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Experimental Methods.

Materials

All chemicals and solvents were commercially available and used as obtained without
further purification unless otherwise noted. Water was purified by a HHitech Ultrapure
Water System with specific resistance of 18.2 MQecm at 25 °C. HPLC grade water was
used for all spectroscopic and electrochemical measurements. Hydrophilic carbon
paper (Toray, TGP-H-060) was purchased from Guangzhou Lige Science Co., Ltd.
K>CO3 (99.995%) was purchased from Macklin. CO; (99.995%) and N> (99.999%)
were purchased from Guangzhou Gas Co., Ltd. K»'*CO; (**C, 98%, CIL) was
purchased from Qingdao Tenglong Weibo technology Co., Ltd. '*CO, (99.0 atom %,
Aldrich) was purchased from Guangzhou Yuejia Gas Co., Ltd. CuCly, 1.10-
phenanthroline (phen) and 2,9-dimethyl-1,10-phenanthroline (2,9-dmp) were
purchased from Sigma Aldrich. 1,10-phenanthrolin-5-amine, 1 and 2 were purchased
from Bide Pharmatech Ltd. 1-(2,4-dinitrophenyl)-pyridinium chloride' and N-tolyl
pyridinium chloride’ was synthesized according to published procedures. 3—5 were
synthesized according to the methods reported in the literature. >

Preparation of 1-(1,10-phenanthrolin-5-yl)pyridin-1-ium chloride [(5-py-phen)Cl].
A solution of 1-(2,4-dinitrophenyl)-pyridinium chloride (1.69 g, 0.6 mmol) and 1,10-
phenanthrolin-5-amine (0.98 g, 0.5 mmol) in ethanol (100 mL) was stirred under reflux
for 48 h. After reaction, the mixture was concentrated under vacuum. The solid col-
lected was dissolved in 2 mL methanol, and then precipitated by 20 mL diethyl ether.
The precipitate was washed twice with diethyl ether and dried under vacuo, which gave
a red-brown solid product (0.71 g, 48% yield). "H NMR (400 MHz, DMSO-ds) § 9.57-
9.47 (m, 2H), 9.27 (ddd, J = 17.6, 4.3, 1.7 Hz, 2H), 9.04- 8.96 (m, 1H), 8.65 (dd, J =
8.1, 1.8 Hz, 1H), 8.61 (s, 1H), 8.55-8.45 (m, 2H), 8.00-7.89 (m, 2H), 7.84 (dd, J = 8.4,
4.3 Hz, 1H). >*C NMR (101 MHz, DMSO-ds) § 152.80, 151.88, 148.43, 147.14, 146.22,
145.76, 137.93, 137.22, 131.10, 129.09, 126.90, 126.50, 125.06, 124.92, 123.98.

Preparation of complex 6 and 7.

CuCl; (0.14 g, 1 mmol) and (5-py-phen)Cl (0.59 g, 2 mmol) were mixed in 20 mL
methanol, and heated at 60 °C for 2 h. Afterwards, the solvent was removed by rotary
evaporation and the resulting solid was re-crystallized in a mixture of methanol and
diethyl ether, affording a green solid as the final product 6 (0.13 g, 18%). Anal. Calcd.
For C34H24N6CuCls-5H2O: C, 50.33; H, 4.33; N, 10.33; found: C, 50.29; H, 4.22; N,
10.35. Due to the poor quality of single crystals of 6, the CI anion was exchanged with
PF¢ to obtain complex 7, which gave crystals suitable for X-ray diffraction (Fig. S3B).
Similar to other bis-phenanthroline Cu complexes,>> the Cu center in 7 is five-
coordinated by one Cl and four N atoms from the phenanthroline ligands in a distorted
trigonal bipyramidal geometry. The N—Cu bond length in the range 2.003(3)— 2.220(3)
and the bond angle (~120°) between the pyridinium and phenanthroline planes are
similar to previously reported complexes. ¢’
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Characterization.
'H and '*C NMR spectra were recorded on a Bruker 400 MHz NMR spectrometer. UV—
vis spectra were taken on a Thermo Scientific GENESYS 50 UV-visible spectropho-
tometer. ESI-MS spectra were obtained on a Thermo Scientific LTQ-XL ion trap mass
spectrometer. Scanning electron microscopy (SEM) was recorded with HITACHI
SU8010. High resolution transmission electron microscope (HR-TEM) measurements
were performed on a JEOL JEM 22010 of 200 kV. X-ray photoelectron spectroscopy
(XPS) was measured on an ESCALAB 250, Thermo Fisher Scientific, using a standard
Al Ka (1484.8 eV) X-ray source and an analyzer pass energy of 15 eV. All binding
energies of the XPS spectra were calibrated by Cis at 284.8 eV.
X-ray crystallography.
X-ray diffraction data were collected on SuperNova singlecrystal diffractometer using
the CuKa (1.54184 nm) radiation at 150 K. Absorption correction was carried out by a
multiscan method. The crystal structure was solved by direct methods with SHELXT?®
program, and was refined by full-matrix leastsquare methods with SHELXL? program
contained in the Olex2’ suite. Weighted R factor (Rw) and the goodness of fit S were
based on F2, conventional R factor(R) was based on F. Hydrogen atoms were placed
with the AFIX instructions and were refined using a riding mode. Figures were drawn
with Diamond software. Details can be obtained from the Cambridge Crystallographic
Data Centre at www.ccdc.cam.ac.uk for CCDC accession number 2207405 and
2208240.
Electrochemical CO2 Reduction
All electrochemical measurements were conducted on a CHI760E potentiostat with a
three-electrode configuration. Linear sweep voltammetry and Cyclic voltammograms
measurements were carried out using carbon paper as the working electrode, a platinum
plate as the counter electrode, and an Ag/AgCl (saturated KCIl) as the reference
electrode in COx—saturated 0.1M KHCO3 (pH = 6.8) with copper complexes, solutions
were purged with CO; over 30 min before measurements. Controlled potential
electrolysis were performed using a typical H-type cell with two compartments
separated by an anion exchange membrane (Hangzhou Huamo Technology Co., Ltd).
carbon paper or glassy carbon working electrode, before each measurement, the
working electrode was cleaned thoroughly using the electrolyte solution. A platinum
foil was used as the counter electrode and an Ag/AgCl (saturated KCl) was used as the
reference electrode. If not mentioned otherwise, the electrolyte was a CO»—saturated
0.1 M KHCOs3 aqueous solution, which was prepared by sparging a solution of KoCOs
(0.05 M) with CO, for least 65 min. The potentials were converted to the RHE scale
using the following equation:
EruE = Eag/agci+ 0.197 + 0.059 x pH, (1)

