Electronic supplementary information

Oxalate-assisted assembly of two polyoxotantalate supramolecular

frameworks with proton conduction property

Yong Yu,^a Rong-Da Lai,^a Cai Sun,^a Yan-Qiong Sun,^a Qing-Xin Zeng,^a Xin-Xiong Li^{*ab} and Shou-Tian Zheng^{*a}

 ^a Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
 ^b Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Edution), Nankai University, Tianjin, 300071, China

This file includes:

- Section S1 Syntheses and Methods
- Section S2 Additional Tables
- Section S3 Additional Figures

Section S1: Syntheses and Methods

1. Characterization Methods

Materials and General methods: All the other reactants and solvents were obtained from commercial sources and used for reactions without further purification. Powder X-ray diffraction (PXRD) patterns were measured using a Rigaku Ultima IV diffractometer with Cu-K α radiation (λ = 1.5418 Å) in the range 5-50° IR spectra were recorded on PerkinElmer Spectrum One FT-IR infrared spectrophotometer with pressed KBr pellets in the range of 4000-500 cm⁻¹. The UV-vis spectra were collected on a SHIMADZU UV-2600 UV-visible spectrophotometer by using the BaSO4 as the blank. Simulated XRD data were simulated by the Mercury Software with the step of 0.02° from 5° to 50° (λ =1.54056Å). Thermal analyses were performed from 30 °C to 800 °C in a dynamic air atmosphere with a heating rate of 10 °C/min, using a NETZSCH STA 449C thermal analyzer. N2 and water vapor adsorption capacities were tested by using Micromeritics ASAP (Accelerated Surface Area and Porosimetry) 2020 system. Energy dispersive spectrometry (EDS) analyses were performed using a Hirox SH-4000 M type desktop scanning electron microscope.

Single-crystal structure analysis: Crystals data of **1** and **2** were collected on Bruker Apex Duo CCD diffractometer equipped with a fine focus, 2.0 kW sealed tube X-ray source (MoK α radiation, $\lambda = 0.71073$ Å) operating at 175 K. Structures were solved by direct methods followed by successive difference Fourier methods. The structures of **1** and **2** were solved through direct methods and refined by full-matrix least-squares refinements based on F^2 adopting the SHELXTL program package. All non-H atoms were located with successive difference Fourier syntheses and refined anisotropically. The contribution of disordered solvent molecules to the overall intensity data of structures was treated using the SQUEEZE method in PLATON. The cobalt complex (Co5) in **1** is disordered over two positions. The crystallographic data of **1** and **2** was summarized in Table S6. CCDC 2231766 and 2231765 contain supplementary structural information for **1** and **2**.

Proton Conduction measurement: Ac impedance measurements were carried out with a SI 1260 IMPEDANCE/GAINPHASE analyzer over the frequency range from 0.1 Hz to 10 MHz with an applied voltage of 50 mV. The relative humidity was controlled by a STIKCorp CIHI-150BS3

incubator. The test sample was pressed to form a cylindrical pellet of crystalline powder sample (~1mm thickness × 5mm diameter) coated with C-pressed electrodes, and both sides of the sample pellet were attached to two silver electrodes. The self-made device containing a cylindrical pellet was placed in a constant temperature & humidity incubator before testing in a temperature range from 25 °C to 85 °C and relative humidity between 55% -98%.

2. Syntheses

Synthesis of H[Co^{III}(en)₃]₃[Co^{III}(en)₂O](C₂O₄){(Ta₆O₁₉)₂[Co^{II}(C₂O₄)(H₂O)₂]₂[Co^{III}(en)(H₂O)]₂}·41H₂O

(1): A mixture of Na₈[Ta₆O₁₉]·24.5H₂O (**Ta**₆) (0.12 g), K₂C₂O₄ (0.09 g), CoC₂O₄ (0.08 g), 0.05 mL en (en=ethylenediamine), and 6 mL of C₂H₃N /H₂O (1:5) (C₂H₃N = Acetonitrile) (pH = 10.4) was stirred in a 20 mL vial, and then heated at 80 °C for 3 days, finally cooled to room temperature. After washing with ethanol, brown strip crystals were obtained. Yield: 19 mg (11.8% based on **Ta**₆). IR (KBr pellet, *v*/cm⁻¹, Fig. S10): 3210(s), 1631(m), 1384(w), 1309(s), 1159(s), 1054(w), 865(s), 730(s), 547(m).

