Electronic Supplementary Information (ESI)

N-donor flexible ligands constructed polyoxometalate-based metal-organic frameworks as multifunctional electrocatalyts

Qian Zhou, Jin-Zhen Yao, Jing Sun,* Xiao Li,* Zhong-Min Su*

^a School of Chemistry and Environmental Engineering, Changchun University of Science and Technology; Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry; Jilin Provincial International Joint Research Center of Photofunctional Materials and Chemistry; Changchun130022, China.

* Corresponding author. Tel.: 0431-85583894.

E-mail address: sj-cust@126.com; lix@cust.edu.cn; zmsu@nenu.edu.cn

1.Experimental section

1.1. Materials and general methods

All chemicals were commercially purchased and used without purification. Crystal data were collected using a Bruker APEX II CCD diffractometer in Germany. Powder X-ray diffraction (PXRD) patterns were measured on a powder X-ray diffractometer (DRIC Y-2000) using Cu Kα radiation. EVO2G-TG-08 analyzer was used for testing under air at a heating rate of 10 °C/min. FT-IR spectra were recorded from KBr pellets from 4000-500 cm⁻¹ with a Nicolet Magna750 spectrometer. CHI760E electrochemical workstation was used for control of the electrochemical measurements and data collection. A conventional three-electrode system was used, with a carbon paste electrode (CPE) as a working electrode, a commercial Ag/AgCl as reference electrode and graphite carbon as counter electrode.

1.2. Synthesis of CUST-631 and CUST-632

A mixture of Ni(NO₃)₂·6H₂O (0.06 g, 0.21 mmol), H₄SiW₁₂O₄₀·xH₂O (0.06 g, 0.02 mmol), btbu (0.20 mmol) and 8 mL H₂O under ultrasonic treatment at room temperature for 30 min, then several drops of HNO₃ were added and stirred evenly. This mixture was transferred to a 25 mL Teflon-lined reactor 130 °C for 3 days. After the reactor was slowly cooled to room temperature, green block crystals of **CUST-631** were obtained. The crystals were picked out, washed and dried at room temperature (62% yield based on W).The CCDC number of **CUST-631** is 2132631. Anal.Calcd. for **CUST-631**: H, 0.05; C, 10.08; N, 8.82; O,

19.33, Ni, 3.08; Si, 0.74, W, 57.93 (%). Found: H, 0.07; C, 10.04; N, 8.72; O, 19.35, Ni, 3.05; Si, 0.76, W, 58.01 (%).

CUST-632was prepared similarly to **CUST-631**, a mixture of $Co(NO_3)_2 \cdot 6H_2O$ (0.06 g, 0.34 mmol), $H_4SiW_{12}O_{40} \cdot xH_2O$ (0.06 g, 0.02 mmol), btbu (0.20 mmol) and 8 mL H₂O under ultrasonic treatment at room temperature for 30 min, then several drops of HNO₃ were added. After the reactor was slowly cooled to room temperature, red block crystals of **CUST-632** were obtained (65 yield based on W). The CCDC number of **CUST-632** is 2132630. Anal.Calcd. for **CUST-632**: H, 0.02; C, 9.79; N, 8.85; O, 19.39, Co, 3.10; Si, 0.74, W, 58.11 (%). Found:H, 0.05; C, 9.81; N, 8.81; O, 19.33, Co, 3.08; Si, 0.76, W, 58.16 (%).

1.3. Preparation of CPEs

Carbon paste electrodes (CPEs) were fabricated as follows: First, suitable proportions of **CUST-631** or **CUST-632** with acetylene black were weighed and grinded for 30 minutes. Then, electrocatalyst inks were prepared by dispersing the mixture in deionized water, ethanol, and 5 wt % Nafion solution by ultra sonication for at least 30 min. 5 μ L of the ink was dropped on the surface of precleaned glassy carbon electrode and dried in air.

1.4 Theoretical support

The reactions associated with reduction of $[\alpha-SiW_{12}O_{40}]^{4-}$ in concentrated H_2SO_4 are represented.