where Eryk 1s the potential vs RHE, and gagagci 1s the (measured) potential vs Ag/AgCl
reference electrode.

The gas products were analyzed by gas chromatography (Shimadzu GC-2014). A
thermal conductivity detector (TCD) was used to detect H, and two flame ionization
detectors (FID) were used to detect CO and hydrocarbons. Nitrogen was used as the
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carrier gas. The oven temperature was kept at 60 °C. The TCD detector and injection
port were kept at 100 °C and 200 °C, respectively. The liquid products were analyzed
by high performance liquid chromatography (HPLC) and 'H NMR. For HPLC
measurements, the electrolyte was diluted with a sulfuric acid solution (30 or 300 mM)
to the appropriate concentration with pH adjusted to be lower than 7. The HPLC
(Shimadzu LC-20AT) was equipped with a refractive index detector (Shimadzu RID-
20A) and a HPX-87H (BIO-RAD) chromatographic column. During analysis, the
temperatures of detector and column oven were kept at 40 °C and 60 °C, respectively.
The mobile phase was 5 mM H>SO4 aqueous solution with a steady running rate of 0.5
mL/min. For '"H NMR measurements, solutions containing 90% electrolyte and 10%
D0 (v/v) with DMSO as the internal standard were prepared and measured using a
water suppression technique on a Bruker 400 MHz NMR spectrometer. Faradaic
efficiency (FE) was calculated from the following equation:

FE = ”7” x 100% )

where 7 is the amount of a specific product, z is the number of electrons required to
reduce one molecule of a specific product, F is Faradaic constant, and Q is the total
amount of charge passed. '>C isotopic labeling experiments were carried out in a *CO;
atmosphere and KH'>CO; electrolyte. The gaseous products were detected by a gas
chromatography mass spectrometry (GC-MS, Agilent 7890A—-5975C) equipped with a
J & W GS—Carbon PLOT (Agilent, number: 113-3133) column.
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Figure S1.'H NMR spectrum of (5-py-phen)Cl in DMSO-ds.
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Figure S2.°C NMR spectrum of (5-py-phen)Cl in DMSO-ds.
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Figure S3. Thermal ellipsoid plot of (5-py-phen)Cl. Thermal ellipsoids are drawn at
the 50% probability level. Hydrogen atoms and non-coordinating anions have been
removed for clarity.
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Table S1. Crystal data and structure refinement for (5-py-phen)Cl and 7.

Compound (5-py-phen)Cl 7
CCDC 2208240 2207405
Empirical formula Ci7H12CIN; C34H24CICuF1sN6P3
Formula weight 293.75 1050.50
Temperature 149.98(10) K 150K
Wavelength 1.54184 A 1.34138 A
Crystal system, space group Triclinic Monoclinic
Space group P1 P121/c1
a/A 6.9329(7) 17.2933(9)
b/A 10.2901(14) 13.8590(7)
c/A 11.7596(14) 15.8110(8)
a/° 98.018(11) 90
pre 98.510(9) 94.827(2)
y/° 96.695(10) 90
Volume/A3 813.48(17) 3775.93)
V4 2 4
Calculated density/Mg/m?3 1.199 1.8478
Absorption coefficient/mm-! 2.039 5.087
F(000) 304 2091.4945
Crystal size/mm3 0.35x0.12 x 0.05 0.16 x 0.08 x 0.06
Theta range for data collection/< 4.382 10 62.999 2.231059.97

Limiting indices

Reflections collected / unique
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on FA2
Final R indices [1>2sigma(l)]
R indices (all data)
Largest diff. peak and hole/e A3

-8<=h<=7, -7<=k<=11, -
13<=I<=13
4388 / 2544 [R(int) = 0.0395]
1.00000 and 0.69294
Full-matrix least-squares on F*2
2544101/ 199
1.072
R1=0.1000, wR2 = 0.2689
R1=0.1114, wR2 = 0.2833
0.993 and -0.375

-22<=h<=22, -17<=k<=17, -
19<=1<=20
43524 8389 [R(int) = 0.0715]
0.7516 and 0.4659
Full-matrix least-squares on F*2
8389/0/569
1.0350
R1=0.0585, wR2 = 0.1605
R1=0.0922, wR2 = 0.1842
0.9794 and -0.8505
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Table S2. Selected bond lengths (A) of (5-py-phen)CI.