Synthesis of $[Co^{III}(en)_3]_4C_2O_4\{Ta_6O_{19}[Co^{III}(en)]\}_2 \cdot 66H_2O$ (2): A mixture of Na₈[Ta₆O₁₉] · 24.5H₂O (Ta₆) (0.12 g), K₂C₂O₄ (0.09 g), CoC₂O₄ (0.08 g), 0.05 mL en (en=ethylenediamine), and 6 mL Na₂CO₃/NaHCO₃ buffer solution (pH = 10.0) was stirred in a 20 mL vial, and then heated at 80 °C for 3 days, finally cooled to room temperature. After being washed with ethanol, green bar crystals were obtained. Yield: 30 mg (19.9% based on Ta₆). IR (KBr pellet, *v*/cm⁻¹, Fig. S10): 3280(s), 1644(m), 1386(w), 1322(s), 1159(s), 1058(w), 856(s), 730(s), 547(m).

Section S2 Additional Tables

Atom	Atom	Rjj	RO	В	Sjj	SUM
Co1	N9	1.977(12	1.62	0.4	0.43241004	
	N10	1.947(12	1.62	0.4	0.46442630	
	02	1.961(8)	1.65	0.4	0.48167956	
	03	1.954(8)	1.65	0.4	0.48977483	
	017	1.997(8)	1.65	0.4	0.44211268	
	O3W	1.955(11	1.65	0.4	0.48941346	2.79981
Co2	N2	1.941(9)	1.62	0.4	0.47023448	
	N3	1.972(9)	1.62	0.4	0.43677664	
	N4	1.962(9)	1.62	0.4	0.44730087 6	
	N5	1.962(10	1.62	0.4	0.44815369	
	N6	1.980(9)	1.62	0.4	0.42853581	
	N7	1.975(10	1.62	0.4	0.43449474 F	2.66549
Co3	O6	2.020(7)	1.65	0.4	0.41865240 E	
	09	2.089(8)	1.65	0.4	0.35514181	
	013	2.080(8)	1.65	0.4	0.36283411	
	021	2.014(8)	1.65	0.4	0.42457497	
	01W	2.149(9)	1.65	0.4	0.30779129	
	O2W	2.158(10	1.65	0.4	0.30184032	2.17083
Co4	N1	1.952(10	1.62	0.4	0.45895205	
	N1	1.952(10	1.62	0.4	0.45895205	
	N8	1.966(9)	1.62	0.4	0.44306108	
	N8	1.966(9)	1.62	0.4	0.44306108	
	N11	1.961(9)	1.62	0.4	0.44836714	
	N11	1.961(9)	1.62	0.4	0.44836714	2.70076
Co5	N13	1.91(2)	1.62	0.4	0.50734124 °	
	N14	2.11(2)	1.62	0.4	0.31513256	
	N12	1.87(2)	1.62	0.4	0.55803514	
	N15	1.81(2)	1.62	0.4	0.64372981	
	011	1.964(18	1.65	0.4	0.47916307	
	011	2.066(18	1.65	0.4	0.37584764	2.87924

Table S1 Bond lengths and valence band summations of cobalt atoms in 1.