$$\left[\begin{array}{c} \alpha - \mathbf{SiW}_{12}\mathbf{O}_{40} \right]^{4-} \stackrel{+\mathbf{e}^-}{\underset{-\mathbf{e}^-}{\leftarrow}} \left[\begin{array}{c} \alpha - \mathbf{SiW}_{12}\mathbf{O}_{40} \right]^{5-} \stackrel{+\mathbf{e}^-}{\underset{-\mathbf{e}^-}{\leftarrow}} \left[\begin{array}{c} \alpha - \mathbf{SiW}_{12}\mathbf{O}_{40} \right]^{6-} \end{array} \right]$$
(I)

$$\left[\alpha - \mathrm{SiW}_{12}\mathrm{O}_{40} \right]^{6-} \underset{-2 \,\mathrm{e}^{-}-4 \,\mathrm{H}^{+}}{\overset{\simeq}{\underset{-2 \,\mathrm{e}^{-}-4 \,\mathrm{H}^{+}}{\overset{\simeq}{\underset{-2 \,\mathrm{e}^{-}-4 \,\mathrm{H}^{+}}{\overset{\simeq}{\underset{-2 \,\mathrm{e}^{-}-4 \,\mathrm{H}^{+}}{\overset{\simeq}{\underset{-2 \,\mathrm{e}^{-}-4 \,\mathrm{H}^{+}}}} \left[\alpha - \mathrm{H}_{2}\mathrm{SiW}_{12}\mathrm{O}_{40} \right]^{6-} \tag{II}$$

Take the reduction of nitrite as an example, HNO_2 can disproportionate to form NO and NO_3^- , then $[\alpha-SiW_{12}O_{40}]^{5-}$ is oxidized by HNO_2 in sulfuric acid media to reform $[\alpha-SiW_{12}O_{40}]^{4-}$,

$$3HNO_2 \rightarrow H^+ + 2NO + NO_3^- + H_2O$$
(III)

$$H^{+} + HNO_{2} + [\alpha - SiW_{12}O_{40}]^{5} \rightarrow NO + H_{2}O + [\alpha - SiW_{12}O_{40}]^{4}$$
(IV)

Empirical formula	$C_{32}H_{54}N_{24}Ni_2O_{42}SiW_{12}$
Formula weight	3798.70
Temperature/K	296.15
Crystal system	monoclinic
Space group	$P2_{1}/n$
a/Å	12.438(2)
b/Å	16.716(3)
c/Å	17.383(3)
α'°	90
β/°	102.122(3)
$\gamma/^{\circ}$	90
Volume/Å ³	3533.7(12)
Ζ	2
density (calculated)	3.570 g/cm ³
absorption coefficient	20.086 mm ⁻¹
F(000)	3416.0
2Θ range for data collection/°	3.418 to 50.216
Index ranges	$-14 \le h \le 14, -16 \le k \le 19, -20 \le l \le 20$
Reflections collected	20127
Independent reflections	$6274 \; [R_{int} = 0.0438, R_{sigma} = 0.0459]$
Data/restraints/parameters	6274/210/530
Goodness-of-fit on F ²	1.254
$R_{1}\left[I{>=}2\sigma\left(I\right)\right]{}^{a}$	0.0578
$wR_2[I\!\!>=\!\!2\sigma\left(I\right)]{}^{b}$	0.1084
R ₁ [all data] ^a	0.0690
wR ₂ [all data] ^b	0.1119
Largest diff. peak/hole / e Å ⁻³	2.14/-1.60

Table S1. Crystal data and structure refinement for CUST-631.

 ${}^{a}R1 = \sum ||F_{0}| - |F_{c}|| / \sum |F_{0}|. \ {}^{b}wR_{2} = [\sum w(F_{0}{}^{2} - F_{c}{}^{2})^{2} / \sum w(F_{0}{}^{2})^{2}]^{1/2}$

Table S2. Bond Lengths for CUST-631.

Atom Atom	Length/Å	Atom Atom	Length/Å
Ni1-N1	2.100(16)	W4-O2	1.685(11)

Ni1-O1	2.133(14)	W4-O5	1.885(17)
Ni1-N2	2.080(17)	W4-O9	1.854(18)
Ni1-N3	2.103(16)	W4-O10	1.898(14)
Ni1-O2	2.177(12)	W4-O17	2.41(2)
Ni1-N8	2.077(15)	W4-O18	2.34(2)
Si08-O17 ¹	1.61(2)	W4-O23	1.912(17)
Si08-O18	1.67(2)	W5-O5	1.916(15)
Si08-O20	1.608(19)	W5-O11 ¹	1.917(15)
Si08-O211	1.59(2)	W5-O13	1.913(17)
W3-O3	1.861(16)	W5-O16	1.664(14)
W3-O7	1.639(14)	W5-O18	2.40(2)
W3-O9	1.927(15)	W5-O20 ¹	2.44(2)
W3-O14 ¹	1.892(15)	W5-O22	1.866(16)
W3-O15	1.864(17)	W6-O31	1.926(15)
W3-O17	2.38(2)	W6-O8	1.889(16)
W3-O21 ¹	2.41(2)	W6-O18	2.38(2)
W1-O6	1.653(14)	W6-O19	1.671(14)
W1-O8	1.926(15)	W6-O21	2.43(2)
W1-O12	1.869(15)	W6-O22	1.914(16)
W1-O13 ¹	1.866(16)	W6-O23	1.881(16)
W1-O14	1.866(14)	W2-O4	1.669(13)
W1-O20	2.36(2)	W2-O10	1.879(15)
W1-O21	2.39(2)	W2-O11	1.878(15)
		W2-O12	1.894(15)
		W2-O15	1.933(18)
		W2-O17	2.38(2)
		W2-O20	2.412(19)