Selected bond lengths (A)

N(1)-C(1) 1.356(6) C(1)-C(12) 1.458(6) C(8)-C(12) 1.398(7)
N(1)-C(2) 1.330(6) C(2)-C(3) 1.404(7) C(9)-C(10) 1.371(7)
N(2)-C(11) 1.353(6) C(3)-C(4) 1.369(6) C(10)-C(11) 1.379(8)
N(2)-C(12) 1.357(6) C(4)-C(5) 1.408(6) C(13)-C(14) 1.374(7)
N(3)-C(6) 1.455(5) C(5)-C(6) 1.431(6) C(14)-C(15) 1.385(9)
N(3)-C(13) 1.346(6) C(6)-C(7) 1.350(6) C(15)-C(16) 1.382(9)
N(3)-C(17) 1.352(6) C(7)-C(8) 1.433(6) C(16)-C(17) 1.373(7)
C(1)-C(5) 1.422(6) C(8)-C(9) 1.412(6)

Table S3. Selected bond angels (9 of (5-py-phen)CI.

Selected angels (9

C(2-N(1)-C(1)  117.4(4) C(1)-C(5)-C(6) 1186(3) C(9)-C(10)-C(11)  119.1(4)
C(11)-N(2-C(12) 116.1(4) C(4)-C(5)-C(1) 117.5(4) N(2)-C(11)-C(10)  124.8(4)
C(13)-N(3)-C(6)  1186(4) C(4)-C(5)-C(6) 1239(4) N(2-C(12)-C(1)  117.1(4)
C(13)-N(3)-C(17) 1224(4) C(5)-C(6)-N(3) 1187(3)  N(2)-C(12)-C(8)  122.8(4)
C(17)-N(3)-C(6)  119.0(3) C(7)-C(6)-N(3) 1182(4)  C(8)-C(12-C(1)  120.1(4)
N(1)-C(1)-C(5)  1230(4) C(7)-C(6)-C(5) 123.1(4) N(3)-C(13)-C(14)  119.4(5)
N(1)-C(1)-C(12)  1185(4)  C(6)-C(7)-C(8) 1195(4) C(13)-C(14)-C(15) 119.7(5)
C(5)-C(1)-C(12)  1185(4)  C(9)-C(8)-C(7) 120.8(4) C(16)-C(15)-C(14) 119.4(5)
N(1)-C(2)-C(3)  1236(4) C(12)-C(8)-C(7) 120.3(4) C(17)-C(16)-C(15) 119.9(5)
C(4-C(3)-C(2)  1194(4) C(12)-C(8)-C(9) 118.9(4) N(3)-C(17)-C(16)  119.2(4)
C(3)-C(4)-C(5)  119.1(4) C(10)-C(9)-C(8) 118.3(5)

Table S4. Selected bond lengths (A) of 7.

Selected bond lengths (A)

Cu(01)-CI(02)
Cu(01)-N(000)
N(00K)-C(01E)
N(00L)-C(016)
N(OON)-C(00W)
N(000)-C(00R)
N(00P)-C(01F)

2.2388(10)
2.005(3)
1.354(5)
1.323(4)
1.459(4)
1.356(4)
1.333(4)

Cu(01)-N(00L)
Cu(01)-N(00P)
N(00K)-C(01M)
N(00M)-C(00V)
N(0ON)-C(011)
N(000)-C(010)

2.220(3)
2.003(3)
1.329(4)
1.361(4)
1.341(5)
1.314(4)

Cu(01)-N(00M)
N(00K)-C(00T)
N(00L)-C(00S)
N(0OM)-C(012)
N(OON)-C(01P)
N(00P)-C(002)

2.084(3)
1.459(4)
1.361(4)
1.326(4)
1.347(5)
1.356(4)
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Table S5. Selected bond angels (9 of 7.

Selected angels (9

N(00L)-Cu(01)-CI(02) 115.90(8) N(0OM)-Cu(01)-CI(02) 153.39(8)
N(000)-Cu(01)-C1(02) 92.04(9) N(00P)-Cu(01)-CI(02) 95.19(8)

N(0OM)-Cu(01)-N(00L) 90.71(10) N(000)-Cu(01)-N(00L) 79.06(11)
N(000)-Cu(01)-N(00M) 93.92(12) N(00P)-Cu(01)-N(00L) 95.19(11)
N(00P)-Cu(01)-N(00M) 80.86(11) N(00P)-Cu(01)-N(000) 172.24(12)
C(00S)-N(00L)-Cu(01) 109.5(2) C(016)-N(00L)-Cu(01) 132.6(2)

C(00V)-N(00M)-Cu(01) 1104(2) C(012)-N(00M)-Cu(01) 130.9(2)

C(00R)-N(000)-Cu(01) 115.9(2) C(010)-N(000)-Cu(01) 124.5(2)

C(00Z)-N(00P)-Cu(01) 112.8(2) C(01F)-N(00P)-Cu(01) 128.3(2)

C(01E)-N(00K)-C(00T) 117.4(3) C(01M)-N(00K)-C(00T) 121.9(3)

C(01M)-N(00K)-C(01E) 120.8(3) C(016)-N(00L)-C(00S) 117.8(3)

C(012)-N(00M)-C(00V) 117.7(3) C(011)-N(0ON)-C(00W) 121.5(3)

C(01P)-N(0ON)-C(00W) 116.7(3) C(01P)-N(0ON)-C(011) 121.8(3)