Table S2 Hydrogen Bond Lengths (Å) and Bond Angles (°) in ${\bf 1}$

No D-H	H…O	D…O	<(DHØ	Hydrogen bonds
--------	-----	-----	-------	----------------

1	0.91	2.29	3.019(13)	137.3	N1-H1A…O5
2	0.91	2.21	3.016(12)	146.7	N1-H1A…O7
3	0.91	2.56	2.990(13)	109.8	N1-H1A015
4	0.91	2.06	2.955(13)	165.6	N2-H2A…O9
5	0.91	1.92	2.800(11)	162.7	N2-H2B…O4#1
6	0.91	2.1	3.004(13)	175.7	N3-H3A…O24#5
7	0.91	2.19	3.013(11)	149.4	N3-H3B…O16#1
8	0.91	2.65	3.331(13)	132.6	N4-H4A…O24#5
9	0.91	2.17	3.060(13)	166.9	N4-H4A…O25#5
10	0.91	2.07	2.944(11)	160	N4-H4B…O16#6
11	0.91	2.66	3.307(13)	128.7	N5-H5A…O9
12	0.91	2.08	2.955(13)	161.8	N5-H5A…O20
13	0.91	1.94	2.841(13)	170.7	N5-H5B…O10#6
14	0.91	2.24	3.062(13)	149.9	N6-H6A…O18#7
15	0.91	2.31	3.132(12)	150.2	N6-H6B O5#6
16	0.91	2.52	3.283(11)	141.1	N6-H6B…O10#6
17	0.91	2.35	3.069(14)	135.8	N7-H7A…O18#7
18	0.91	2.16	2.960(13)	146.3	N7-H7A…O20#7
19	0.91	1.96	2.839(12)	163.1	N8-H8C…O7
20	0.91	1.97	2.854(13)	162	N8-H8D…O24#3
21	0.91	2.19	2.974(15)	143.6	N9-H9A…O6
22	0.91	2.13	3.036(14)	173.2	N9-H9B…O8#1
23	0.91	2.2	3.038(15)	152.9	N10-H10B-026
24	0.91	2.07	2.948(12)	161.1	N11-H11AO16#2
25	0.91	1.97	2.871(12)	171.7	N11-H11B025
26	0.99411	2.6839	3.337(15)	123.67	C2-H2D····O24#5
27	0.99	2.59	3.310(15)	129.9	C3-H3D…O9
28	0.99	2.6	3.491(14)	149.7	C4-H4C O25#5
29	0.99	2.56	3.36(2)	138.6	C6-H6C…O7W#6
30	0.99	2.64	3.549(15)	153.1	C6-H6D…O20
31	0.99	2.5	3.404(14)	151.7	C7-H7C···O20#7
32	0.99	2.61	3.198(16)	118	C8-H8B…O18#7
33	0.99	2.42	3.405(16)	171.9	C9-H9D-022
34	0.99	2.35	3.262(16)	152.1	C11-H11DO24#8
35	0.99	2.57	3.33(2)	133.6	C14-H14C···O25#2
36	0.91	2.14	2.99(2)	155.5	N12-H12C…O17#4
37	0.91	2.25	3.07(3)	149.7	N13-H13C…O12
38	0.91	2.35	3.02(2)	130.5	N13-H13C-023

39	0.91	2	2.89(2)	165.3	N14-H14A O26#4	
40	0.91	1.92	2.78(2)	157.5	N14-H14B…O18	
41	0.99	2.3	3.07(3)	134.3	C16-H16B…O13#4	
42	0.99	2.73	3.26(3)	113.5	C17-H17A…O13#4	
43	0.99	2.44	3.32(3)	147.2	C17-H17A…O18#4	
44	0.99	2.58	3.39(3)	138.7	C19-H19B…O13	
45	0.85	2.65	3.15(3)	119.3	011-H11 013	
46	0.9589	2.80911	2.997(14)	91.96	O1W-H1WA O3W	
47	0.9589	2.21414	2.725(15)	112.38	O1W-H1WA O4W	
48	0.95	1.93	2.873(16)	172.3	02W-H2WA 08W	
49	0.95	2.32	3.013(13)	129.3	O3W-H3WB…O1#1	
50	0.95	2.58	3.073(15)	112.3	O3W-H3WB-021	
Symmetric codes:						
#1 -x+1/2,-y+1/2,-z, #2 -x+1,y,-z+1/2, #3 -x+1,-y+1,-z,						
#4 -x+1/2,-y+1/2,-z+1, #5 x-1/2,y-1/2,z #6 -x+1/2,y-1/2,-z+1/2,						
#7 x,-y,z-1/, #8 x,-y+1,z+1/2						

Table S3 Bond lengths and valence band summations of cobalt atoms in 2.