¹1-X,1-Y, 1-Z; ²5/2-X,-1/2+Y,1/2-Z; ³-1/2+X,3/2-Y,-1/2+Z

Table S3.	Bond	Angles	for	CUST-631.
-----------	------	--------	-----	-----------

Atom Atom Atom	Angle/°	Atom Atom Atom	Angle/°
N1-Ni1-O1	85.1(6)	O17 ¹ -Si08-O20	109.3(10)
N1-Ni1-N3	91.2(6)	O17 ¹ -Si08-O20 ¹	70.7(10)

N1-Ni1-O2	86.7(6)	O17-Si08-O201	109.3(10)	-
01-Ni1-O2	83.5(5)	O18-Si08-O181	180.0(16)	
N2-Ni1-N1	100.5(6)	O20 ¹ -Si08-O18 ¹	107.5(11)	
N2-Ni1-O1	169.6(6)	O20-Si08-O181	72.5(11)	
N2-Ni1-N3	92.8(7)	O20-Si08-O18	107.5(11)	
N2-Ni1-O2	88.1(6)	O20-Si08-O20 ¹	180.0	
N3-Ni1-O1	95.8(6)	O21-Si08-O17 ¹	71.0(11)	
N3-Ni1-O2	177.8(6)	O21-Si08-O17	109.0(11)	
N8-Ni1-N1	167.0(6)	O211-Si08-O18	109.4(11)	
N8-Ni1-O1	82.3(6)	O21-Si08-O18	70.6(11)	
N8-Ni1-N2	91.4(6)	O21 ¹ -Si08-O20 ¹	67.6(10)	
N8-Ni1-N3	93.4(6)	O21-Si08-O201	112.4(10)	
N8-Ni1-O2	88.5(6)	O21 ¹ -Si08-O21	180.0	
O17 ¹ -Si08-O17	180.0			
O17 ¹ -Si08-O18	109.2(11)			
O17 ¹ -Si08-O18 ¹	70.8(11)			

¹1-X,1-Y,1-Z;²5/2-X,-1/2+Y,1/2-Z;³-1/2+X,3/2-Y,-1/2+Z;⁴1/2+X,3/2-Y,1/2+Z

|--|

Empirical formula	$C_{32}H_{52}N_{24}Co_2O_{42}SiW_{12}$
Formula weight	3797.12
Temperature/K	296.15
Crystal system	monoclinic
Space group	$P2_l/n$
a/Å	12.407(10)
b/Å	16.723(13)
c/Å	17.478(14)
α/°	90
β/°	102.562(14)
γ/°	90
Volume/Å ³	3540(5)
Ζ	2

density (calculated)	3.563 g/cm ³
absorption coefficient	19.990 mm ⁻¹
F(000)	3408.0
2Θ range for data collection/°	3.41 to 50.814
Index ranges	$-14 \le h \le 14, -19 \le k \le 12, -20 \le l \le 21$
Reflections collected	20195
Independent reflections	6391 [$R_{int} = 0.0650, R_{sigma} = 0.0687$]
Data/restraints/parameters	6391/617/548
Goodness-of-fit on F ²	1.168
$R_{1}\left[I\!\!>=\!\!2\sigma\left(I\right)\right]{}^{a}$	0.0672
$wR_2[I\!\!>=\!\!2\sigma\left(I\right)]~^{\text{b}}$	0.1322
R ₁ [all data] ^a	0.0829
wR ₂ [all data] ^b	0.1386
Largest diff. peak/hole / e Å ⁻³	1.89/-1.78

 ${}^{a}R1 = \sum ||F_{0}| - |F_{c}|| / \sum |F_{0}|. \ {}^{b}wR_{2} = [\sum w(F_{0}{}^{2} - F_{c}{}^{2})^{2} / \sum w(F_{0}{}^{2})^{2}]^{1/2}$

Table S5. Bond Lengths for CUST-632.