C(010)-N(000)-C(00R) 119.6(3) C(01F)-N(00P)-C(002) 118.2(3)

C(00S)-C(00R)-N(000) 118.5(3) C(00U)-C(00R)-N(000) 120.9(3)

C(00R)-C(00S)-N(00L) 116.9(3) C(017)-C(00S)-N(00L) 123.0(3)

C(00X)-C(00T)-N(00K) 118.9(3) C(011)-C(00T)-N(00K) 118.0(3)

C(002)-C(00V)-N(00M) 116.3(3) C(010)-C(00V)-N(00M) 123.6(3)
C(00U)-C(00W)-N(0ON) 117.03) C(01D)-C(00W)-N(0ON) 119.4(3)

C(00V)-C(00Z)-N(00P) 116.9(3) C(011)-C(00Z)-N(00P) 122.7(3)

C(01B)-C(012)-N(00M) 122.8(3) C(018)-C(016)-N(00L) 123.0(3)

C(01G)-C(01E)-N(00K) 120.1(4) C(01L)-C(01F)-N(00P) 122.8(3)

C(014)-C(011)-N(OON) 119.2(4) C(01N)-C(01M)-N(00K) 120.7(4)

C(01H)-C(010)-N(000) 122.8(3) C(01Q)-C(01P)-N(0ON) 120.0(4)

S8



2.5

2.0

1.5

1.0

Absorbance

0.5

0.0

300 320 340 360 380 400 420 440
Wavelength (nm)

Figure S4. UV—Vis spectra of complexes 6 (grey) and 7 (red) in DMSO.
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Figure S5. Linear sweep voltammetry of 1.0 mM 1-6 in 0.1 M KHCOs electrolyte
under CO; on carbon paper as working electrode with a scan rate of 100 mV/s.
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Figure S6. Cyclic voltammograms of 1.0 mM CuClz in 0.1 M KHCOs electrolyte un-
der N> (A) and CO; (B) on carbon paper as working electrode with a scan rate of 100
mV/s.
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Figure S7. Cyclic voltammograms of 1.0 mM 1 in 0.1 M KHCOs electrolyte under N>
(A) and CO; (B) on carbon paper as working electrode with a scan rate of 100 mV/s.
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Figure S8. Cyclic voltammograms of 1.0 mM 2 in 0.1 M KHCO3 electrolyte under N»
(A) and CO; (B) on carbon paper as working electrode with a scan rate of 100 mV/s.
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Figure S9. Cyclic voltammograms of 1.0 mM 3 in 0.1 M KHCO:s electrolyte under N>
(A) and CO; (B) on carbon paper as working electrode with a scan rate of 100 mV/s.
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Figure S10. Cyclic voltammograms of 1.0 mM 4 in 0.1 M KHCOs electrolyte under
N2 (A) and CO; (B) on carbon paper as working electrode with a scan rate of 100 mV/s.
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Figure S11. Cyclic voltammograms of 1.0 mM 5 in 0.1 M KHCOjs electrolyte under N»
(A) and CO; (B) on carbon paper as working electrode with a scan rate of 100 mV/s.
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Figure S12. Cyclic voltammograms of 1.0 mM 6 in 0.1 M KHCOs electrolyte under
N2 (A) and CO; (B) on carbon paper as working electrode with a scan rate of 100 mV/s.
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Figure S13. Cyclic voltammograms of 1.0 mM (5-py-phen)Cl (A) and 6 (B) in 0.1 M

KHCO:s electrolyte under CO; on carbon paper as working electrode with a scan rate of
100 mV/s.

Table S6. The cathodic peak potential (Epc) for complexes. Bl

Epc
Complex
N2 COz
CuCl —0.76 —0.83
1 —0.95 —0.93
2 —0.83 —0.93
3 -0.92 —0.96
4 -0.91 —0.97
5 -- —-1.01
6 -0.91 —0.97

[a] All values in V vs. RHE; 1.0 mM complex with the first cathodic in 0.1 M KHCO3
electrolyte on carbon paper as working electrode with a scan rate of 100 mV/s.
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Table S7. Faradaic efficiencies toward different products produced during CO-
reduction with 1.0 mM different pre-catalysts. Electrolysis was conducted in a CO»-
saturated 0.1 M KHCOjs electrolyte at an applied potential of —1.3 Vgrye for 2 h.[

Pre-catalyst FE 06 /
H> CcO HCOOH CHs C:Hs C:Hse CHsOH  CsHe CsH/OH o Cos Total  (mA/cm?)

None 85.6 6.0 0 0 0 0 0 0 0 0 91.6 1.3
Phen 832 34 0 0 0 0 0 0 0 0 86.6 1.0
CuCl 623 69 14.0 0.4 6.0 0.5 0.4 0.1 1.5 8.5 92.1 14.1
1 353 275 6.2 5.7 12.2 0.2 34 0 0 158 905 8.8

2 19.7 304 6.8 2.9 27.1 0.7 2.1 0.1 30 89.8 4.5

3 8.0 182 2.7 22 62.2 0.1 32 0.1 1.5 67.1 98.2 7.2

4 77 125 4.5 2.6 68.5 0.1 2.6 0.1 0.9 722 995 6.6

5 134  31.0 7.1 8.5 31.7 0 2.5 0 0 342 942 2.1

6 70 169 9.5 10.8 14.7 0 37.1 0 51.8  96.0 2.5
41] 90.5 0 0 0 0 0 0 0 0 0 90.5 2.3