Atom	Atom	Rjj	RO	В	Sjj	SUM
Co1	09	1.884(8)	1.655	0.42	0.576401	
	N13	1.938(12)	1.625	0.42	0.48168	
	N14	1.949(9)	1.625	0.42	0.468001	
	08	1.957(12)	1.655	0.42	0.500026	
	02	1.959(8)	1.655	0.42	0.482828	
	03	1.976(8)	1.655	0.42	0.459718	2.968652
Co2	N12	1.937(14)	1.625	0.42	0.48444	
	N2	1.936(13)	1.625	0.42	0.478024	
	N8	1.941(11)	1.625	0.42	0.474734	
	N10	1.950(12)	1.625	0.42	0.46467	
	N6	1.986(11)	1.625	0.42	0.450615	
	N11	1.980(14)	1.625	0.42	0.427313	2.779795
Co3	N3	1.949(14)	1.625	0.42	0.467221	
	N4	1.955(13)	1.625	0.42	0.449008	
	N7	1.957(12)	1.625	0.42	0.447514	
	N9	1.961(13)	1.625	0.42	0.432843	
	N5	1.973(14)	1.625	0.42	0.430376	
	N1	1.976(13)	1.625	0.42	0.418952	2.645914

No.	D-H	H…O	D…0	<(DHO)	Hydrogen bonds
1	0.89	2	2.839(18)	157.1	N1-H1D…O13
2	0.89	2.3	3.103(15)	149.5	N2-H2A…O4
3	0.89	2.66	3.154(15)	116.4	N2-H2A…O14
4	0.89	2.51	3.255(16)	141.2	N2-H2A…O15
5	0.89	2.6	3.35(3)	142	N3-H3C…O5W
6	0.89	1.91	2.796(15)	176	N3-H3D…O16#3
7	0.89	2.43	3.22(2)	148.3	N4-H4A…O5W
8	0.89	2.12	2.934(16)	151.6	N4-H4B…O13
9	0.89	1.93	2.800(19)	167.3	N5-H5C···O20#4
10	0.89	2.21	3.016(16)	150.2	N5-H5D…O11
11	0.89	2.01	2.837(16)	153.7	N6-H6A011#5
12	0.89	2.11	2.976(18)	164.9	N6-H6B…O2W#6
13	0.89	2.02	2.881(17)	161.9	N7-H7C O21#3
14	0.89	2.21	3.090(15)	169.1	N7-H7D…O10#3
15	0.89	2.14	2.940(17)	149.8	N8-H8A…O10
16	0.89	2.01	2.889(18)	170.9	N8-H8B…O21
17	0.89	2.65	3.085(17)	110.9	N9-H9A…O18#3
18	0.89	2.16	2.948(16)	147.9	N9-H9B…O15#3
19	0.89	2.5	3.184(15)	133.9	N9-H9B…O16#3
20	0.89	2.49	3.223(14)	140.7	N10-H10A O3#5
21	0.89	2.48	3.279(15)	150.3	N10-H10A…O12#5
22	0.89	2.11	2.991(14)	169.6	N11-H11AO4
23	0.89	2.01	2.871(15)	163.6	N12-H12A…O12#5
24	0.89	2	2.861(18)	162.8	N12-H12B…O20
25	0.89	2.18	3.009(16)	155.4	N13-H13B…O7
26	0.89	2.35	3.069(16)	137.4	N14-H14A…O11
27	0.89	2.2	3.079(18)	167.7	N14-H14B…O2W#1
28	0.97	2.56	3.051(14)	111.4	C2-H2C···O2#6
29	0.97	2.5	3.40(2)	153.7	C4-H4C···O21#3
30	0.97	2.5	3.36(2)	147.1	C6-H6C O20#4
31	0.97	2.64	3.45(2)	141.5	C8-H8C-017#3
32	0.97	2.57	3.41(2)	145.1	С9-Н9С…О19

