Supporting Information

Exo-trig Selenocyclization of Secondary Allylic Carboxamides *En* Route to 2,5-Disubstituted Selenazolines: Feat by Woollins' Reagent

Priyanka N. Makhal,^a Srinivas Reddy Dannarm,^b Arbaz Sujat Shaikh,^a Rezwan Ahmed,^a Shrilekha Chilvery,^c Lahu N. Dayare,^a Rajesh Sonti,^b Chandraiah Godugu,^c and Venkata R. Kaki^{*a}

^aDepartment of Chemical Sciences, ^bDepartment of Pharmaceutical Analysis, ^cDepartment of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India

1. General information	2
2. General procedure for selenocyclization of N-allyl aryl/heteroaryl/alkyl acid amides	2 - 9
3. NMR spectra	10 - 57
4. Elaborative characterization of compound 2a	
Figure S1. HRMS spectrum of compound 2a .	58
Figure S2. Characteristic peaks in ¹ H NMR of compound $2a$.	59
Figure S3. Characteristic peaks in 13 C NMR of compound 2a .	60
Figure S4. ¹³ C DEPT135 and 90 NMR analysis of compound 2a .	61
Figure S5. ⁷⁷ Se NMR of compound 2a .	62
5. Mechanistic exploration	
A) +/- ESI/APCI-MS study (spectral data)	63
B) ³¹ P NMR study (Figure S7)	64
6. Control experiments	
A) Deuterium Exchange Experiment	65
Figure S8. Comparison of the ¹ H NMR for the deuterium exchange experiment.	66
Figure S9. Comparison of the ¹³ C NMR for the deuterium exchange experiment.	67
B) Fate of the reaction without the amidic N-H proton	68 - 70
4. Crystal data	71
Figure S14. ORTEP drawing of the compound 2s	72
Table S1. Crystal data and structure refinement data of compound 2s73	
Table S2. Selected bond distances (Å), angles (°) for compound 2s	74
5. HPLC analysis	75
Figure S15. HPLC chromatogram for the proposed diastereomeric mixture of con	npound
2u.	75
Table S3. Percentage area calculation of the peaks	75
6. MTT Assay	76
Table S4. Preliminary antiproliferative activity of the compounds against the standarc	l drug, 5-
fluorouracil 76	

1. *General information*: Commercially available reagents and solvents were used without further purification. ¹H NMR spectra were recorded on 500 MHzs Bruker Avance III spectrometer equipped with BBO probe. Chemical shifts are reported in ppm with solvent resonance as the internal standard (DMSO-*d*₆: $\delta = 2.50$ ppm). ¹³C NMR spectra were recorded on an NMR instrument operated at 126 MHz with complete proton decoupling. Chemical shifts are reported in ppm with the solvent resonance as the internal standard (DMSO-*d*₆: $\delta = 39.52$ ppm and CDCl₃: $\delta = 77.16$ ppm). ⁷⁷Se and ¹⁹F NMR spectra were recorded at 95 and 487 MHz, respectively. The following abbreviations were used for ¹H NMR spectra to indicate the signal multiplicity: s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). HRMS was measured in ESI-QTOF mass spectrophotometer. Thin layer chromatography was performed on MERCK precoated silica gel 60F-254 (0.5 mm) aluminum plates and visualized under UV light at 254 nm. Column chromatography was performed using silica gel 60-120 and 100-200 mesh and neutral alumina. *N*-allyl aryl/heteroaryl/alkyl acid amides were synthesized from their respective substituted acids or chlorides and allylamine, assisted by either amide coupling or thionyl chloride, respectively.

Microwave Irradiation Experiments

Microwave irradiation experiments were performed in a Monowave 200 single-mode microwave reactor. The reaction temperature is monitored by an external infrared (IR) sensor housed in the sidewalls of the microwave cavity, measuring the surface temperature of the reaction vessel. Reaction times refer to hold time at the desired set temperature and not to the total radiation time. Pressure sensing is achieved by a hydraulic sensor integrated in the swiveling cover of the instrument. The reusable 10 mL G10 Pyrex vial is sealed with PEEK snap caps and standard PTFE coated silicone septa. Reaction cooling is performed by compressed air automatically after the heating period has elapsed.

2. General procedure for selenocyclization of N-allyl aryl/heteroaryl/alkyl acid amides: N-allylbenzamides 1a (0.5 mmol, 1 equiv) and Woollins' reagent (0.125 mmol, 0.25 equiv) was charged in a 10 mL microwave vial to which anhyd. xylene (0.2 M) was added. The vial was sealed with the cap and placed in a microwave reactor at 160 °C for 45 min. After the completion of the reaction (monitored by TLC), the reaction mixture was diluted with ethyl acetate and washed with water and brine solution. The organic layer obtained was dried over Na₂SO₄, filtered, and concentrated under reduced pressure to obtain a crude residue. The crude residue

was subjected to neutral alumina gel column chromatography using hexane:ethyl acetate (99:01) as an eluting solvent to afford pure product **2a** in 92% yield. All the compounds **2a-w** were synthesized following the general procedure and thoroughly characterized by ¹H NMR, ¹³C NMR, ⁷⁷Se NMR, ¹⁹F NMR and HRMS (ESI).

5-methyl-2-phenyl-4,5-dihydro-1,3-selenazole (2a). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc = 99/01) to afford 2a as pale-yellow liquid (92%); ¹H NMR (500 MHz, CDCl₃) δ 7.77 (q, J = 2.0 Hz, 1H), 7.75 (d, J = 1.6 Hz, 1H), 7.47 – 7.43 (m, 1H), 7.42 –

7.38 (m, 2H), 4.47 – 4.13 (m, 3H), 1.56 (d, J = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.0, 135.8, 131.0, 128.6, 128.5, 74.7, 45.1, 22.9. ⁷⁷Se NMR (95 MHz, CDCl₃) δ 556.69. HRMS (ESI-TOF) [M+H]⁺ calcd for C₁₀H₁₁NSe 226.0129, found 226.0144.