Atom Atom	Length/Å	Atom Atom	Length/Å
Atom Atom	Lengul/A	Atom Atom	Length/A
Co07-O1	2.220(17)	W3-O18	1.673(17)
Co07-O4	2.168(15)	W3-O22	1.878(17)
Co07-N1	2.116(18)	W3-O2	2.42(3)
Co07-N2	2.11(2)	W3-O9 ¹	2.41(3)
Co07-N3	2.15(2)	W3-O11	1.928(17)
Co07-N4	2.135(19)	W4-O10	1.915(17)
Si1-O2	1.60(3)	W4-O12	1.847(16)
Si1-O9 ¹	1.61(3)	W4-O23	1.942(17)
Si1-O5	1.59(3)	W4-O17	1.669(16)
Si1-O211	1.63(3)	W4-O9	2.41(3)
W1-O6 ¹	1.878(18)	W4-O21 ¹	2.40(3)
W1-O10	1.846(17)	W4-O11 ¹	1.883(19)
W1-O3 ¹	1.920(17)	W5-O8	1.656(15)
W1-O13	1.859(17)	W5-O14	1.905(17)

W1-O7	1.647(16)	W5-O20	1.895(17)
W1-O9	2.38(3)	W5-O13	1.951(18)
W1-O5 ¹	2.40(3)	W5-O15	1.871(17)
W2-O1	1.669(15)	W5-O2	2.38(3)
W2-O12	1.961(17)	W5-O5 ¹	2.42(3)
W2-O16	1.864(16)	W6-O16	1.901(17)
W2-O3	1.851(17)	W6-O20	1.860(17)
W2-O15 ¹	1.901(16)	W6-O22	1.888(18)
W2-O5	2.37(3)	W6-O23	1.868(18)
W2-O21 ¹	2.37(3)	W6-O2	2.42(3)
W3-O6	1.864(17)	W6-O19	1.651(16)
W3-O14	1.861(17)	W6-O21 ¹	2.41(3)

¹1-X,1-Y, 1-Z; ²1/2+X,3/2-Y,1/2+Z; ³-1/2-X,-1/2+Y,3/2-Z

Table S6. Bond Angles for CUST-632.

Atom Atom Atom	Angle/°	Atom Atom Atom	Angle/°
O4-Co07-O1	81.2(6)	O21-Si1-O21	70.9(15)
N1-Co07-O1	87.2(7)	O21-Si1-O211	180.0
N1-Co07-O4	84.1(7)	O9-Si1-O91	180.0
N1-Co07-N3	91.7(8)	O91-Si1-O21	70.2(15)
N1-Co07-N4	165.9(8)	O9-Si1-O21	109.8(15)
N2-Co07-O1	87.8(7)	O9-Si1-O211	70.1(18)
N2-Co07-O4	166.7(7)	O51-Si1-O21	109.2(17)
N2-Co07-N1	103.0(8)	O5 ¹ -Si1-O2	70.8(17)
N2-Co07-N3	93.4(8)	O5-Si1-O9	109.4(16)
N2-Co07-N4	90.1(7)	O51-Si1-O9	70.6(16)
N3-Co07-O1	178.6(7)	O5 ¹ -Si1-O5	180.0(13)
N3-Co07-O4	97.8(7)	O5-Si1-O21	110.4(15)
N4-Co07-O1	87.9(7)	O51-Si1-O21	69.6(15)
N4-Co07-O4	82.1(7)		
N4-Co07-N3	93.0(8)		
O2 ¹ -Si1-O2	180.0		
O2-Si1-O9	109.0(16)		

O21-Si1-O9	71.0(16)	
O2-Si1-O21	109.1(15)	

¹1-X,1-Y,1-Z;²1/2+X,3/2-Y,1/2+Z;³-1/2+X,3/2-Y,-1/2+Z;⁴-1/2-X,-1/2+Y,3/2-Z;⁵-1/2-X,1/2+Y,3/2-Z

Figure S1 (a) Asymmetric unit of CUST-632. (All hydrogens are omitted for clarity); (b) The 1D Co- $\{SiW_{12}\}$ inorganic chain of CUST-632; (c) The $\{SiW_{12}\}$ -based 2D network of CUST-632 along a-axis; (d) The diagram of the 3D fabric of CUST-632.

Figure S2 TG curves of (a) CUST-631 and (b) CUST-632.

Figure S3 IR spectra of (a) CUST-631and (b) CUST-632.

Figure S4 The PXRD patterns of (a) CUST-631 and (b) CUST-632.

Figure S5 The plot of the cathodic peak currents vs. concentrations of KBrO₃ of (a) CUST-631 and (b) CUST-632.

Figure S6 The plot of the cathodic peak currents vs. concentrations of KNO₂ of (a) CUST-631 and (b) CUST-632.

Figure S7 The plot of the anodic peak currents vs. concentrations of AA of (a) CUST-631 and (b) CUST-632.