Table S4 Hydrogen Bond Lengths (Å) and Bond Angles ($^{\circ}$) in 2

Symmetric codes: #1 -x,-y+2,-z, #2 -x+1/2,-y+3/2,-z+1, #3 -x+1/2,y+1/2,-z+1/2, #4 x,-y+2,z-1/2, #5 x,-y+2,z+1/2, #6 -x,y,-z+1/2

Table S5 The proton conductivity of known high-dimensional porous POM-based proton conducting materials

Compounds	Conductivity [S cm ⁻¹]	Condition (Temp., RH)	Ref
$H_{14}[Na_{6}(H_{2}O)_{12}]_{4}[K_{42}Ge_{8}W_{72}O_{272}(H_{2}O)_{60}]$ ·solvent	$6.80 \times 10^{-2} \mathrm{S \ cm^{-1}}$	85 °C, 98% RH	S1
[Co(en) ₃] ₂ C ₂ O ₄ {Ta ₆ O ₁₉ [Co(en)(H ₂ O)]} ₂ ·17H ₂ O	$5.76 \times 10^{-2} \mathrm{S} \mathrm{cm}^{-1}$	85 °C, 98% RH	This work
(HIm) ₂₄ (NH ₄) ₂₀ [Mo ₇₂ ^{VI} Mo ₆₀ ^V O ₃₇₂ (CH ₃ COO) ₃₀ (H ₂ O) ₇₂]·190H ₂ O	$5.00 \times 10^{-2} \mathrm{S \ cm^{-1}}$	60 °C 98% RH	S2
$K_8Na_3Li_5\{[Na(NO_3)(H_2O)]_4[AI_{16}(OH)_{24}(H_2O)_8(P_8W_{48}O_{184})]\}\cdot 66H_2O$	$4.50 \times 10^{-2} \mathrm{S \ cm^{-1}}$	85 °C, 70% RH	\$3
Na ₅ [H ₇ {N(CH ₂ PO ₃) ₃ }Mo ₆ O ₁₆ (OH)(H ₂ O) ₄] ₄ ·18H ₂ O	$2.55 \times 10^{-2} \text{ S cm}^{-1}$	100 °C, 98% RH	S4
[P ₂ Mo ₅ O ₂₃][C ₇ H ₇ N ₂] ₆ ·H ₂ O	$1.91 \times 10^{-2} \mathrm{S} \mathrm{cm}^{-1}$	50 °C, 98% RH	S5
$(TEAH)_{14}Na_{10}K_8H_8\{P_5W3_0\}_2\{Mo_{22}Fe_8\}\cdot 50H_2O$	$1.70 \times 10^{-2} \mathrm{S} \mathrm{cm}^{-1}$	95 °C 90% RH	S6
$[La_3(H_2O)_{22}][P_2W_{15}Ta_3O_{62}]\cdot 16H_2O$	$1.26 \times 10^{-2} \mathrm{S} \mathrm{cm}^{-1}$	95 °C, 98% RH	S7
$H_{2}[Cu(en)_{2}(H_{2}O)_{2}]{[Cu(en)_{2}]_{4}[Cu(en)(Ta_{6}O_{19})]_{2}\cdot 14H_{2}O$	1.04× 10 ⁻² S cm ⁻¹	75 °C, 98% RH	S8
[Sm(H ₂ O) ₅ (CO ₂ CH ₂ NH ₃) ₂][Al(OH) ₆ Mo ₆ O ₁₈]·10H ₂ O	$4.53 \times 10^{-3} \mathrm{S cm^{-1}}$	80 °C, 95% RH	S9