2-(4-chlorophenyl)-5-methyl-4,5-dihydro-1,3-selenazole (**2b**). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc = 99/01) to afford **2b** as pale-yellow liquid (90%); ¹H NMR (500 MHz, CDCl3) δ 7.71 – 7.67 (m, 2H), 7.39 – 7.36 (m, 2H), 4.34 – 4.21

(m, 3H), 1.55 (d, J = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.6, 137.1, 134.3, 130.1, 128.7, 74.8, 45.6, 22.8. ⁷⁷Se NMR (95 MHz, CDCl₃) δ 558.21. HRMS (ESI-TOF) [M+H]⁺ calcd for C₁₀H₁₀ClNSe 259.9740, found 259.9760.

2-(4-fluorophenyl)-5-methyl-4,5-dihydro-1,3-selenazole (2c). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc = 99/01) to afford 2c as pale-yellow liquid (87%); ¹H NMR (500 MHz, CDCl₃) δ 7.75 (dd, J = 8.9, 5.4 Hz, 2H), 7.08 (t, J = 8.7 Hz, 2H),

4.34 – 4.19 (m, 3H), 1.55 (d, J = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl3) δ 165.4, 164.4 (d, J = 251.8 Hz), 132.2 (d, J = 2.9 Hz), 130.8 (d, J = 8.7 Hz), 115.5 (d, J = 22.1 Hz), 74.7, 45.6, 22.8. ⁷⁷Se NMR (95 MHz, CDCl₃) δ 556.82. ¹⁹F NMR (470 MHz, CDCl₃) δ -109.05. HRMS (ESI-TOF) [M+H]⁺ calcd for C₁₀H₁₀FNSe 244.0035, found 244.0043.

2-(4-methoxyphenyl)-5-methyl-4,5-dihydro-1,3-selenazole (2d). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc = 97/03) to afford 2d as pale-yellow liquid (73%); ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, *J* = 8.9 Hz, 2H), 6.90 (d, *J* = 8.9 Hz, 2H), 4.32 –

4.19 (m, 3H), 3.84 (s, 3H), 1.55 (d, J = 6.6 Hz, 3H.; ¹³C NMR (126 MHz, CDCl₃) δ 166.0, 161.8, 130.5, 128.7, 113.8, 74.6, 55.4, 45.1, 22.8. ⁷⁷Se NMR (95 MHz, CDCl₃) δ 550.35. HRMS (ESI-TOF) [M+H]⁺ calcd for C₁₁H₁₃NOSe 256.0235, found 256.0239.

2-(3-iodophenyl)-5-methyl-4,5-dihydro-1,3-selenazole (2e). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc = 99/01) to afford 2e as pale-yellow liquid (85%); ¹H NMR (500 MHz, CDCl₃) δ 8.14 (t, J = 1.7 Hz, 1H), 7.77 (dt, J = 7.9, 1.3 Hz, 1H), 7.68 (dt, J = 7.8, 1.3

Hz, 1H), 7.13 (t, J = 7.8 Hz, 1H), 4.35 – 4.20 (m, 3H), 1.55 (d, J = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.3, 139.8, 137.7, 137.2, 130.1, 128.3, 94.2, 74.7, 45.6, 22.9. ⁷⁷Se NMR (95 MHz, CDCl₃) δ 561.63. HRMS (ESI-TOF) [M+H]⁺ calcd for C₁₀H₁₀INSe 351.9096, found 351.9099.

2-(3-bromophenyl)-5-methyl-4,5-dihydro-1,3-selenazole (**2***f*). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc = 99/01) to afford **2***f* as pale-yellow liquid (82%); ¹H NMR (500 MHz, CDCl₃) δ 7.94 (t, *J* = 1.8 Hz, 1H), 7.65 (dt, *J* = 7.8, 1.3 Hz, 1H), 7.57 (ddd, *J* = 8.0, 1.9, 1.0 Hz, 1H), 7.27 (t, *J* = 7.9 Hz, 1H), 4.35 – 4.22 (m, 3H), 1.55 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 165.4, 137.7, 133.9, 131.4, 130.0, 127.6, 122.7, 74.7, 45.6, 22.8. ⁷⁷Se NMR (95 MHz, CDCl₃) δ 562.18. HRMS (ESI-TOF) [M+H]⁺ calcd for C₁₀H₁₀BrNSe 303.9235, found 303.9234.

2-(3-methoxyphenyl)-5-methyl-4,5-dihydro-1,3-selenazole (**2g**). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc = 97/03) to afford **2g** as pale-yellow liquid (71%); ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.34 (m, 1H), 7.31 (d, J = 0.8 Hz, 1H), 7.30 (dd, J = 1.6, 1.0 Hz, 1H), 7.02 – 6.98 (m, 1H), 4.35 – 4.23 (m, 3H), 3.85 (s, 3H), 1.56 (d, J =

6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl3) δ 166.9, 159.6, 137.1, 129.5, 122.0, 117.7, 112.6, 74.7, 55.4, 45.0, 22.9. ⁷⁷Se NMR (95 MHz, CDCl₃) δ 559.28. HRMS (ESI-TOF) [M+H]⁺ calcd for C₁₁H₁₃NOSe 256.0235, found 256.0231.

5-methyl-2-(p-tolyl)-4,5-dihydro-1,3-selenazole (2h). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc =

98/02) to afford **2h** as pale-yellow liquid (89%); ¹H NMR (500 MHz, CDCl₃) δ 7.64 (dd, J = 6.5, 1.7 Hz, 2H), 7.20 (dd, J = 8.4, 0.6 Hz, 2H), 4.35 – 4.19 (m, 3H), 2.38 (s, 3H), 1.55 (d, J = 6.7 Hz, 3H), ¹³C NMR (126 MHz, CDCl₃) δ 166.8, 141.4, 133.2, 129.2, 128.8, 74.6, 45.0, 22.9, 21.5. ⁷⁷Se NMR (95 MHz, CDCl₃) δ 553.69. HRMS (ESI-TOF) [M+H]⁺ calcd for C₁₁H₁₃NSe 240.0286, found 240.0284.

