Supporting Information

Photophysical properties of tetrabutylammonium metal chloride with different inorganic frameworks

Materials and chemicals

Lead chloride (PbCl₂, 99.99%), bismuth chloride (BiCl₃, 99.99%), antimony chloride (SbCl₃, 99.99%), stannic chloride pentahydrate (SnCl₄·5H₂O, 99.0%), tetrabutylammonium chloride (TBAC, 99.0%), dimethylformamide (DMF, 99.8%), dichloromethane (DCM, 99.8%), absolute ethyl alcohol (ETOH, 99.8%), were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. Hydrochloric acid (HCl, 37%) was purchased from Harbin Polytechnic Chem. Reag. Co., Ltd. All of these raw materials were used without any further purification.

Synthesis of (TBA)PbCl₃ (SC-Pb) single crystal: Add 1 mmol of TBAC and 1 mmol of PbCl₂ to the glass bottle, then add 4 mL of DMF and stir until completely dissolved to form a precursor solution. The glass bottle containing the precursor solution was placed in a large beaker containing DCM and sealed, and crystallization was carried out by the antisolvent DCM diffusion method.

Synthesis of (TBA)₃Bi₂Cl₉ (SC-Bi) single crystal: 0.5 mmol TBAC and 0.5 mmol BiCl₃ dissolved in hydrochloric acid, and then the solution volatilized at room temperature in a glass bottle.

Synthesis of $(TBA)_2Sb_2Cl_8$ (SC-Sb) single crystal: 0.5 mmol TBAC and 0.5 mmol SbCl₃ dissolved in hydrochloric acid, and then the solution volatilized at room temperature in a glass bottle.

Synthesis of (TBA)SnCl₅·2EtOH (SC-Sn) single crystal: 0.5 mmol TBAC and 0.5 mmol SnCl₄·5H₂O dissolved in absolute ethyl alcohol, and then the solution volatilized at room temperature in a glass bottle.

Synthesis of Liquid-Pb: 1 mmol TBAC and 0.1 mmol PbCl₂ dissolved DMF **Synthesis of Liquid-Bi:** 1 mmol TBAC and 0.1 mmol BiCl₃ dissolved DMF **Synthesis of Film-Sb:** SC-Sb was dissolved in EtOH and then dried by dropping on a glass slide.

Single crystal X-ray diffraction (SCXRD). Single crystal X-ray data for the (TBA)PbCl₃, (TBA)₃Bi₂Cl₉, (TBA)₂Sb₂Cl₈ and (TBA)₂SnCl₆ were collected using a Bruker AXS diffractometer with Mo $K\alpha$ radiation.

Powder X-ray diffraction (PXRD). The PXRD analysis was performed on powder X-ray diffractometer (X'PERT Pro, Panalytical) equipped with Cu $K\alpha$ radiation. Simulated powder patterns were calculated by Material Studio 2017 software using the crystallographic information file (CIF) from single-crystal X-ray experiment.

Energy dispersive spectrometry (EDS). Energy dispersive spectrometry was perfor med on the accessories of a ZEISS G500 scanning electron microscope.

Steady-state PL measurement. The 405 nm continuous-wave (CW) laser (UV-FN-405-200mW, CNI) was used as an excitation light source for steady-state excitation. The steady-state PL spectra were collected by a spectrometer (HR4000CG-UV-NIR, Ocean Optics).

Time-resolved photoluminescence (TRPL). The PL dynamics are excited by 200-ps laser pulses at 405 nm and measured by a time-correlated single photon counting (TCSPC) systems from Boston Electronics with the time resolution of 200 ps to reveal the ultrafast process at the very beginning of the dynamics.

Temperature-dependent PL measurement. The temperature-dependent PL measurement was performed using a vacuum liquid-nitrogen cryostat (Cryo-77, Oriental Koji) and a temperature controller. The 405 nm continuous-wave (CW) laser (UV-FN-405-200mW, CNI) was used as an excitation light source, and spectrometer (HR4000CG-UV-NIR, Ocean Optics) is used to collect spectra.

Fitted photo-phonon coupling constants (γ_{OL}): adopt the electron-phonon coupling model to evaluate the electron-phonon coupling strength with the following equation:

$$FWHM = \Gamma_0 + \gamma_{ac}T + \gamma_{LO} \left(e^{E_{LO}/k_B T} - 1 \right)^{-1}$$
(1)

where Γ_0 is the nonuniform broadening contribution at 0 K, which is independent of temperature. $\gamma_{ac}T$ is the homogeneous broadening term, which arises from acoustic phonon scattering through the deformation potential with charge electronic-acoustic

phonon coupling strength of γ_{ac} . The whole third term represents the longitudinal optical phonon (Fröhlich) interactions. And corresponding γ_{OL} and E_{LO} are electronic-optical phonon coupling constant and the phonon energy, respectively.