[a] All values are an average of at least three runs. [b] Nitrogen atmosphere.
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Table S8. Summary of molecular metal complexes for electrocatalytic CO» reduction

to Cos.
Supporting elec- .
Entry pporfing Catalyst | Potential (V |  Electrolyte FE (%) for Ca+ product Reference
trode
vs. RHE)
Graphene—coated 0.1M
! carbon paper Cu(phen): 10 KHCOs CoHa (2.4) 10
2 Carbon paper PorCu —-0.976 0.5 M KHCO3 C2H4 (17) 11
Crystalline
3 Carbon paper -1.0 0.5 M KCI C2H4 (25) 12
CuPc
Graphitized
4 mesoporous carbon | [Cuz(NTB)] -1.278 0.1 M KCI C2Hs (42) 13
coated carbon paper
. - 0.5 M KHCOs3, C2HsOH (15.2)
5 Coated graphite Cu-Salen 1.2 pH=7 CHCOOH (14.0) 14
. Bicentric Cu B C2HsOH (32.5)
6 Ketjen black porphyrin 12 0.1M KHCOs n-CsH;OH (18.3) 15
. . 3 0.5 M KHCOg3, C2HsOH (28.6)
7 Graphite plate Ni-Salen 1.2 pH=7 CH:CHO (4.7) 16
0.1 M NaClO. CHsCH;0H (48)
8 Carbon paper Co-corrole -0.8 pH = 6 phos- CH:COOH (10) 17
phate buffer.
0.1M
9 Carbon paper Mn-corrole -0.7 phosphate CH3COOH (63) 18
buffer, pH =6
Ru
N-doped porous . -1.17 vs C2HsOH (27.5)
10 carbon polypyridyl NHE 0.5M KHCOs3 CHsCOOH (12.5) 19
carbene
CaHa (71.2)
11 Carbon paper 4 C2HsOH (1.7)
-13 0.1 M KHCO3, n-CsH70H (1.2) This work
12 Carbon paper 6 CaHa (14.7)

C2HsOH (37.1)
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Figure S14. Faradaic efficiencies (A) Hz, (B) CO, (C) HCOOH, (D) CHa, (E) C2+ and
(F) current density of CO; reduction with different pre-catalyst at different applied
potentials. Electrolysis was conducted in a CO»-saturated 0.1 M KHCOj3 electrolyte for
2 h.
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Table S9. Faradaic efficiencies toward different products produced during CO:
reduction with 1.0 mM CuCl, as the pre-catalyst at different applied potentials.
Electrolysis was conducted in a COz-saturated 0.1 M KHCOj electrolyte for 2 h.

Potential (V FE (%) j
vs RHE) H» CO HCOOH CHs CoHs CoH¢ CoHsOH C3H¢ C3H/OH Cp+  Total (mA/cm?)
0.9 67.1 5.1 12.4 0.1 1.9 0.1 0 0.2 0 22 869 6.5
-1.0 59.1 75 18.9 0.1 6.8 0.4 0 0.1 0.9 82 938 9.7
-1.1 585 5.1 19.1 0.1 53 0.2 0 0.1 0.5 6.1 88.9 10.1
-1.2 620 52 14.4 0.2 6.7 0.3 0.2 0.1 0.2 7.5 893 11.4
-1.3 623 69 14.0 0.4 6.0 0.5 0.4 0.1 1.5 85 921 14.1
-14 652 39 7.8 0.2 8.2 0.4 0.2 0.1 1.1 100 87.1 17.0
-1.5 704 2.7 2.5 0.3 6.4 0.2 0.2 0 0.6 74 833 18.3

Table S10. Faradaic efficiencies toward different products produced during CO-
reduction with 1.0 mM 1 as the pre-catalyst at different applied potentials. Electrolysis
was conducted in a CO»-saturated 0.1 M KHCOs electrolyte for 2 h.

Potential (V FE (%) j
vs RHE) H> CO HCOOH CHs CyHs CoH¢ CoHsOH GCsHe C3H/OH Cor Total  (mA/cm?)
0.9 9.0 489 17.2 23 1.6 0 0 0 0 1.6 79 1.7
-1.0 11.9 435 14.3 1.8 9.4 0.1 0.5 0 0 10.0 815 2.0
-1.1 184 46.7 4.1 21 147 03 1.4 0 0 164 877 2.4
-1.2 272 345 9.9 27 127 07 25 0 0 159 902 3.6
-1.3 353 275 6.2 57 122 02 3.4 0 0 158 905 8.8
-1.4 48.6 214 5.4 42 118 02 2.7 0 0 147 943 10.9
-1.5 612 10.1 1.9 19 106 02 1.3 0 0 12.1 872 17.5

Table S11. Faradaic efficiencise toward different products produced during CO;
reduction with 1.0 mM 2 as the pre-catalyst at different applied potentials. Electrolysis
was conducted in a CO»-saturated 0.1 M KHCO3 electrolyte for 2 h.

Potential (V FE (%) j
vs RHE) H2 CO HCOOH CHsy CoHs CiH¢ CoHsOH CsHs CsH0H  Co+ Total  (mA/cm?)
-0.9 10.7 47.6 8.9 0.6 32 0.1 0 0 0 33 711 1.1
-1.0 11.7 45.1 49 0.3 8.1 0.1 0 0 0 82 702 1.7
-1.1 11.9 295 6.9 1.8 260 03 2.0 0.1 0 284 785 2.8
-1.2 104 323 6.9 22 319 04 2.5 0.1 0 349 86.7 4.0
-1.3 19.7 304 6.8 29 271 0.7 2.1 0.1 0 300 89.8 4.5
-1.4 52.1 18.6 3.4 32 13.0 0.6 1.1 0.1 0 148 92.1 9.3
-1.5 69.2 9.7 2.0 2.5 6.5 0.3 0.3 0.2 0 73 907 14.5
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Table S12. Faradaic efficiencies toward different products produced during CO-
reduction with 1.0 mM 3 as the pre-catalyst at different applied potentials. Electrolysis
was conducted in a CO»-saturated 0.1 M KHCOj electrolyte for 2 h.