5-methyl-2-(4-(trifluoromethyl)phenyl)-4,5-dihydro-1,3-selenazole (**2i**). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc = 99/01) to afford **2i** as pale-yellow liquid (93%); ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 8.1 Hz, 2H), 7.66 (d, *J* = 8.2 Hz, 2H), 4.38

-4.24 (m, 3H), 1.57 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.6, 138.9, 132.6 (q, *J* = 32.6 Hz), 129.1, 125.5 (q, *J* = 3.8 Hz), 123.8 (d, *J* = 272.4 Hz), 74.9, 45.7, 22.8. ⁷⁷Se NMR (95 MHz, CDCl₃) δ 563.50. ¹⁹F NMR (470 MHz, CDCl₃) δ -62.84. HRMS (ESI-TOF) [M+H]⁺ calcd for C₁₁H₁₀F₃NSe 294.0003, found 293.9996.

2-(4-ethoxyphenyl)-5-methyl-4,5-dihydro-1,3-selenazole (**2***j*). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc = 97/03) to afford **2***j* as pale-yellow liquid (71%). ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, *J* = 8.8 Hz, 1H), 6.81 (d, *J* = 8.8 Hz, 1H), 4.22 (dd, *J* = 6.1, 14.0 Hz, 1H), 4.19 – 4.16 (m, 1H), 4.13 (dd, *J* = 3.2, 13.9 Hz,

1H), 3.99 (q, J = 7.0 Hz, 2H), 1.47 (d, J = 6.6 Hz, 3H), 1.35 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.1, 161.2, 130.5, 128.5, 114.3, 74.6, 63.6, 45.1, 22.9, 14.7. ⁷⁷Se NMR (95 MHz, CDCl₃) δ 550.00. HRMS (ESI-TOF) [M+H]⁺ calcd for C₁₂H₁₅NOSe 270.0392, found 270.0402.

2-(2-iodophenyl)-5-methyl-4,5-dihydro-1,3-selenazole (2k). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc = 99/01) to afford 2k as pale-yellow liquid (79%); ¹H NMR (500 MHz, CDCl₃) δ 7.90 (dd, J = 8.0, 1.1 Hz, 1H), 7.43 (dd, J = 7.7, 1.7 Hz, 1H), 7.36 (td, J = 7.5, 1.1

Hz, 1H), 7.06 (td, J = 7.8, 1.8 Hz, 1H), 4.40 – 4.31 (m, 3H), 1.62 (d, J = 6.7 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.2, 141.2, 140.1, 130.7, 129.3, 128.0, 94.4, 74.5, 47.3, 22.9. ⁷⁷Se NMR (95 MHz, CDCl₃) δ 619.63. HRMS (ESI-TOF) [M+H]⁺ calcd for C₁₀H₁₀INSe 351.9096, found 351.9094.

5-methyl-2-(3-(trifluoromethyl)phenyl)-4,5-dihydro-1,3-selenazole (21). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc = 99/01) to afford **2l** as pale-yellow liquid (90%). ¹H NMR $(500 \text{ MHz}, \text{CDCl3}) \delta 8.05 \text{ (s, 1H)}, 7.90 \text{ (d, } J = 7.8 \text{ Hz}, 1\text{H}), 7.70 \text{ (d, } J = 7.8 \text{ Hz}, 1\text{H})$

Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H), 4.40 – 4.23 (m, 3H), 1.57 (d, J = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.5, 136.5, 132.2, 131.1 (q, J = 32.8 Hz), 129.1, 127.5 (q, J = 3.7 Hz), 125.4 (q, J = 3.9 Hz), 123.8 (d, J = 272.4 Hz), 74.7, 45.8, 22.9. ⁷⁷Se NMR (95 MHz, CDCl₃) δ 562.32. HRMS (ESI-TOF) $[M+H]^+$ calcd for $C_{11}H_{10}F_3NSe$ 294.0003, found 293.9980.

2-(2-bromophenyl)-5-methyl-4,5-dihydro-1,3-selenazole (2m). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc =99/01) to afford **2m** as pale-yellow liquid (78%). ¹H NMR (500 MHz, CDCl₃) δ 7.61 (d, J = 7.6, 1 Hz, 1H), 7.51 (dd, J = 7.7, 1.7 Hz, 1H), 7.33 (td, J = 7.6, 1.0

Hz, 1H), 7.24 (td, J = 7.7, 1.7 Hz, 1H), 4.40 – 4.21 (m, 3H), 1.59 (d, J = 6.6 Hz, 3H). ¹³C NMR $(126 \text{ MHz}, \text{CDCl}_3) \delta 165.1, 137.6, 133.6, 130.8, 130.1, 127.3, 120.9, 74.3, 46.8, 22.7.$ ⁷⁷Se NMR (95 MHz, CDCl₃) δ 618.93. HRMS (ESI-TOF) [M+H]⁺ calcd for C₁₀H₁₀BrNSe 303.9235, found 303.9212.

2-(2,5-Dichlorophenyl)-5-methyl-4,5-dihydro-1,3-selenazole (2n). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc = 99/01) to afford **2n** as pale-yellow liquid (75%). ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.62 \text{ (d, } J = 2.5 \text{ Hz}, 1\text{H}), 7.35 \text{ (d, } J = 8.6 \text{ Hz}, 1\text{H}), 7.30 \text{ (d, } J = 8.6 \text{ Hz}, 1\text{H}), 7.3$ (dd, J = 8.6, 2.5 Hz, 1H), 4.37 - 4.19 (m, 3H), 1.57 (d, J = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.6, 136.7, 132.7, 131.5, 130.7, 130.5, 130.1, 74.0, 46.4, 22.6. ⁷⁷Se NMR (95 MHz, CDCl₃) δ 619.62. HRMS (ESI-TOF) [M+H]⁺ calcd for C₁₀H₉Cl₂NSe 293.9350, found 293.9332.