[H ₃ (3-PyBim) ₂][PMo ₁₂ O ₄₀] [.] 3.5H ₂ O [.] CH ₃ CN [.] CH ₃ OH	$3.34 \times 10^{-3} \mathrm{S} \mathrm{cm}^{-1}$	100 °C, 98% RH	S10
$Na_{16}(NH_4)_{10}H_8\{[W_{14}Ce^{ V}_6O_{61}]([W_3Bi_6Ce^{ }_3(H_2O)_3O_{14}][BiW_9O_{33}]_3)_2\}\cdot ca38H_2O_{14}(MH_4)_{10}H_8([W_{14}Ce^{ V}_6O_{61}]([W_3Bi_6Ce^{ V}_3(H_2O)_3O_{14}][BiW_9O_{33}]_3)_2\}\cdot ca38H_2O_{14}(MH_4)_{10}H_8([W_{14}Ce^{ V}_6O_{61}]([W_3Bi_6Ce^{ V}_3(H_2O)_3O_{14}][BiW_9O_{33}]_3)_2\}\cdot ca38H_2O_{14}(MH_4)_{10}H_8([W_{14}Ce^{ V}_6O_{61}]([W_3Bi_6Ce^{ V}_3(H_2O)_3O_{14}][BiW_9O_{33}]_3)_2]\cdot ca38H_2O_{14}(MH_4)_{10}H_8([W_{14}Ce^{ V}_6O_{61}]([W_3Bi_6Ce^{ V}_3(H_2O)_3O_{14}][BiW_9O_{33}]_3)_2]\cdot ca38H_2O_{14}(MH_4)_{10}H_8([W_{14}Ce^{ V}_6O_{61}]([W_{14}Bi_6Ce^{ V}_3(H_2O)_3O_{14}][BiW_9O_{33}]_3)_2]\cdot ca38H_2O_{14}(MH_4)_{10}H_8([W_{14}Ce^{ V}_6O_{61}]([W_{14}Bi_6Ce^{ V}_3(H_2O)_3O_{14}][W_{14}O_{14}O_{14}O_{14}])$	$2.40 \times 10^{-3} \text{ S cm}^{-1}$	25 °C, 98% RH	S11
[Co(bpz)(Hbpz)][Co(SO ₄) _{0.5} (H ₂ O) ₂ (bpz)] ₄ [PMo ^{VI} ₈ Mo ^V ₄ V ^{IV} ₄ O ₄₂]·13H ₂ O	$1.50 \times 10^{-3} \mathrm{S} \mathrm{cm}^{-1}$	75 °C, 98% RH	S12
[M(H ₂ O) ₈][H(H ₂ O) ₂₃](HINO) ₄ [PXO ₄₀] (M=Zn, Mn, Cu; X=W, Mo)	$1.30 \times 10^{-3} \text{ S cm}^{-1}$	100 °C, 98% RH	S13
$H[Co(en)_3]_3[Co(en)_2O]C_2O_4{Ta_6O_{19}[Co(C_2O_4)(H_2O)_2][Co(en)(H_2O)]}_2$	$1.00 \times 10^{-3} \mathrm{S} \mathrm{cm}^{-1}$	85 °C, 98% RH	This work
$A_2[Cr_3O(OOCH)_6(etpy)_3]_2[aSiW_{12}O_{40}] \cdot nH_2O$	$4.40 \times 10^{-4} \text{ S cm}^{-1}$	50 °C 95% RH	S14
(H ₂ en) ₄ H ₂ [V ₁₂ B ₁₈ O ₅₄ (OH) ₆ (H ₂ O)]·11H ₂ O	$1.90 \times 10^{-4} \mathrm{S} \mathrm{cm}^{-1}$	60 °C 98% RH	S15