Potential (V FE (%) j
vs RHE) H> CO HCOOH CHs CHs CHe CHsOH CsHs C3H/OH Cor  Total (mA/cm?)
0.9 224 494 3.5 04 41 0 0 0 4.6 87 844 0.6
-1.0 154 551 5.4 02 171 0 0 0 1.1 182 942 1.4
-1.1 11.8  36.2 4.7 21 372 0.1 1.1 0 35 419 967 2.0
-1.2 72 207 3.2 06 616 0.1 2.4 0.1 1.5 657 974 4.5
-1.3 8.0 182 2.7 22 622 0.1 32 0.1 1.5 672 982 7.2
-14 152 7.6 1.9 55 611 0.1 1.8 0.1 3.0 66.1 963 9.4
-1.5 175 63 1.1 127 567 0.1 1.3 0.1 2.6 60.7 984 12.4

Table S13. Faradaic efficiencies toward different products produced during CO-
reduction with 1.0 mM 4 as the pre-catalyst at different applied potentials. Electrolysis
was conducted in a CO»-saturated 0.1 M KHCOj electrolyte for 2 h.

Potential (V FE (%) j
vs RHE) H: CO HCOOH CHs CoHs CoHs CoHsOH CsHse CsH/OH Co+ Total (mA/cm?)

0.9 38.1 414 6.2 0.2 25 0 0 0 0 25 884 0.9
-1.0 159 483 7.0 05 253 0 0 0 0 253 970 1.7
-1.1 127 39.1 7.9 08 317 0 3.1 0 0.1 349 954 1.9
-1.2 83 17.0 5.5 13 615 0.1 4.1 0 0.8 66.5 98.6 4.1
-1.3 7.7 125 4.5 26 685 0.1 2.6 0.1 0.9 722 995 6.6
-1.4 72 114 4.0 45 658 0.1 2.4 0.1 1.2 69.6 96.7 9.3
-1.5 81 55 2.6 21.5 588 0 1.1 0 0.4 603 98.0 11.7

Table S14. Faradaic efficiencies toward different products produced during CO;
reduction with 1.0 mM 5 as the pre-catalyst at different applied potentials. Electrolysis
was conducted in a CO»-saturated 0.1 M KHCO3 electrolyte for 2 h.

Potential (V FE (%) j
vs RHE) H: CO HCOOH CHs CHs CHse CHsOH C3Hs C3H/OH Cp+  Total (mA/cm?)
-0.9 399 163 3.4 0.2 7.0 0 0.3 0 0 73 671 0.3
-1.0 469 358 5.1 0.2 7.6 0 0.6 0 0 82 962 0.5
-1.1 21.3 411 5.0 13 232 01 0.7 0 0 240 927 0.9
-1.2 95 473 8.4 30 273 0.1 1.6 0 0 29.0 972 1.7
-1.3 134 310 7.1 85 317 0 2.5 0 0 342 942 2.1
-1.4 19.7 14.1 1.8 220 343 0 1.0 0 0 353 929 3.0
-1.5 321 108 1.8 27.0 235 0 0.7 0 0 242 959 5.8
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Table S15. Faradaic efficiencies toward different products produced during CO-
reduction with 1.0 mM 6 as the pre-catalyst at different applied potentials. Electrolysis
was conducted in a CO»-saturated 0.1 M KHCOj3 electrolyte for 2 h.

Potential (V FE (%) j
vs RHE) H> CO HCOOH CHs CHs CHs CHsOH CsHg CsHOH Ca+ Total (mA/cm?)
0.9 275 365 7.3 0.8 3.7 0 12.1 0 0 158 88.0 0.9
-1.0 10.1 487 6.7 0.2 5.0 0 24.8 0 0 29.8 955 2.1
-1.1 9.1 456 7.1 0.2 5.6 0 28.4 0 0 340 959 1.8
-1.2 9.8 344 7.2 33 142 0 304 0 0 446 993 1.7
-1.3 7.0 169 9.5 108 14.7 0 37.1 0 0 51.8  96.0 25
-1.4 9.7 123 1.9 241 268 0 21.8 0 0 48.6  96.6 4.7
-1.5 132 9.6 1.8 30.1  27.0 0 19.8 0 0 46.8 101.6 7.0

Table S16. Faradaic efficiencies toward different products produced during CO;
reduction with 4 at different concentration. Electrolysis was conducted in a CO»-
saturated 0.1 M KHCOs electrolyte at —1.3 Vrug for 2 h.