2-(4-Methoxy-2-methylphenyl)-5-methyl-4,5-dihydro-1,3-selenazole (20). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc = 95/05) to afford **20** as pale-yellow liquid (70%). ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.45 \text{ (d, } J = 8.2 \text{ Hz}, 1\text{H}), 6.75 - 6.71 \text{ (m, 2H)}, 4.35 - 6.71 \text{ (m, 2H)}, 4.35$ 4.19 (m, 3H), 3.81 (s, 3H), 2.50 (s, 3H), 1.56 (d, J = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.9, 160.3, 138.6, 132.5, 128.4, 116.6, 110.8, 75.2, 55.3, 45.2, 22.9, 21.5. ⁷⁷Se NMR (95 MHz, CDCl₃) δ 618.93. HRMS (ESI-TOF) [M+H]⁺ calcd for C₁₂H₁₅NOSe 270.0392, found 270.0391.

3-(5-methyl-4,5-dihydro-1,3-selenazol-2-yl)benzonitrile (**2p**). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc = 98/02) to afford **2p** as peach colored solid (87%); mp –54-56 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.06 (t, *J* = 1.5 Hz, 1H), 7.96 (dt, *J* = 1.4, 7.9 Hz, 4H), 7.72 (dt, *J* = 1.4, 7.7 Hz, 1H), 7.53 (td, *J* = 0.4, 7.9 Hz, 1H), 4.40 – 4.35 (m, 1H), 4.32 (q, *J*

= 7.6 Hz, 1H), 4.27 (dd, J = 3.9, 15.3 Hz, 1H), 1.57 (d, J = 6.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 164.7, 137.0, 134.0, 132.9, 132.3, 129.4, 118.1, 112.9, 74.8, 46.1, 22.8. ⁷⁷Se NMR (95 MHz, CDCl₃) δ 563.68. HRMS (ESI-TOF) [M+H]⁺ calcd for C₁₁H₁₀N₂Se 251.0082, found 251.0079.

ethyl 3-(5-*methyl*-4,5-*dihydro*-1,3-*selenazol*-2-*yl*)*benzoate* (**2***q*). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc = 98/02) to afford **2***q* as pale yellow solid (86%); ¹H NMR (500 MHz, CDCl₃) δ ¹H NMR (500 MHz, CDCl₃) δ 8.41 (t, *J* = 1.7 Hz, 1H), 8.15 (dt,

J = 1.4, 7.8 Hz, 1H), 7.97 (dt, J = 1.5, 7.7 Hz, 1H), 7.50 (t, J = 7.8 Hz, 1H), 4.42 (q, J = 7.2 Hz, 2H), 4.39 – 4.27 (m, 3H), 1.59 (d, J = 6.6 Hz, 3H), 1.43 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ ¹³C NMR (126 MHz, CDCl₃) δ 166.1, 166.0, 136.1, 132.8, 132.0, 131.0, 129.9, 128.6, 74.8, 61.3, 45.5, 22.9, 14.4. ⁷⁷Se NMR (95 MHz, CDCl₃) δ 561.39. HRMS (ESI-TOF) [M+H]⁺ calcd for C₁₃H₁₅NO₂Se 298.0341, found 298.0361.

5-methyl-2-(1H-pyrrol-2-yl)-4,5-dihydro-1,3-selenazole (2r). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc = 97/03) to afford 2r as red liquid (80%); ¹H NMR (500 MHz, CDCl₃) δ 9.99 (s, 1H), 6.90 (dd, J = 2.3, 1.3 Hz, 1H), 6.56 (dd, J = 3.6, 1.2 Hz, 1H), 6.23 (dd, J =

3.5, 2.8 Hz, 1H), 4.28 – 4.20 (m, 2H), 4.16 – 4.10 (m, 1H), 1.55 (d, J = 6.7 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 157.8, 128.4, 122.0, 115.7, 110.0, 73.3, 44.9, 22.7. ⁷⁷Se NMR (95 MHz, CDCl₃) δ 553.45. HRMS (ESI-TOF) [M+H]⁺ calcd for C₈H₁₀N₂Se 215.0082, found 215.0088.

2-(1H-indol-2-yl)-5-methyl-4,5-dihydro-1,3-selenazole (2s). The crude product was purified by neutral alumina gel column chromatography

(hexane/EtOAc = 97/03) to afford **2s** as white solid (83%), mp 107–109 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.17 (s, 1H), 7.64 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.35 (dd, *J* = 8.3, 0.9 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.12 (ddd, *J* = 8.0, 7.0, 1.0 Hz, 1H), 6.86 (d, *J* = 1.3 Hz, 1H), 4.36 – 4.32 (m, 1H), 4.30 (dd, *J* = 15.5, 5.3 Hz, 1H), 4.20 (dd, *J* = 15.1, 3.9 Hz, 1H), 1.58 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.3, 136.9, 133.4, 127.9, 124.7, 121.8, 120.4, 111.5, 109.1, 73.8, 45.4, 22.7. ⁷⁷Se NMR (95 MHz, CDCl₃) δ 560.86. HRMS (ESI-TOF) [M+H]⁺ calcd for C₁₂H₁₂N₂Se 265.0238, found 265.0238.

2-(*1H-indazol-3-yl*)-5-*methyl-4*,5-*dihydro-1*,3-*selenazole* (2*t*). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc = 95/05) to afford 2*t* as white solid (86%). mp 153–155 °C; ¹H NMR (500 MHz, CDCl₃) δ 10.52 (s, 1H), 8.33 (dt, *J* = 8.2, 0.9 Hz, 2H), 7.50 (dt, *J* = 8.4, 0.9 Hz, 1H), 7.44 (ddd, *J* = 8.4, 6.9, 1.1 Hz, 1H), 7.29 (ddd, *J*

= 7.9, 6.9, 0.9 Hz, 1H), 4.45 (dd, J = 15.8, 7.0 Hz, 1H), 4.39 (dd, J = 15.8, 4.2 Hz, 1H), 4.29 – 4.21 (m, 1H), 1.59 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.2, 142.7, 141.6, 127.6, 122.9, 122.5, 120.6, 109.9, 75.1, 43.2, 23.1. ⁷⁷Se NMR (95 MHz, CDCl₃) δ 571.32. HRMS (ESI-TOF) [M+H]⁺ calcd for C₁₁H₁₁N₃Se 266.0191, found 266.0201.