Compounds	1	2
Empirical formula	$H_{177}C_{32}Co_8N_{26}O_{98}Ta_{12}$	$H_{218}C_{30}Co_6N_{28}O_{111}Ta_{12}\\$
formula weight	5137.83	5273.29
crystal system	monoclinic	Monoclinic
space group	C2/c	C2/c
a (Å)	31.6228(8)	37.181(13)
b (Å)	31.5888(7)	18.194(6)
c (Å)	15.5673(3)	24.574(9)
α (°)	90	90
в (°)	99.348(2)	118.206(4)
γ (°)	90	90
volume (ų), Z	15344.1(6)	14649(9)
D _{calc} (g/cm ³)	2.224	2.391
F(000)	9708	10080
Temperature (K)	175	175
μ (mm ⁻¹)	9.454	9.696
θ range (°)	4.082 - 61.508	3.762 - 51.764
reflns collected / unique	55766 / 19080	31805 / 13196
restraints / parameters	352 / 703	312 / 577
completeness / %	99.3%	97.5%
GOF on F ²	1.011	1.009
R _{int}	0.0569	0.0474
$R_1, wR_2 [I > 2\sigma(I)]$	$R_1 = 0.0633, wR_2 = 0.1447$	$R_1 = 0.0549, wR_2 = 0.1512$
R_1 , w R_2 (all data)	$R_1 = 0.0887, wR_2 = 0.1542$	<i>R</i> ₁ = 0.0760, <i>wR</i> ₂ = 0.1610
$R_1^a = \sum F_o - F_c / \sum F_c / \sum F_c / \sum F_c $ x = 0.0773, y = 309.1895	$F_{o} . wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{1/2}, w = 1/[\alpha]$ 5 for 1; x = 0.0403, y = 822.5073 for 2.	$\sigma^{2}(F_{o}^{2})+(xP)^{2}+yP], P = (F_{o}^{2}+2Fc^{2})/3, \text{ where}$

Table S6 Crystallographic data of 1 and 2

Section S3 Additional Figures

Fig. S1 a) Ball-stick and ellipsoid diagrams of the SBU in compound **1**; b) Ball-stick and ellipsoid diagrams of the SBU in compound **2**.

Fig. S2 View of the coordination environments of the cobalt ions in 1.

Fig. S3 View of 1D chain built by the dimers $Co_2Ta_6\}_2$ and $[Co_2^{III}(\mu-O)_2(en)_4]$ complexes in 1.

Fig. S4 The topology of 1. The $\{Co_2Ta_6\}_2$ SBU (green) was simplified as a 5-connected node.

Fig. S5 The topological graph of **2**. $\{Co_2Ta_6\}_2$ SBU (green) as 6-connected nodes.

Fig. S6 PXRD patterns of compounds 1 and 2.

Fig. S7 a) EDS spectra for 1; b) EDS-mapping for 1.

EDS analyses of 1				
Calc Exp				
Ta/Co	1.62	1.5		

Fig. S9 PXRD patterns of 1 and 2 after the proton conduction test.

Fig. S10 IR spectra of as-synthesized samples.

The broad absorption peak at 3400cm⁻¹ to 3210cm⁻¹ is attributed to the v (O-H) stretching vibration in the IR spectrum. v (C-H) and v (N-H) stretching vibrations occur at about 3140 cm⁻¹ and 2930 cm⁻¹. These signals confirmed the presence of organic amine species in the product. The bands between 1465-1324 cm⁻¹ and around 820 cm⁻¹ are attributed to vC–O and vC–C oxalate symmetric stretching vibrations, respectively. The peaks at $\tilde{v} = 1060-450$ cm⁻¹ are assigned to the v(Ta–O_t) and v(Ta–O_b–M) stretching vibrations.

Fig. S11 a-b) The UV-Vis absorption spectra and Kubelka-Munk Function vs. energy curves of 1

(a-b) and 2 (c-d).

The UV diffuse spectra of **1** and **2** are determined in the range of 240 to 800 nm. The absorption peak at around 270 nm can be ascribed to the charge transfer of $O \rightarrow Ta$. The two characteristic absorption peaks in the range of 400 and 700 nm can be attributed to organic amine ligands and oxalate to metal charge transfer and d-d transitions of cobalt complexes. The E_g values of **1** and **2** are 2.56 eV and 2.65 eV.

Fig. S13 N_2 adsorption isotherms of 1 and 2.