Fitted lifetime (τ): The experimental data can be fitted by the following double exponential decay. *I*(t) and the average lifetime (τ) can be described as,

$$I(t) = A + \int_{0}^{t} \left(Be^{-(t-t')\tau_{1}} + Ce^{-(t-t')\tau_{2}} \right) e^{-(t'/\tau_{from})^{2}} dt'$$
(2)

$$\tau = \left(B\tau_1^2 + C\tau_2^2\right) / \left(B\tau_1 + C\tau_2\right)$$
(3)

where I(t) is the normalized PL intensity at time t. *A* is the baseline of PL, while *B* and *C* are the amplitudes of the entire normalized PL. τ_1 and τ_2 are the short-lifetime and long-lifetime components of PL, respectively. The instrumental response function (IRF) is considered as a Gaussian function to convolute with the PL decays. The width of IRF τ_{fwhm} is recorded at the wavelength of the excitation.

Compound	SC-Bi	SC-Sb	SC-Sn
Chemical formula	$C_{48}H_{108}N_{3}Bi_{2}Cl_{9}$	$C_{32}H_{72}N_{2}Sb_{2}Cl_{8} \\$	$C_{20}H_{48}NO_2SnCl_5$
Formula weight	1464.38	1012.01	630.53
Temperature	296(2) K	296(2)K	296(2)
Space group	$P2_1/n$	$P2_1/c$	P-1
a/Å	11.3458(11)	18.688(8)	11.1104(19)
$b/{ m \AA}$	22.317(2)	13.552(5)	12.108(2)
$c/{ m \AA}$	28.552(3)	19.240(8)	13.108(3)
$\alpha / ^{\circ}$	90	90	109.091(4)
$eta /^{\circ}$	96.561(2)	101.902(9)	105.943(4)
$\gamma^{\prime \circ}$	90	90	94.281(4)
Volume/Å ³	7182.4(12)	4768(3)	1575.8(5)
Density/g·cm ⁻³	1.354	1.410	1.329
F(000)	2944	2064	652
Data collection	2.216< <i>θ</i> <25.219	2.227< <i>θ</i> <25.007	2.401< <i>θ</i> <25.204
Index ranges	-12 ≤ <i>h</i> ≤13	-21≤h≤22	-13 <i>≤h≤</i> 13
	-26 ≤k≤26	-13 <i>≤k</i> ≤16	-14 <u>≤</u> k <u>≤</u> 14
	-33 ≤ <i>l</i> ≤34	-22≤ <i>l</i> ≤20	-15 <i>≤l</i> ≤15
Independent	12796 [R _{int} =0.1686]	8335 [<i>R_{int}</i> =0.0814]	5616 [<i>R_{int}</i> =0.0663]
Data/restraints/	12796/313/559	8335/2/405	5616/145/262
Final R indices	$R_1 = 0.0963^{\text{a}}$	$R_1 = 0.0535$	$R_I = 0.0705$
$\left[1 > -20(1)\right]$	$wR_2 = 0.1305^{b}$	$wR_2 = 0.1345$	$wR_2 = 0.1624$
<i>R</i> indexes	$R_1 = 0.2127$	$R_1 = 0.1198$	$R_1 = 0.1381$
	wR ₂ =0.164	$wR_2 = 0.1764$	wR ₂ =0.1940
	0.976 and	0.652 and	0.735 and
Largest diff. peak and hole	-0.799 e·Å ⁻³	-0.644 e·Å ⁻³	-0.523 e·Å ⁻³

a) $R_1 = \sum ||F_o| - |F_c|| / \sum |\underline{F_o}|| \cdot b) \ wR_2 = \left[\sum w (F_o^2 - F_c^2)^2 / \sum w (F_o^2)^2 \right]^{1/2}$.

Fig. S1 (a) Schematic diagram of the crystal structure of SC-Pb (b) Powder XRD of SC-Pb and standard card of cotunnite. (c) EDS of SC-Pb.

Fig. S2 The simulated and experimental powder XRD patterns of SC-Bi (a), SC-Sb (b) and SC-Sn (c), respectively.

Fig. S3 The optical band gap is calculated by the Tauc-plot formula based on the absorption spectra. the band gap obtained of (a) SC-Pb, (b) SC-Bi, (c) SC-Sb, (d)SC-Sn.

Fig. S4 The spectra of PL of SC-Pb (a), SC-Bi (b), SC-Sb (c), SC-Sn (d) and PL spectra of their ground into powder, respectively.

Fig. S5 The power-dependent PL spectra of SC-Pb (a), SC-Bi (b), SC-Sb (c) and SC-Sn (d), respectively.

Fig. S6 PL spectra of TBAC at different temperature, inset shows the normalized spectra at 80 K and 200 K.