Benzyl 2-(5-methyl-4,5-dihydro-1,3-selenazol-2-yl)pyrrolidine-1-carboxylate (2u). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc = 95/05) to afford 2u as dark yellow liquid (42%); ¹H NMR (500 MHz, CDCl₃) 7.40 – 7.27 (m, 5H), 5.19 (dd, J = 3.7,

12.6 Hz, 1H), 5.16 – 5.04 (m, 1H), 4.72 (dd, J = 6.4, 31.7 Hz, 1H), 4.23 – 3.88 (m, 3H), 3.59 – 3.48 (m, 2H), 2.31 – 2.18 (m, 1H), 2.15 – 1.95 (m, 2H), 1.94 – 1.87 (m, 1H), 1.49 – 1.32 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.5, 173.4, 153.9, 153.8, 135.6, 135.5, 127.5, 127.4, 127.3, 127.3, 126.9, 126.9, 126.8, 126.7, 73.1, 73.0, 66.0, 65.9, 61.1, 61.0, 60.7, 60.6, 46.3, 46.2, 45.9, 45.7, 43.7, 43.6, 43.1, 43.0, 30.5, 30.2, 23.4, 23.2, 22.7, 22.6, 22.2, 22.1, 21.5, 21.4. ⁷⁷Se. NMR (95 MHz, CDCl₃) δ 567.96, 563.58, 561.81, 557.96. HRMS (ESI-TOF) [M+H]⁺ calcd for C₁₆H₂₀N₂O₂Se 353.0763, found 353.0778.

2-(1-(6-methoxynaphthalen-2-yl)ethyl)-5-methyl-4,5-dihydro-1,3selenazole (2v). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc = 95/05) to afford **2v** as white solid (41%); mp 105–107 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 8.8 Hz, 1H), 7.70 (d, *J* = 8.4 Hz, 1H), 7.66 (s, 1H), 7.37 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.14 (dd, *J* = 8.8, 2.5 Hz, 1H), 7.12 (d, *J* = 2.4 Hz, 1H), 4.15 – 3.98 (m, 4H), 3.91 (s, 3H), 1.67 – 1.62 (m, 3H), 1.42 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl3) δ 174.2, 157.6, 137.4, 133.8, 129.4, 128.9, 127.2, 126.4, 126.1, 118.9, 105.7, 73.9, 55.3, 47.8, 44.6, 22.9, 19.9. ⁷⁷Se NMR (95 MHz, CDCl₃) δ 567.21. HRMS (ESI-TOF) [M+H]⁺ calcd for C₁₇H₁₉NOSe 334.0705, found 334.0714.

2-(1-(4-Isobutylphenyl)ethyl)-5-methyl-4,5-dihydro-1,3-selenazole(2w). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc = 93/07) to afford 2w as pale-

yellow liquid (52%); ¹H NMR (500 MHz, CDCl₃) δ 7.18 (dd, J = 8.1, 1.8 Hz, 2H), 7.10 (d, J = 7.1 Hz, 2H), 4.15 – 3.90 (m, 4H), 2.45 (d, J = 7.2 Hz, 2H), 1.85 (dp, J = 13.6, 6.8 Hz, 1H), 1.56 (dd, J = 7.1, 2.4 Hz, 3H), 1.42 (dd, J = 6.7, 2.7 Hz, 3H), 0.89 (d, J = 6.6 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 174.9, 174.4, 140.6, 140.6, 139.5, 139.3, 129.3, 127.4, 127.3, 73.8, 73.8, 47.5, 47.4, 45.1, 44.6, 44.5, 30.2, 22.8, 22.5, 22.4, 20.0, 19.9. ⁷⁷Se NMR (95 MHz, CDCl₃) δ 564.84,

found 310.1062.

(4-chlorophenyl)(5-methoxy-2-methyl-3-((5-methyl-4,5-dihydro-1,3-selenazol-2-yl)methyl)-1H-indol-1-yl)methanone (2x). The crude product was purified by neutral alumina gel column chromatography (hexane/EtOAc = 92/08) to afford 2x as cream

555.40. HRMS (ESI-TOF) [M+H]⁺ calcd for C₁₆H₂₃NSe 310.1068,

solid (25%); mp –53-55 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.68 – 7.63 (m, 2H), 7.49 – 7.45 (m, 2H), 6.97 (d, J = 2.5 Hz, 1H), 6.91 (d, J = 9.0 Hz, 1H), 6.68 (dd, J = 2.5, 9.0 Hz, 1H), 4.16 – 4.09 (m, 2H), 4.04 – 3.99 (m, 1H), 3.94 (s, 2H), 3.83 (s, 3H), 2.38 (s, 3H), 1.45 (d, J = 6.7 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 168.8, 168.4, 156.1, 139.3, 135.6, 134.0, 131.2, 130.6, 129.1, 115.0, 111.9, 111.1, 101.3, 74.0, 55.7, 45.3, 33.1, 22.9, 13.5. ⁷⁷Se NMR (95 MHz, CDCl₃) δ 505.05. HRMS (ESI-TOF) [M+H]⁺ calcd for C₂₂H₂₁ClN₂O₂Se 461.0530, found 461.0527.