Concentration

Faradaic efficiencies (%)

J
(mM) H, CO HCOOH CHs CHs CoH¢ GCHsOH C3He CsH/0H Car  Total (mA/cm?)
0.1 8.0 37.6 5.0 0.4 453 0.1 1.5 0.1 0.8 47.8 98.8 35
0.5 8.1 10.5 3.1 3.3 71.2 0.1 1.7 0.1 1.2 743 993 5.4
1.0 7.7 12.5 4.5 2.6 68.5 0.1 2.6 0.1 0.9 722 995 6.6
5.0 7.7 18.2 4.0 0.6 58.3 0.1 2.4 0.1 1.1 62.0 925 8.0
CEH, co HCOOH v  CH, & GCH,
~® CH, * C,HOH ®  CiH, n-C,H,0H —%— Total
100 4 W
80 -
A
= 60 4 - e
S
L 40-
20 -
| | ] i |
04 s ————3
T T T T T T
0.1 0.5 1.0 5.0

Concentration (mM)

Figure S15. Faradaic efficiencies toward different products produced during CO-
reduction with 4 at different concentration. Electrolysis was conducted in a CO»-
saturated 0.1 M KHCOj electrolyte at —1.3 Vrug for 2 h.
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Figure S16. Chronoamperograms of electrolysis using a carbon paper electrode in a
COz-saturated 0.1 M KHCO:; electrolyte with 4 at different concentration at —1.3 Vrue
for 2 h.

Table S17. Faradaic efficiencies toward different products produced during CO-
reduction used GC electrode with 1.0 mM different pre-catalysts. Electrolysis was
conducted in a CO»-saturated 0.1 M KHCOs electrolyte at an applied potential of —1.3
Vrue for 2 h.

FE (%) j
Pre-catalyst
H> CO HCOOH CHs CHs CiHs CoHsOH CsHs CsH/OH  Co+ Total  (mA/em?)
1 394 21.0 1.8 1.3 267 0.1 2.6 0 0 294 929 8.3
2 194 293 3.0 10.5 340 0.4 0 0 1.7 50.1 983 6.0
3 48 112 3.8 11.0  62.1 0.1 22 0 0.9 653 96.1 6.5
4 62 181 45 20 655 0.1 1.8 0.1 1.1 68.6 994 7.1
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Table S18. Faradaic efficiencies toward different products produced during CO-
reduction with 1.0 mM 4 as the pre-catalyst at long time. Electrolysis was conducted in
a COy-saturated 0.1 M KHCOj electrolyte at an applied potential of —1.3 Vrpg. !

Time (h) FE00)

H, CO HCOOH CHs CHs CiHe CHsOH CsHe CsH/OH Ca+  Total
1 63 115 N.A. 31 69.1 0.1 N.A. 0.1 N.A. 693 902
2 72 128 N.A. 27 680 0.1 N.A. 0.1 N.A. 682  90.9
4 128 9.6 N.A. 21 645 0.1 N.A. 0.0 N.A. 645 89.1
7 13.6 12.1 N.A. 18 61.8 0.1 N.A. 0.1 N.A. 62.0 89.5
10 125 122 N.A. 15 620 0.1 N.A. 0.1 N.A. 622 884
13 109 85 N.A. 15 651 0.1 N.A. 0.1 N.A. 653 862
18 123 9.1 N.A. 1.1 649 0.1 N.A. 0.1 N.A. 65.1 87.6
21 22.0 12.1 N.A. 06 523 0.1 N.A. 0.1 N.A. 525 872
23 279 139 N.A. 02 481 02 N.A. 0.2 N.A. 485 905
28 275 132 N.A. 0.1 445 0.1 N.A. 0.1 N.A. 447 855
30 282 14.0 5.0 0.1 415 0.1 2.5 0.1 1.6 458 93.1

[a]All values are an average of at least three runs. N.A.:no application.
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Figure S17. Chronoamperometric i—t curve and faradaic efficiencies toward different
products produced during CO» reduction with 1.0 mM 4 as the pre-catalyst. Electrolysis
was conducted in a CO»-saturated 0.1 M KHCOj electrolyte at an applied potential of
—1.3 Vrue for 30h.
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Figure S18. GC—MS measurements of calibration standard and gas products from
electrolysis conducted in *2CO,-saturated 0.1 M KH2COj3 electrolyte, or in B*CO,-
saturated 0.1 M KH®COj electrolyte, using 1.0 mM 4 as the pre-catalyst at an applied
potential of —1.3 VRrHe.
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Figure S19. 'H NMR spectra (400 MHz, H,0:D,0 = 9:1) of C;HsOH and CsH;0H
after electrolysis at —1.3 Vgrue with 4 (1.0 mM) in '2C (blue) or *C-enriched (brown)

CO;-saturated KHCOs.
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Figure S20. '"H NMR spectra (400 MHz, H,O:D,0 = 9:1, DMSO as the internal
standard) of the electrolyte solution. Electrolysis was conducted in a CO»-saturated 0.1
M KHCO; electrolyte with 1.0 mM 4 at an applied potential of —1.3 Vrug for 30 h.

S22



it L

8.0 7.0 6.0 5.0 4.0
1 (ppm)

0.611 po—
-
4
r

1.00-

= ]0.921

0 9.0 3.0 2.0

Figure S21. '"H NMR spectra (400 MHz, H,O:D,O = 9:1, DMSO as the internal

standard) of the electrolyte solution. Electrolysis was conducted in a CO»-saturated 0.1
M KHCO;3 electrolyte with 1.0 mM 6 at an applied potential of —1.3 Vruk for 2h.
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Figure S22. SEM images of carbon paper electrodes after electrolysis. (A—C) CuCly,
(D-F) 1, (G-1) 2, (J-L) 3, (M—O) 4, (P-R) 5 and (S—U) 6. Electrolysis was conducted
in a CO»-saturated 0.1 M KHCOs electrolyte with 1.0 mM different pre-catalysts at an
applied potential of —1.3 Vrne for 2 h.
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Figure S23. SEM images of carbon paper electrodes after electrolysis. Electrolysis was
conducted in a CO»-saturated 0.1 M KHCO3 electrolyte with 1.0 mM 4 at an applied
potential of —1.3 Vrye for 30 h.

