was used. The standard deviation of the Gaussian noise in (b) was 0.005. 



Fig. S4. Decoupling of the 2D 1H-13C HMQC spectrum of MALT1 by by the LRD method. (a) is the J-coupled 
spectrum. (b) and (c) are decoupled spectra from fully-sampled and 40% NUS, respectively. Although some 
moderate-intensity peaks are weakened in (c) (see for example peak 6), peaks with low intensity such as peaks 
1 and 2, are preserved.



Fig. S5. The effect of small deviations of the J-coupling value in the synthetic spectra from the parameter 
used in the LRD. The left and right columns depict the coupled and corresponding decoupled spectra, 
respectively. The numbers in figure show J-coupling values in the spectra (and relative difference from 
35 Hz). The proposed method is capable of reasonable decoupling if the J-coupling parameter in the LRD 
matches the actual coupling in the spectrum within 10%. For the larger discrepancy, significant line-
shape artefacts are observed. 
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