Fig. S14 Water vapor adsorption curve of samples 1 and 2 as a function of p/p0.

The weight losses in the TGA curves indicate that the extra-framework species in compounds 1 and 2 were removed as the temperatures increased (Fig. S12). Furthermore, no N₂ uptakes were observed at 77 K for compounds 1 and 2 (Fig. S13), but they show moderate water vapor adsorption capacities (Fig. S14). Actually, POM cluster-based porous materials show no N₂ uptake capacities but have water vapor adsorption capacities that have been reported.^{S16} Therefore, combining the single-crystal data, the TGA, the gas adsorption, and water vapor adsorption results, compounds 1 and 2 can be considered as potential porous materials.

References

- S1 Z. Li, L. D. Lin, H. Yu, X. X. Li and S. T. Zheng, Angew. Chem. Int. Ed., 2018, 57, 15777.
- S2 W.J. Liu, L.Z. Dong, R.H. Li, Y.J. Chen, S.N. Sun, S.L. Li, Y.Q. Lan, ACS Appl. Mater. Interfaces., 2019, **11**, 7030.
- S3 P. Yang, M. Alsufyani, A. H. Emwas, C. Q. Chen and N. M. Khashab, *Angew. Chem. Int. Ed.*, 2018, **57**, 13046.
- S4 L. Yang, P. T. Ma, Z. Zhou, J. P. Wang and J. Y. Niu, Inorg. Chem., 2013, 52, 8285.
- S5 X. L. Cao, S. L. Xie, S. L. Li, L. Z. Dong, J. Liu, X. X. Liu, W. B. Wang, Z. M. Su, W. Guan and Y. Q. Lan, *Chem.-Eur. J.*, 2018, **24**, 2365.
- S6 M. H. Zhu, T. Iwano, M.J. Tan, D. Akutsu, S. Uchida, G. Y. Chen, X. K. Fang, *Angew. Chem.Int. Ed.*, 2022, **61**, e202200666.
- S7 Q. P. Peng, S. J. Li, R. Y. Wang, S. X. Liu, L. H. Xie, J. X. Zhai, J. Zhang, Q. Y. Zhao and X. N. Chen, *Dalton Trans.*, 2017, 46, 4157.
- S8 Z. Li, J. Zhang, L. D. Lin, J. H. Liu, X. X. Li and S. T. Zheng, *Chem. Commun.*, 2019, **55**, 11735-11738.
- S9 J. Miao, Y. W. Liu, Q. Tang, D. F. He, G. C. Yang, Z. Shi, S. X. Liu and Q. Y. Wu, *Dalton Trans.*, 2014, **43**, 14749.
- S10 M. L. Wei, Y. X. Wang and X. J. Wang, J. Solid State Chem., 2014, 209, 29.
- S11 J. C. Liu, Q. Han, L. J. Chen, J. W. Zhao, C. Streb and Y. F. Song, *Angew. Chem. Int. Ed.*, 2018, **57**, 8416.
- S12 J. Li, X. L. Cao, Y. Y. Wang, S. R. Zhang, D. Y. Du, J. S. Qin, S. L. Li, Z. M. Su and Y. Q. Lan, *Chem.-Eur. J.*, 2016, **22**, 9299.
- S13 M. L. Wei, P. F. Zhuang, H. H. Li and Y. H. Yang, Eur. J. Inorg. Chem., 2011, 2011, 1473.
- S14 S. Uchida, R. Hosono, R. Eguchi, R. Kawahara, R. Osuga, J. N. Kondo, M. Hibino, N. Mizuno, *Phys. Chem. Chem. Phys.*, 2017, **19**, 29077.
- S15 X. Liu, D. Zhang, L. Li, X. Sun, L. Zhang, H. Yuan, Dalton Trans., 2017, 46, 9103.
- S16 Z.-K. Zhu, Y.-Y. Lin, H. Yu, X.-X. Li, S.-T. Zheng, Angew. Chem. Int. Ed. 2019, 58, 16864.