3. NMR spectra

5-methyl-2-phenyl-4,5-dihydro-1,3-selenazole (2a)

¹³C NMR spectrum of compound **2a** (CDCl₃, 126 MHz)

 ^{77}Se NMR spectrum of compound 2a (CDCl_3, 95 MHz)

¹³C DEPT135 NMR spectrum of compound **2a** (CDCl₃, 126 MHz)

2-(4-chlorophenyl)-5-methyl-4,5-dihydro-1,3-selenazole (2b)

¹³C NMR spectrum of compound **2b** (CDCl₃, 126 MHz)

2-(4-fluorophenyl)-5-methyl-4,5-dihydro-1,3-selenazole (2c)

⁷⁷Se NMR spectrum of compound **2c** (CDCl₃, 95 MHz)

 19 F NMR spectrum of compound **2c** (CDCl₃, 487 MHz)

2-(4-methoxyphenyl)-5-methyl-4,5-dihydro-1,3-selenazole (2d)

 ^{77}Se NMR spectrum of compound 2d (CDCl_3, 95 MHz)

$\label{eq:constraint} 2\mbox{-}(3\mbox{-}iodophenyl)\mbox{-}5\mbox{-}methyl\mbox{-}4,5\mbox{-}dihydro\mbox{-}1,3\mbox{-}selenazole\ ({\bf 2e})$

2-(3-bromophenyl)-5-methyl-4,5-dihydro-1,3-selenazole (2f)

2-(3-methoxyphenyl)-5-methyl-4,5-dihydro-1,3-selenazole (**2g**)

5-methyl-2-(p-tolyl)-4,5-dihydro-1,3-selenazole (2h)

⁷⁷Se NMR spectrum of compound **2h** (CDCl₃, 95 MHz)

5-methyl-2-(4-(trifluoromethyl)phenyl)-4,5-dihydro-1,3-selenazole (2i)

00 690 680 670 660 650 640 630 620 610 600 590 580 570 560 550 540 530 520 510 500 490 480 470 460 450 440 430 420 410 400 f1 (ppm)

⁷⁷Se NMR spectrum of compound **2i** (CDCl₃, 95 MHz)

 $\label{eq:constraint} 2\mbox{-}(4\mbox{-}ethoxyphenyl)\mbox{-}5\mbox{-}methyl\mbox{-}4\mbox{,}5\mbox{-}dihydr\mbox{-}1\mbox{,}3\mbox{-}selenazole\ ({\bf 2j})$

 ^{77}Se NMR spectrum of compound 2j (CDCl₃, 95 MHz)

2-(2-iodophenyl)-5-methyl-4,5-dihydro-1,3-selenazole (2k)

5-methyl-2-(3-(trifluoromethyl)phenyl)-4,5-dihydro-1,3-selenazole (21)

2-(2-bromophenyl)-5-methyl-4,5-dihydro-1,3-selenazole (**2m**)

¹³C NMR spectrum of compound **2m** (CDCl₃, 126 MHz)

2-(4-methoxy-2-methylphenyl)-5-methyl-4,5-dihydro-1,3-selenazole (20)

3-(5-methyl-4,5-dihydro-1,3-selenazol-2-yl)benzonitrile (2p)

¹³C NMR spectrum of compound **2p** (CDCl₃, 126 MHz)

⁷⁷Se NMR spectrum of compound **2p** (CDCl₃, 95 MHz)

Ethyl 3-(5-methyl-4,5-dihydro-1,3-selenazol-2-yl)benzoate (2q)

¹³C NMR spectrum of compound **2q** (CDCl₃, 126 MHz)

 ^{77}Se NMR spectrum of compound 2q (CDCl_3, 95 MHz)

5-methyl-2-(1H-pyrrol-2-yl)-4,5-dihydro-1,3-selenazole (2r)

¹³C NMR spectrum of compound **2r** (CDCl₃, 126 MHz)

⁷⁷Se NMR spectrum of compound **2r** (CDCl₃, 95 MHz)

2-(1*H*-indol-2-yl)-5-methyl-4,5-dihydro-1,3-selenazole (2s)

⁷⁷Se NMR spectrum of compound **2s** (CDCl₃, 95 MHz)

2-(1*H*-indazol-3-yl)-5-methyl-4,5-dihydro-1,3-selenazole (2t)

Benzyl 2-(5-methyl-4,5-dihydro-1,3-selenazol-2-yl)pyrrolidine-1-carboxylate (2u)

2-(1-(6-methoxynaphthalen-2-yl)ethyl)-5-methyl-4, 5-dihydro-1, 3-selenazole~(2v)

2-(1-(4-isobutylphenyl)ethyl)-5-methyl-4,5-dihydro-1,3-selenazole (**2w**)

(4-chlorophenyl)(5-methoxy-2-methyl-3-((5-methyl-4,5-dihydro-1,3-selenazol-2-yl)methyl)-1H-indol-1yl)methanone (**2x**)

¹H NMR spectrum of compound **2x** (CDCl₃, 500 MHz)

¹³C NMR spectrum of compound **2x** (CDCl₃, 126 MHz)

4. Elaborative characterization of compound 2a

The HRMS spectrum showed the presence of the desired $[M + H]^+$ peak at 226.0144 and isotopic distribution (Figure S1). The ¹H NMR spectrum displayed the characteristic peaks: a 3H – doublet at 1.56 ppm (CH₃ group (**a**) adjacent to the CH group) and a broad multiplet at 4.28 ppm (proton attached to the chiral carbon (**b**) and the two diastereotopic protons (**c**) adjacent to nitrogen) (Figure S2). The ¹³C NMR showed the three aliphatic carbons at 22.87 (**a**), 45.06 (**b**), and 74.72 (**c**) ppm and the quaternary carbon of the selenazoline ring at 166.9 ppm (**d**), corroborating with the spatial arrangement of the carbons (Figure S3). The multiplicity of aliphatic carbons was confirmed by DEPT analysis, wherein DEPT90 displayed a positive peak at 45.06 ppm (chiral CH carbon (**b**)), and DEPT135 displayed two positive peaks at 22.88 (CH₃ (**a**)) and 45.06 ppm (CH (**b**)), one negative peak at 74.70 (CH₂ (**c**)) (Figure S4). Further, a peak at 556.7 ppm was observed in ⁷⁷Se NMR (Figure S5), which falls in the range reported for the selenazoline selenium atom.¹

Reference:

Figure S1. HRMS spectrum of compound 2a.