Figure S24. SEM images of GC electrodes after electrolysis. Electrolysis was

conducted in a CO»-saturated 0.1 M KHCO3 electrolyte with 1.0 mM 4 at an applied
potential of —1.3 Vgrue for 2 h.

S25



CuO/Cul+

cu9cult

Intensity (a.u.)

Satellite 2+
N Satellite cu?*t

970 960 950 940 930
Binding Energy (eV)

Figure S25. Cuyy, XPS spectra of after electrolysis with 1.0 mM CuCl,. Electrolysis
was conducted in a COz-saturated 0.1 M KHCOj electrolyte at an applied potential of
—1.3 Vrug for 2 h.
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Figure S27. ESI-MS spectra (positive ion mode in CH3OH) of the surface compounds
isolated from DMSO treatment of the post-electrolysis 4 electrode. The most intense
signal is at m/z (Cu(phen);) = 423.47 (caled: 423.37).
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Figure S28. ESI-MS spectra (positive ion mode in CH3OH) of the surface compounds
isolated from DMSO treatment of CuCl,-carbon paper electrode after added phen. The
most intense signal is at m/z (Cu(phen)) = 423.47 (caled: 423.37).

Table S19. Faradaic efficiencies toward different products produced during CO-
reduction with 1.0 mM CuCl; as the pre-catalyst. Electrolysis was conducted in a CO»-
saturated 0.1 M KHCOs electrolyte at an applied potential of —1.3 Vrug for 2 h.

FE

Entry %) /
H CO HCOOH CHsy CHs CoHs CoHsOH CsHs CsH/OH  Cp+  Total (mA/em?)
1 635 6.3 12.8 0.3 6.4 0.1 0.4 0.1 1.2 82 911 14.5
2B 354 59 21.1 02 285 0.1 1.6 0.1 1.6 319 945 8.7
3 62.5 6.5 11.5 0.3 6.7 0.1 0.5 0.1 1.2 82 894 14.2
4l 568 6.1 8.8 0.1 8.4 0.1 8.0 0 1.3 17.8 89.6 42

[a] After experiment in entry 1, replace 0.1M COz-saturated KHCO3 electrolyte with 1.0 mM phen.
[b] After experiment in entry 1, replace 0.1M COz-saturated KHCOj electrolyte with 1.0 mM N-tolyl pyridinium
chloride.
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Table S20. Faradaic efficiencies toward different products produced during CO-
reduction added ligands. Electrolysis was conducted in a CO»-saturated 0.1 M KHCO3
electrolyte at an applied potential of —1.3 Vgrug for 2 h.

FE (%) J
Pre-catalyst
H» CO HCOOH CHs CoHs C:H¢ CoHsOH CsHe C3HOH Caor  Total (mA/cm?)
CuCl+1.0 mM phen 235 257 135 08 259 04 1.3 0.1 02 279 914 4.5
CuCh+3.0 mM phen 188 386 201 23 161 0. 1.5 0 0 17.7 975 2.9
CuCL+3.0 mM phen 119 449 256 83 7.1 0 2.1 0 0 92 99.0 2.2
CuClo+1.0 mM (5-
344 47 8.5 04 297 44 9.8 0.1 33 473 953 9.3
py-phen)Cl1
CuClo+3.0 mM (5-
254 155 127 23 290 20 10.1 0 11 422 981 5.4
py-phen)Cl1
CuClo+5.0 mM (5-
161 202 149 58 289 05 10.8 0 04 406 976 3.4
py-phen)Cl
4+1.0 mM phen 71 217 28 181 446 0 2.2 0 0 46.8 965 3.7
6+1.0 mM (5-py-
120 266 135 97 129 04 15.3 0.1 35 322 957 3.1
phen)Cl1
CuClo+1.0 mM N-
tolyl pyridinium ~ 41.7 9.2 9.5 12 206 02 7.4 0 12 294 910 3.8
chloride
Table S21. Faradaic efficiencies toward different products produced during CO;
reduction with 1.0 mM 4 as the pre-catalyst. Electrolysis was conducted in a CO»-
saturated 0.1 M KHCOs electrolyte at an applied potential of —1.3 Vryg for 2 h.
FE (%) J
Entry
Hz CO HCOOH CHs CHs CoH¢ CHsOH CsHe C3H/OH Co+  Total (mA/cm?)
1 75 125 45 24 658 0.1 2.6 0.1 12 69.8  96.7 6.4
2 70 134 43 25 683 0. 2.4 0.1 1.1 720 992 6.7
3 79 134 4.6 23 665 0.1 2.9 0.1 12 717 99.0 6.7
4603 164 6.9 55 64 02 0.1 0.4 0 71 962 3.2
51251 194 233 94 166 0 0.3 0 0 169  94.1 2.1
6l 92 153 4.2 22 623 0.1 2.5 0.1 1.0 66.0  96.9 6.9

[a] After experiment in entry 1, replace 0.1 M COz-saturated KHCOj3 electrolyte.
[b] After experiment in entry 2, replace 0.1 M COz-saturated KHCO3 electrolyte with 1.0 mM phen.

[c] After experiment in entry 3, replace 0.1 M COgz-saturated KHCOj3 electrolyte with 1.0 mM 4.
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