Figure S3. Characteristic peaks in ¹³C NMR of compound **2a**.

Figure S5. ⁷⁷Se NMR of compound **2a**.

5. Mechanistic exploration

Figure S6. +/- ESI/APCI-MS spectral data of selenation and reductive cyclization of **1a.** The abovementioned m/z values are the observed [M+H]^{+/-} peaks against the calculated m/z values.

B) ³¹P NMR study

To proceed with ³¹P NMR study, the reaction was setup as per the optimized protocol in the microwave reactor. 200 µl of sample was aliquoted at different time intervals of 5, 15, 30 and 45 min and further diluted with CDCl₃ to record the NMR right away. As illustrated in figure S7, several peaks were observed downfield to the WR peak. The WR peak was observed at $\delta = 10.32$ in toluene-*d*₈ and around δ value of 8 in a solvent mixture of xylene and CDCl₃, assuming a shift in the δ value with the changing solvent. The downfield appearance of the several peaks indicates the attachment of an electronegative species such as oxygen as postulated in the mechanism (Figure 4, main article), further supporting the mechanism.

Figure S7. ³¹P NMR spectra of the Woollins' reagent, and the reaction mixture at different time points.

6.Control experiments

A) Deuterium Exchange Experiment

Substrate **1a** was treated overnight with CD₃OD to replace the amidic hydrogen with deuterium. After evaporation of the excess solvent, deuterated **1a** was subjected to the reaction protocol to get product **2a.** The ¹H NMR exhibited a decrease in the doublet (CH₃ proton) intensity at 1.56 ppm by -25%, indicating the transfer of the amidic deuterium to the terminal alkene resulting in - CH₂-D. Also, a splitting pattern was observed beside the doublet, might indicate the diastereotopic protons formed owing to the deuteration of the methyl proton (Figure S8). Furthermore, a shift in the aliphatic carbon peaks was observed in the ¹³C NMR plot. A triplet (*J* = 19.5 Hz) was marked with a shift of 0.20 ppm from 22.90 ppm for C1-D carbon (**a**), a singlet with a shift of 0.08 ppm from 45.07 ppm (**b**) and one with a shift of 0.02 ppm from 74.72 ppm (**c**) was marked for the chiral C2-D and C3-D carbon, respectively (Figure S9). This shift and the splitting pattern imply a deuterated methyl group, inferred from the previously reported data for deuterated carbon signals.¹

Reference:

1. D. W. Jones and J. D. Shaw, Magn. Reson. Chem., 1985, 23, 787–789.

Figure S8. Comparison of the 1 H NMR for the deuterium exchange experiment (500 MHz, CDCl₃).

Figure S9. Comparison of the ¹³C NMR for the deuterium exchange experiment (126 MHz, CDCl₃).

B) Fate of the reaction without the amidic N-H proton

Scheme S1. Control experiment for determining the importance of amidic N-H proton.

As a corollary to the above experiment, a reaction was performed with an *N*-allyl-*N*-methyl-4-(trifluoromethyl)benzamide (Scheme S1) wherein the N-H proton was replaced with methyl group using our protocol. As anticipated, it resulted in the selenoamide product rather than the cyclized selenazoline product indicating the importance of the N-H proton in the reaction. ¹H, ¹³C, ⁷⁷Se NMR and HRMS mass spectra for the selenoamide product is illustrated below (Figure S10 - S13). The two peaks in the⁷⁷Se NMR spectrum (Figure S12) for the *S*-cis/trans rotamers lies in the range stipulated for selenoamides.¹

J. Bethke, K. Karaghiosoff and L. A. Wessjohann, *Tetrahedron Lett.*, 2003, 44, 6911–6913.

Figure S11. ¹³C NMR spectrum of *N*-allyl-*N*-methyl-4-(trifluoromethyl)benzoselenoamide

840 830 820 810 800 790 780 770 760 750 740 730 720 710 700 690 680 670 660 650 640 630 620 610 600 590 580 570 f1 (ppm)

Figure S12. ⁷⁷Se NMR spectrum of *N*-allyl-*N*-methyl-4-(trifluoromethyl)benzoselenoamide

4. Crystal Data

X-ray data for the compounds **2s** were collected at room temperature on a Bruker D8 QUEST instrument with an I μ S Mo micro source ($\lambda = 0.7107$ A) and a PHOTON-100 detector. The raw data frames were reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs.¹ The structure was solved using intrinsic phasing method² and further refined with the SHELXL^{2,3} program and expanded using Fourier techniques. Anisotropic displacement parameters were included for all non-hydrogen atoms. All H atoms were positioned geometrically and treated as riding on their parent C atoms [C-H = 0.93-0.97 Å, and Uiso(H) = 1.5Ueq(C) for methyl H or 1.2Ueq(C) for other H atoms].

1. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.

2. Sheldrick G. M. (2015). ActaCrystallogr C71: 3-8.

3. Muller, P, Herbst-Imer, R, Spek, A. L, Schneider, T. R, and Sawaya, M. R. Crystal Structure Refinement: A Crystallographer's Guide to SHELXL. Muller, P. Ed. 2006 Oxford University Press: Oxford, New York, pp. 57–91.

A single crystal of **2s** was grown by gradual evaporation of pentane layered over CH₂Cl₂ solution of the compound at a cold temperature. The absolute structure of **2s** is shown in figure S14 and it unambiguously confirms the structure as predicted from the NMR experiments. The compound crystallizes in a monoclinic system, space group P 1 21/n 1 with Z = 8. The structure **2s** has two independent molecules in the asymmetric unit. The crystal data and structure refinement data are detailed in table S1. The C-N bond length of C4 – N4 (C16 – N1) was measured as 1.288 (1.309) Å, which indicates its double bond character. The other bond lengths, C4 – Se2 (C16 – Se1), C2 – Se2 (C14 – Se1), C3 – C2 (C14 – C15), and N4 – C3 (N1 – C15), range from 1.433 to 1.947 Å indicate their single bond character (Table S2).

Figure S14. ORTEP drawing of the compound **2s** showing thermal ellipsoids at the 50% probability level (CCDC deposition number 2218367).
Table S1. Crystal data and structure refinement data of compound 2

Formula	$C_{12}H_{12}N_2Se$
Formula weight	263.20
Wavelength	0.71073
Temperature	299 К
Crystal system	Monoclinic
Crystal color	Metallic yellowish yellow
Space group	P 1 21/n 1
a (Å)	14.9055 (7)
b (Å)	11.0509 (5)
c (Å)	14.9065 (7)
α (°)	90
β (°)	104.625
γ (°)	90
Volume	2375.8
Z	8
Density, g cm ⁻³	1.472
Absorption coefficient (μ) (mm) ⁻	3.130
F (000)	1056.0
Reflections used.	8487
Independent reflections	4984
$\begin{array}{l} \text{Completeness} & \text{to} \\ \text{theta} = 26.32^{\circ} \end{array}$	99.57%
Final R indices	R1 = 0.1466, wR2 = 0.3745
R indices (all data)	R1 = 0.2186, WR2 = 0.4123
GoF (S)	1.036

Atoms involved	Measurement	Atoms involved	Measurement
C16-N1	1.309 (2)	C4 – N4	1.288 (2)
C16 – Se1	1.897 (1)	C4 – Se2	1.918 (1)
C14 – Se1	1.947 (2)	C2 – Se2	1.923 (2)
C14 – C15	1.554 (3)	C3 – C2	1.499 (3)
N1 – C15	1.433 (2)	N4 – C3	1.471 (2)
N1 – C16 – Se1	114.9 (1)	N4 - C4 - Se2	117.0 (1)
C16-N1-C15	114.34 (1)	C4 - N4 - C3	112.1 (1)
N1 - C15 - C14	112.3 (2)	N4 - C3 - C2	110.9 (2)
C15-C14-Se1	101.9 (1)	C3 - C2 - Se2	105.5 (1)
C14 – Se1 – C16	85.9 (7)	C4 - Se2 - C2	83.5 (8)
N1 – C16 – C17 –	7.5 (2)	N3 - C5 - C4 - N4	12.3 (2)
Se1 - C16 - C17 - C18	16.3 (2)	Se2 - C4 - C5 - C6	12.1 (2)

Table S2. Selected bond distances (Å), angles (°) for compound 2s

5. HPLC analysis

The proposed diastereomers were separated on the Waters e2695 alliance module equipped with 2998 PDA detector and Empower 3 software. The separation was achieved using reverse phase linear gradient method (T_{min}/B ; $T_0/10$; $T_{20}/90$) with 0.1 % formic acid-aqueous phase and acetonitrile as organic phase on an Xbridge C18 5µm 4.6 x 250mm column.

Figure S15. HPLC chromatogram for the proposed diastereomeric mixture of compound 2u.

	Name	Retention Time	Area	% Area	Height
1	Peak-1	14.341	3470419	43.29	331331
2	Peak-2	14.568	4546462	56.71	555367

Table S3. Percentage area calculation of the peaks obtained in the HPLC chromatogram

6. MTT Assay

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) is a water-soluble salt that converts into water-insoluble formazan crystal by mitochondrial succinate dehydrogenase enzyme, where MTT assay is a colorimetric assay, thereby measures the reduction of MTT. Metabolically, active cells can reduce the MTT in the cell mitochondria, and the level of activity indicates the cell viability in cytotoxic assay and cell proliferation. Briefly, cells were seeded in 96-well plates at a density of 1000 to 4000 cells per well in 100 μ l of complete medium and allowed to grow overnight for attachment onto the wells. After the media was replaced with fresh media, the cells were treated with the selenazoline compounds at 20 micromolar concentrations for % inhibition calculations, and at varying concentrations for dose-response curves determining the IC₅₀ values. After treatment, MTT (0.5 mg/ml) was added and incubated for 3 – 4 hr, after which absorbance was recorded at 570 nm.

Sr.	Compound	% Inhibition at 20 µM concentration ^a		IC ₅₀ values (μ M)	
No.		A549	HCT-116	A549	HCT-116
1	2a	81.26	49.45	3.34 ± 0.02	15.25 ± 4.41
2	2b	< 20	< 20	N.D.	N.D.
3	2c	< 20	< 20	N.D.	N.D.
4	2d	24.05	< 20	N.D.	N.D.
5	2e	< 20	< 20	N.D.	N.D.
6	2f	< 20	23.03	N.D.	N.D.
7	2g	28.56	< 20	N.D.	N.D.
8	2h	< 20	< 20	N.D.	N.D.
9	2i	< 20	< 20	N.D.	N.D.
10	2j	< 20	26.02	N.D.	N.D.
11	2k	< 20	< 20	N.D.	N.D.
12	21	< 20	< 20	N.D.	N.D.
13	2m	< 20	< 20	N.D.	N.D.
14	2n	< 20	< 20	N.D.	N.D.
15	20	< 20	30.75	N.D.	N.D.
16	2r	< 20	26.12	N.D.	N.D.
17	2s	< 20	24.43	N.D.	N.D.
18	2t	< 20	< 20	N.D.	N.D.
19	2u	48.78	26.07	N.D.	N.D.
21	2v	77.97	41.19	7.98 ± 0.12	28.9 ± 9.25
22	5-Fluorouracil	30.94	47.08	21.39 ± 0.20	28.52 ± 5.55

Table S4. Preliminary antiproliferative activity of the compounds against the standard drug, 5-fluorouracil

^aData represents the average of three independent experiments (n =3). N.D. = Not determined